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Abstract: This paper presents a novel candidate generation algorithm for pedestrian detection in
infrared surveillance videos. The proposed method uses a combination of histogram specification and
iterative histogram partitioning to progressively adjust the dynamic range and efficiently suppress
the background of each video frame. This pairing eliminates the general-purpose nature associated
with histogram partitioning where chosen thresholds, although reasonable, are usually not suitable
for specific purposes. Moreover, as the initial threshold value chosen by histogram partitioning is
sensitive to the shape of the histogram, specifying a uniformly distributed histogram before initial
partitioning provides a stable histogram shape. This ensures that pedestrians are present in the
image at the convergence point of the algorithm. The performance of the method is tested using four
publicly available thermal datasets. Experiments were performed with images from four publicly
available databases. The results show the improvement of the proposed method over thresholding
with minimum-cross entropy, the robustness across images acquired under different conditions, and
the comparable results with other methods in the literature.

Keywords: infrared surveillance; pedestrian detection; video surveillance

1. Introduction

Video surveillance is gaining worldwide prevalence, and it is not uncommon to find
cameras mounted in airports, schools, office buildings, and many private residential areas
in addition to their traditional presence on public and government buildings and large
organisations. This significant increase in interest and utilization of Video Surveillance
Systems (VSSs) outside of the public and security sectors is propelled by user demand
for security due to increasing crime rates, global security threats, and advancement in
technology, which has significantly dropped the cost of acquiring and ease of installing
VSS. The consensus in demand is for the VSS to be proactive and persistent in monitoring.
The most prevalent VSSs employ visible light cameras that do not easily function in a
persistent—all day, all night, and every day of the week—manner and their performance
is hampered by over, under, and uneven illumination during the day and the use of
artificial light at night. Thermal infrared cameras can monitor persistently because they
are not affected by the problems of visible light cameras. All objects, whether hot, at room
temperature, or frozen, emit energy from the infrared part of the electromagnetic spectrum
called heat signature. Sensors in thermal cameras can detect the objects’ infrared radiation
and create an image based on that information.

Proactive VSS systems predict critical events before they happen and provide alerts
for them. Pedestrian detection is a significant task towards achieving proactive systems as
it provides primitive information for interpretation of the video footage. Pedestrians are
typically warmer than most objects in thermal video streams because human skin emits
(radiates) infrared energy almost perfectly with emissivity at 0.98 where 1 is the value of
the perfect radiator [1]. The amount of infrared energy detected from objects in a scene by
thermal sensors depends on the emissivity of the object, the reflectivity of other objects
in the immediate vicinity [2], and the prevailing weather conditions. Figure 1 presents a
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scenario where the hand and the ring on the finger of the hand have the same temperature,
but the ring appears cooler than the hand because the properties of the ring are different
from the hand. In outdoor infrared surveillance footage, the appearance of the pedestrian
is affected by the prevailing weather condition. This constitutes a major challenge for
pedestrian detection.

Figure 1. Example of how emissivity and reflected background can affect an infrared image. The ring
appears cooler than the hand although they are both at the same temperature [3].

Thermal surveillance cameras are normally set to capture as much of the scene data
as possible through a process of tone-mapping based on the sensitivity of the Focal Plane
Arrays (FPA) or thermal sensors to the magnitude of infrared energy present in a scene.
Tone-mapping is, essentially, rendering high dynamic range data to low-dynamic range
displays. Concerning thermal imaging, the dynamic range of a scene is the ratio of the
hottest to the coldest region in the scene, the dynamic range of the camera is the ratio
of the highest to lowest temperature the FPA or thermal sensors are capable of detecting
and the dynamic range of the display is the ratio of the maximum to minimum intensities
emitted from the screen. The dynamic range of the scene is far wider than the camera and
the display; therefore, the scene is first tone-mapped to the dynamic range of the camera
and then tone-mapped to the dynamic range of the display. As there is no specific target
in mind, the resulting images have poor contrast and an unsuitable amount of detail for
detecting a particular object. Before capturing a scene, the expected image can be improved,
with better contrast and reduced details, by narrowing the dynamic range of the camera to
be within the range of infrared emissions of the target in the scene so that a lower dynamic
range is mapped to a wider dynamic range. If the dynamic range is not adjusted before
scene capture, it is possible to manually adjust the image’s range to the range of the target
and remap the image as shown in Figure 2. However, manual adjustment is not feasible for
a video surveillance system handling large amounts of data.

