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Abstract
To assist clinicians in the differential diagnosis and treatment

of motor speech disorders, it is imperative to establish objec-

tive tools which can reliably characterize different subtypes of

disorders such as apraxia of speech (AoS) and dysarthria. Ob-

jective tools in the context of speech disorders typically rely on

thousands of acoustic features, which raises the risk of difficul-

ties in the interpretation of the underlying mechanisms, over-

adaptation to training data, and weak generalization capabilities

to test data. Seeking to use a small number of acoustic features

and motivated by the clinical-perceptual signs used for the dif-

ferential diagnosis of AoS and dysarthria, we propose to char-

acterize differences between AoS and dysarthria using only six

handcrafted acoustic features, with three features reflecting seg-

mental distortions, two features reflecting loudness and hyper-

nasality, and one feature reflecting syllabification. These three

different sets of features are used to separately train three classi-

fiers. At test time, the decisions of the three classifiers are com-

bined through a simple majority voting scheme. Preliminary re-

sults show that the proposed approach achieves a discrimination

accuracy of 90%, outperforming using state-of-the-art features

such as openSMILE which yield a discrimination accuracy of

65%.

Index Terms: formant frequencies, voiced segment duration,

loudness, long-term average speech spectrum, temporal spar-

sity, SVM

1. Introduction

Different types of motor speech disorders (MSDs) are observed

following various conditions of brain damage [1]. Apraxia

of speech (AoS) and dysarthria refer to two distinct types of

MSDs, presenting some specific but also overlapping clinical

signs. On the one hand, AoS is considered to be a dysfunction

of motor planning and is characterized by the presence of seg-

mental distortions such as vowel distortion, inappropriate vowel

lengthening, or reduced co-articulation, as well as several supra-

segmental specificities leading to syllabification and an overall

slow speech rate [1,2]. On the other hand, dysarthrias, although

considered to encompass several disorders of motor speech ex-

ecution (rather than planning), share similar clinical-perceptual

signs with AoS such as segmental distortions and an overall

slow speech rate [1–3]. The clinical differential diagnosis of

AoS is usually based on the co-occurrence of signs that are not

typically associated with dysarthrias, such as inconsistency of

segmental distortions, groping, initiation problems, and syllab-

ification [1,2,4]. Similarly, the clinical differential diagnosis of

dysarthrias is based on clinical signs that are not typically asso-

ciated with AoS, such as reduced loudness variation or hyper-

nasality [2]. However, due to the overlapping of such signs and

the difficulty of detecting them by ear, differential diagnosis is

very hard to be achieved by non-experts and even expert inter-

rater agreement is low [5–7]. To assist clinicians in the differen-

tial diagnosis and treatment of MSDs, it is therefore imperative

to establish automatic tools which can reliably discriminate be-

tween AoS and dysarthria.

In the past decade, there has been a growing interest in the

research community to develop objective tools to characterize

speech disorders. To our knowledge, the majority of contri-

butions deal with discriminating between healthy and impaired

speech, with impairments arising due to dysarthrias or laryn-

geal pathologies. Several successful contributions for the auto-

matic discrimination of healthy and dysarthric speech have been

made, with a vast number of acoustic features being typically

used such as the fundamental frequency, formant frequencies,

jitter, shimmer, harmonics-to-noise ratio, or mel frequency cep-

stral coefficients (MFCCs) [8–11]. Discriminating between dif-

ferent types of speech impairments has not been as comprehen-

sively studied, with seldom contributions dealing with discrim-

inating between different types of laryngeal pathologies. Us-

ing many frame-level acoustic features, discrimination between

two, three, and five laryngeal pathologies is done in [12–14]

by means of Gaussian Mixture Models, Support Vector Ma-

chines (SVMs), or Hidden Markov Models.

The objective of this paper is to propose an automatic tool

that can be used to discriminate between AoS and dysarthria.

As previously mentioned, the recent use of machine learning

approaches in the domain of speech disorders has led to a vast

number of acoustic features (in the order of thousands) being

typically employed [8, 15–17]. While this up-scaling of the

number of features allows to capture many acoustic character-

istics, it comes at the cost of serious difficulties in the inter-

pretation of the underlying mechanisms. Further, using a large

number of acoustic features poses the risk of over-adaptation to

training data and weak generalization capabilities to test data.