The contribution of this work is a novel algorithm for candidate generation or ROI
extraction, which adapts general-purpose techniques to the specific task of pedestrian de-
tection in infrared images with a clear start and stopping criteria that efficiently suppresses
the background to identify regions-of-interest for pedestrian detection in infrared images
acquired under various weather conditions and in the presence of noise. The advantages
of the proposed method are as follows. First, it is an automatic candidate generation
method as opposed to manual delineation and cropping of pedestrians, which is tedious
and time consuming. Second, it overcomes the limitations of background model-based
candidate generation methods such as the computational cost of using the entire video and
the inability to detect motionless pedestrians.
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Figure 2. An example of manually adjusting the image to find the range of humans. (a) shows the
original image and its histogram, and (b) shows the manually chosen range, which is between the
two red lines (best viewed in colour). (c) shows the resulting image and the readjusted histogram.

The rest of the paper is organised as follows. Section 2 presents related works. Section 3
presents the proposed algorithm. Section 4 provides the experimental results and discussion.
Section 5 presents the conclusion and future work.

2. Related Works

Substantial effort has been made towards pedestrian detection because humans are
the principal instigators of noteworthy events in surveillance videos. Pedestrian detection
in infrared images generally consists of two steps: candidate generation and validation.
Candidate generation involves detecting the region-of-interest (ROI) where pedestrians are
likely to be found, while candidate validation involves discriminating between pedestrians
and non-pedestrians within areas demarcated as ROI. Many algorithms have been proposed
for visible light images [4–12] but, because images from visible light and thermal infrared
imaging have different characteristics, adaptations are necessary for visible light algorithms
to perform well on infrared images.

Rajkumar and Mouli [13] proposed a method for detecting pedestrians comprising a back-
ground subtraction model, high-boost filtering, and local adaptive thresholding. Jeon et al. [14]
fused the result of background subtraction—pixel difference image—with edge pixel infor-
mation for each video frame to detect pedestrians. Jeyabharathi and Dejay [15] proposed
a detection method based on Reflectional Symmetrical Patterns (RSP). Successive frame
differencing is used as an initial processing step, while RSP is used to create a subspace for
background modelling. The pedestrians are finally obtained by thresholding. Ma [16] made
use of the background difference method where the background is obtained by adding all
video frames together and by taking the average value to extract the target. Background
modelling usually uses the entire video to build a reliable model.Therefore, some methods
initially perform background suppression rather than background subtraction. Rajkumar
and Mouli [17] combined mean and Laplacian of Gaussian (LoG) filtering to suppress the
background and enhance pedestrians, after which morphological processing and local
thresholding are used to extract likely candidate regions.
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Thresholding is also used to suppress the background due to the contrast between
pedestrians and background. Wu et al. [18] proposed a new criterion for finding the optimal
threshold by modelling the object and background as normal cloud classes and constructing
a criterion that compares the hyper-entropies of both cloud class models. The cloud model
used assumes that object and background distributions follow a normal distribution, and
the hyper-entropy of each cloud model measures how much each class deviates from a
normal distribution. Manda et al. [19] proposed the use of an analogous function, in this
case, the raised cosine distribution function, to determine the threshold value for thermal
image segmentation. Manda et al. [20] approximated the one-dimensional histogram of the
image to the transient response of the first-order linear circuit to find the threshold value
for image segmentation. Approximating the histogram or assuming a distribution might
over-fit images from one database.

Some methods depend on the creation and extraction of features that are fed into
a binary—object/non-object—classifier [21–29]. Zhao et al. [21] placed more emphasis
on underlying temperature information in infrared images and trained a temperature
net for pedestrian detection. Krišto et al. and Tumas et al. [25,26] used YOLOv3 to
detect pedestrians from infrared images in varying weather conditions. Gao et al. [23]
performed feature extraction using a transfer-learned visual geometry group (VGG-19)
CNN. My et al. [28] made use of YOLOv3 object detector for pedestrian detection in IR
images by applying a generative data augmentation strategy. Li et al. [29] proposed an
improvement to YOLOv5 called YOLO-FIRI to include IR image features such that the
network is forced to learn more discriminative features, and small infrared object detection
accuracy is improved. images. While these methods achieve state-of-the-art results when
used on RGB images, they do not perform similarly on infrared. Moreover, the performance
of models across different datasets depends on similarity to the training data [25].

Minimum cross-entropy algorithms have been used in both visible and multispectral
images [6,30–33]. In this work, we adapt it for candidate generation in thermal infrared
pedestrian detection. First, rather than using the image in its original form, the image’s
histogram is equalised to become uniformly distributed. This is necessary because entropy
increases when information is uniformly distributed. Moreover, equalising the image
provides a spatial cohesiveness to the infrared image necessary for the success of the
proposed algorithm. Secondly, given the wide dynamic range of infrared images, the
sensitivity of the image is iteratively reduced and the algorithm is “guided” towards the
right side of the histogram. Therefore, at each iteration, the gray level at which minimum
cross-entropy is attained becomes the new minimum dynamic range value for the image,
thus creating a modified histogram for the next iteration until the previous and current
minimum values become equal. Thirdly, several algorithms rely on normalizing the pixel
intensity to provide a measure of the probability, but histogram equalisation achieves the
same effect. Therefore, the known probabilities are the equalised pixel intensity values of
the original image.