To overcome such limitations and motivated by the clinical-

perceptual signs used to diagnose AoS and dysarthria, in this

paper we propose to automatically characterize differences be-

tween AoS and dysarthria using only six handcrafted acoustic

features. To capture segmental distortion differences between

AoS and dysarthria, we propose to use the first formant fre-

quency, the second formant frequency, and the duration of con-

tinuous voiced regions. To capture loudness and hyper-nasality

differences, we propose to use the number of loudness peaks

per second and the long-term average speech spectrum (LTAS).

Finally, to capture syllabification differences, we propose to use

the temporal sparsity of speech spectral coefficients. We train

an SVM for each of these three feature sets, and as result, ob-

tain three classification decisions per speaker. At test time, the

decisions of the different SVMs are combined through a simple

majority voting (MV) scheme.

Experimental results on a French database of patients suf-



fering from AoS and dysarthria show that the proposed MV ap-

proach yields a high accuracy of 90%, outperforming the accu-

racy of the individual SVMs trained on the different feature sets.

Further, these results show that the proposed approach signifi-

cantly outperforms using an SVM with state-of-the-art feature

sets such as openSMILE [18].

2. Automatic AoS and Dysarthria
Discrimination

Fig. 1 depicts a schematic representation of the proposed ap-

proach for the automatic discrimination of AoS and dysarthria.

As shown in this figure, we extract three sets of acoustic fea-

tures, with the first one characterizing segmental distortions,

the second one characterizing loudness and hyper-nasality, and

the third one characterizing syllabification. Using these feature

sets, three different SVMs are trained. At test time, the deci-

sions of the three SVMs are combined through an MV scheme.

In the remainder of this section, details on the proposed ap-

proach are provided.

2.1. Segmental distortion

The feature vector for SVM1 is constructed by concatenating

the statistics of formant frequencies and duration of continuous

voiced regions.

Statistics of formant frequencies. As previously men-

tioned, vowel distortion and reduced co-articulation are some

of the clinical signs used to diagnose AoS. The perception of

the quality of vowels and co-articulation patterns is determined

by several acoustic properties, with the variation of the first and

second formant frequencies F1 and F2 being particularly impor-

tant [19–21]. Hence, to characterize vowel distortions and co-

articulation patterns, we propose to compute F1 and F2 based

on linear predictive coding as in [18]. The mean, standard devi-

ation, kurtosis, and skewness of F1 and F2 across time are used

for the feature vector of SVM1.

Statistics of the duration of continuous voiced regions. As

previously mentioned, abnormalities in vowel duration can be

observed in AoS. To capture such abnormalities, we propose

to compute the duration of each continuous voiced region (i.e.,

each continuous region where the estimated fundamental fre-

quency is greater than 0) as in [18]. The mean and standard

deviation of the duration of all such regions found in the utter-

ance are appended to the feature vector of SVM1.

Hence, the final feature vector for SVM1 is the

Segmental
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features

Loudness

& hypernasality

features

Syllabification
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Recording
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Figure 1: Schematic representation of the proposed approach

for the automatic discrimination of AoS and dysarthria.

10-dimensional vector constructed by concatenating the statis-

tics of formant frequencies and duration of continuous voiced

regions.

2.2. Loudness and hyper-nasality

The feature vector for SVM2 is constructed by concatenating

the number of loudness peaks per second and the LTAS.

Number of loudness peaks per second. As described in

Section 1, reduced loudness variation is a clinical sign used

to diagnose dysarthria. To characterize loudness variation, we

propose to compute the number of loudness peaks per second.

First, the auditory spectrum is computed as in [22] using the

power of the Mel-band spectrum weighted with an equal loud-

ness curve. By computing the loudness through summation over

all auditory bands, the number of loudness peaks per second is

extracted and used for the feature vector of SVM2.

Long term average speech spectrum. As described in Sec-

tion 1, hyper-nasality is another clinical sign used to diagnose

dysarthria. Hyper-nasality may manifest itself as an atypical

distribution of energy across the speech spectrum [23, 24]. To

capture this cue, we propose to use the LTAS computed from

the octave band representation. We use nine octave bands and

the average speech power across time in each band is appended

to the feature vector for SVM2.

Hence, the final feature vector for SVM2 is the

10-dimensional vector constructed by concatenating the num-

ber of loudness peaks per second and the LTAS.

2.3. Syllabification

The feature vector for SVM3 is constructed by concatenating

the statistics of temporal sparsity of the spectral coefficients.

Statistics of temporal sparsity. As previously mentioned,

syllabification can be observed in AoS. Syllabification mani-

fests itself as excessive pauses between phoneme transitions and

words. Such excessive pauses imply that there is a consistent

lack of energy in the speech spectral coefficients, which can be

captured by means of the temporal sparsity [25].1 As in [27],

temporal sparsity is computed for each frequency through a

maximum likelihood estimate of the shape parameter of a Chi

distribution modeling the speech spectral magnitudes. A lower

shape parameter describes more sparse signals, i.e., signals with

excessive pauses due to syllabification. The mean, standard de-

viation, kurtosis, and skewness of the so-computed shape pa-

rameter across frequency are used to create the 4-dimensional

feature vector for SVM3.

2.4. Classification

Depending on the patient under consideration and the available

speech material, the discriminative power of different features,

and hence, the classification decision of the three classifiers, can

vary. After training the SVMs, the decisions of the three clas-

sifiers are combined at test time through a simple MV scheme.

As will be shown in Section 3, the performance of this combi-

nation scheme is higher than the performance of the individual

SVMs.

1It should be noted that identifying a single perceptual characteristic
that temporal sparsity reflects is not straight-forward. Apart from syl-
labification, temporal sparsity can reflect articulation deficiencies and
inconsistent formant transitions [26, 27]. We have chosen to associate
temporal sparsity with syllabification in this paper since syllabification
is an established perceptual characteristic to identify AoS.



3. Results and Discussion

In this section, the performance of the proposed approach is

investigated and compared to using an SVM with the state-of-

the-art openSMILE features [18].

3.1. Database and preprocessing

The results presented in the following are based on a database

collected at Geneva University Hospitals and University of

Geneva. We consider 20 patients, with 10 patients (4 male, 6

female) diagnosed with AoS and the remaining 10 patients (4

male, 6 female) diagnosed with dysarthria. All AoS patients

have suffered a stroke, 7 of the patients with dysarthria suffer

from Parkinson’s disease, and the remaining 3 patients suffer

from Amyotrophic Lateral Sclerosis. The age of the AoS pa-

tients ranges from 24 to 72 years old, with a mean age of 53

years old. The age of the dysarthria patients ranges from 55 to

83 years old, with a mean age of 73 years old. Since there is an

age mismatch between the two groups of patients, a regression

approach is considered to validate the classification results (cf.

Section 3.4).

For each patient, the overall severity of the speech impair-

ment was evaluated by a speech pathologist using the percep-

tive score of BECD2 [28]. The perceptive BECD score ranges

from 0 (no impairment) to 20 (severe impairment), reflecting

impairments in different dimensions such as voice quality, pho-

netic production, prosody, or intelligibility [28]. The perceptive

BECD score of the AoS patients ranges from 5 to 15, with a

mean score of 9.1. The perceptive BECD score of the dysarthria

patients ranges from 1 to 12, with a mean score of 6.8. Since

there is a mismatch in the perceptive BECD score between the

two groups of patients, a similar regression approach as for the

age mismatch is considered to validate the classification results

(cf. Section 3.4).

The database contains recordings of 8 different sentences

at a sampling frequency of 44.1 kHz. After downsampling to

16 kHz and manually removing non-speech segments at the be-

ginning and end of each sentence, all sentences are concate-

nated and used to extract features for each patient. The aver-

age duration of the considered speech material for the AOS and

dysarthria patients is 146 s and 75 s respectively.

3.2. Feature extraction

Proposed features. The features proposed in Section 2 con-

sist of the formant frequencies, duration of continuous voiced

segments, number of loudness peaks per second, LTAS, and

temporal sparsity. The formant frequencies, duration of contin-

uous voiced segments, and number of loudness peaks per sec-

ond are extracted using [18]. To compute the LTAS and tem-

poral sparsity, signals are first transformed to the frequency do-

main using a weighted overlap-add short time Fourier transform

framework.

Baseline features. To the best of our knowledge, the au-

tomatic discrimination between AoS and dysarthria has never

been considered in the state-of-the-art literature. Consequently,

comparing the proposed approach to state-of-the-art approaches

is not possible. For completeness however, the proposed ap-

proach is compared to using an SVM with the openSMILE

feature set [18]. The openSMILE feature set is an 6473-

dimensional vector consisting of functionals of low-level de-

2BECD is the French acronym for “Batterie d’Évaluation Clin-
ique de la Dysarthrie” which stands for “Clinical Assessment Test for
Dysarthria”.

scriptors such as loudness, MFCCs, spectral frequencies, fun-

damental frequency, or formant frequencies. In an effort to min-

imize the effects of the curse of dimensionality, we use princi-

pal component analyses (PCA) to reduce the dimension of the

openSMILE feature set by retaining the PCA features that ex-

plain 95% of data variance. Although not presented here due

to space constraints, using openSMILE features without PCA

yields a significantly worse performance.

3.3. Classification analyses

The used classifiers are SVMs with a radial basis kernel func-

tion. Given the small number of patients currently available in

the corpus, validation is done following a leave-one-speaker-out

validation strategy. For each SVM, features are normalized us-

ing the mean and standard deviation of the training data in each

fold. The performance is evaluated in terms of the accuracy

Acc, i.e., percentage of correctly classified patients. In addition,

the percentage of correctly classified AoS patients Acc
A

and

the percentage of correctly classified dysarthria patients Acc
D

is presented, with Acc =
Acc

A
+Acc

D

2
. To select the soft mar-

gin constant C and the kernel width γ for the SVMs, nested

cross-validation is performed on the training data in each fold

with C ∈ {10−2, 104} and γ ∈ {10−4, 102}. The final hyper-

parameters used in each fold are selected as the ones resulting

in the highest mean accuracy on the training data. When using

the openSMILE feature set, the PCA components are learned

based on the training data in each fold.

3.4. Regression analyses

As described in Section 3.1, there exists a mismatch in age

and perceptive BECD score between the AoS and dysarthria

patients. As in [29], to determine whether the presented clas-

sification results of the proposed approach are biased by the

age or perceptive BECD score of the patients (i.e., to determine

whether the proposed feature sets characterize the age or per-

ceptive BECD score of the patients instead of the MSD), we

train Support Vector Regressors (SVR) with a Gaussian kernel

on each of the three proposed feature sets. The regressors are

trained to predict the age or the perceptive BECD score of the

patients within a leave-one-speaker-out validation framework.

Features are normalized using the mean and standard deviation

of the training data in each fold. The performance is evalu-

ated in terms of the coefficient of determination R2, which as-

sesses how well a model explains and predicts the target vari-

able (i.e., age or perceptive BECD score). A small R2 (i.e.,

negative or close to 0) indicates failure to accurately model the

data whereas a value of R2 close to 1 indicates accurate model-

ing of the data. For completeness, the regression performance is

additionally evaluated using the mean absolute error (MAE) be-

tween the predicted values and the target values (i.e., age or per-

ceptive BECD score). To select the soft margin constant C and

the kernel width γ for the SVRs, nested cross-validation is per-

formed on the training data in each fold with C ∈ {10−2, 104}
and γ ∈ {10−4, 102}. The final hyper-parameters are selected

as the ones resulting in the highest coefficient of determination

R2 on the training data.

4. Results

Table 1 presents the performance of an SVM using the baseline

openSMILE feature set, segmental distortion features (SVM1),

loudness and hyper-nasality features (SVM2), and syllabifica-

tion features (SVM3). In addition, the performance of the pro-



Table 1: Classification accuracy of an SVM using the baseline

openSMILE feature set, segmental distortion features (SVM1),

loudness and hyper-nasality features (SVM2), and syllabifica-

tion features (SVM3), and the classification accuracy of the

proposed final MV combination scheme on SVM1, SVM2, and

SVM3.

openSMILE SVM1 SVM2 SVM3 MV

Acc [%] 65 85 75 80 90

Acc
A

[%] 80 80 90 70 100

Acc
D

[%] 50 90 60 90 80

posed final MV combination scheme on SVM1, SVM2, and

SVM3 is presented. Several observations can be made based

on the presented results.

First, it can be observed that the accuracy of any of the pro-

posed feature sets (i.e., SVM1, SVM2, or SVM3) and of the

final combination scheme MV is higher than the accuracy of

the baseline feature set openSMILE. While the discrimination

accuracy for AoS patients using openSMILE is 80%, the dis-

crimination accuracy for dysarthria patients is only at a chance

level of 50%. These results confirm the advantages of using

carefully handcrafted features motivated by clinical-perceptual

signs for AoS and dysarthria discrimination. Second, it can be

observed that the proposed final combination scheme MV is ad-

vantageous and yields a high accuracy of 90%, outperforming

the accuracy of the individual classifiers SVM1, SVM2, and

SVM3. While the discrimination accuracy for AoS patients us-

ing the proposed MV scheme is 100%, the discrimination accu-

racy for dysarthria patients is 80%. This lower discrimination

accuracy of the MV scheme for dysarthria patients can be partly

attributed to the lower Acc
D

achieved by SVM2. Third, com-

paring the performance of SVM1, SVM2, and SVM3, it can be

observed that using the proposed segmental distortion features

(i.e., SVM1) yields the highest accuracy of 85%, while the low-

est accuracy of 75% is achieved using the proposed loudness

and hyper-nasality features (i.e., SVM2). Determining whether

the reason behind the lower accuracy of SVM2 lies in the char-

acterization power of loudness variation and hyper-nasality of

the used features or in characteristics of the patients in the con-

sidered database remains to be investigated in the future.

In summary, the presented results show that the proposed

automatic tool for the discrimination of AoS and dysarthria pa-

tients is very advantageous. To verify that the presented advan-

tageous results are not biased by the mismatch in age or per-

ceptive BECD score of the patients in the considered database,

we train SVRs aiming to predict the age and perceptive BECD

score of patients using each of the three proposed feature

sets (cf Section 3.4). The first SVR (SVR1) operates on the

10-dimensional feature vector characterizing segmental distor-

tions, the second SVR (SVR2) operates on the 10-dimensional

feature vector characterizing loudness and hyper-nasality, and

the third SVR (SVR3) operates on the 4-dimensional feature

vector characterizing syllabification. Table 2 shows the regres-

sion performance in terms of R2 and MAE for age and percep-

tive BECD score prediction. It can be observed that for both age

and perceptive BECD score prediction and for all feature sets,

the coefficient of determination R2 is negative. These results

indicate that the proposed feature sets fail to accurately model

the age and perceptive BECD score of the patients. This con-

Table 2: Regression performance in terms of coefficient of de-

termination R2 and MAE of an SVR using segmental distortion

features (SVR1), loudness and hyper-nasality features (SVR2),

and syllabification features (SVR3) trained to predict the age

and perceptive BECD score of patients.

Age Perceptive BECD

SVR1 SVR2 SVR3 SVR1 SVR2 SVR3

R2 −1.1 −0.3 −0.2 −2.1 −0.2 −6.0

MAE 16.6 13.3 11.3 4.5 3.0 6.9

clusion is further supported by the high MAE values for both

age and perceptive BECD score prediction and for all feature

sets. Hence, it can be said that the advantageous classification

results of the proposed feature sets (and consequently, of the

final MV combination scheme) presented in Table 1 are not bi-

ased by the mismatch in age or perceptive BECD score of the

patients. Instead, the proposed feature sets characterize signs of

the respective MSDs.

In summary, the presented results demonstrate that the pro-

posed approach can be a viable tool to assist clinicians in dis-

criminating between AoS and dysarthria. Its robustness and ap-

plicability in more extensive databases needs to be further in-

vestigated. In addition, handcrafting more powerful features

to characterize loudness variation and hyper-nasality and inves-

tigating more powerful combination schemes of the different

classifiers remain topics for future research.

5. Conclusion

In this paper, an automatic method to discriminate between AoS

and dysarthria using a small number of hand-crafted features

has been proposed. To characterize differences in segmental

distortions, it has been proposed to use the first formant fre-

quency, the second formant frequency, and the duration of con-

tinuous voiced regions. To characterize differences in loudness

and hyper-nasality, it has been proposed to use the number of

loudness peaks per second and the LTAS. To characterize syl-

labification differences, it has been proposed to use the temporal

sparsity of spectral coefficients. These different feature sets are

used to separately train SVMs that capture different clinical-

perceptual signs. At test time, the decisions of the different

SVMs are combined through a majority voting scheme. Exper-

imental results on a French database of patients suffering from

AoS and dysarthria show the applicability and complementary

nature of the proposed acoustic features, with the proposed clas-

sification approach yielding a high accuracy of 90%.
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