3. Proposed Method

The overview of the proposed method is presented in Figure 3 and consists of two
stages: candidate generation and candidate validation. In the candidate generation step,
median filtering is first applied to the input image to reduce the effect of noise. This is
followed by the automatic dynamic range adjustment consisting of histogram specification
whereby a uniformly distributed histogram is specified and iterative histogram partitioning
and remapping whereby, at every chosen threshold, the range from zero to that point reset
to black. This reset image is then iteratively repartitioned and reset until convergence.
It is important to note that the beginning of the dynamic range adjustment algorithm
is histogram specification because it has the effect of reducing the dynamic range and
is what guarantees that when the iterative histogram partitioning converges, it always
contains pedestrian candidates. In our experiments, histogram specification was carried
out using histogram equalisation, and iterative histogram partitioning was carried out
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using minimum cross-entropy. After dynamic range adjustments, the resulting image is
sent for candidate validation, which outputs the image with pedestrians detected.

Figure 3. Overview of the proposed method.

3.1. Dynamic Range Adjustment

The amount of information captured from a scene, which determines the radiometric
resolution of the image responsible for the actual information contained in an image, is
dependent on the sensitivity of the infrared sensors in the thermal camera. The sensitivity
of the infrared sensor describes its ability to detect slight differences in infrared energy,
which are encoded using bits and are displayed in varying tones of gray. A high level
of gray corresponds to high infrared energy emissions and vice versa. The images are,
therefore, made up of numbers ranging from zero (0) to one minus the maximum number
of gray levels available, and the maximum gray level is determined by the number of bits
used to represent infrared energy detected. To highlight pedestrians, it is necessary to
reduce the sensitivity of the camera so that regions with infrared emissions lower than
the minimum detectable by the thermal sensor appear as black and regions, with infrared
emissions higher than the maximum temperatures appearing as white. In this paper, we
perform this sensitivity reduction using histogram specification and iterative histogram
partitioning. The pseudo-code for the Dynamic Range Adjustment algorithm is shown in
Algorithm 1.

Algorithm 1: Dynamic Range Adjustment.
Input :

Input image E,
Output:

Adjusted image A with pixels a ∈ A
1 Compute histogram equalisation using Equation (4)
2 Compute tCE on E using Equation (12)
3 A← E
4 for a ∈ A do
5 if a < tCE then
6 a = 0
7 end
8 end
9 while tn+1 6= tn do

10 tn ← tCE
11 Compute tCE on A using Equation (12)
12 for a ∈ A do
13 if a < tCE then
14 a = 0
15 end
16 end
17 end
18 tn+1 ← tCE
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3.1.1. Histogram Specification Using Histogram Equalisation

Histogram equalisation is the best-known application of histogram specification tradi-
tionally used as an image enhancement technique that yields a more balanced histogram
and better contrast. When used on infrared images, it simulates the effect of reducing the
dynamic range of the camera before a scene is captured. In this section, we are interested in
creating the effect of reduced camera sensitivity to reduce the level of details in the image
and enhance the pedestrians. The mathematical foundation of histogram equalisation
is based on the idea that pixels in the original and equalised images can be regarded,
respectively, as continuous random variables X and Y in the range of gray levels [0, L− 1]
and the normalised histogram as probability density function (PDF) [34]. It is a transform
T of X into Y, which spreads gray levels over the entire scale, and each gray level is allotted
an equal number of pixels. Therefore, Y is defined as follows:

Y = T(X) = (L− 1)
∫ X

0
pX(x)dx, (1)

where pX is the PDF of the original image. T, therefore, is the cumulative distribution of X
multiplied by (L− 1).

The histogram h f of an image f with L gray levels in the range [0, 255] is given
as follows:

h f (l) = nl (2)

where nl is the number of pixels with l gray level. If the image has m pixels in total, the
normalised histogram p f is calculated as follows:

p f (l) =
h f (l)

m
(3)

where l = 0, 1, . . . , L− 1. Given gray level l, this is equivalent to dividing each gray level
nl by the total number of pixels in the image m. Given intensity k, the histogram equalised
image g of f can then be defined by as follows.

g(k) = floor(L− 1)
k

∑
l=0

p f (l) (4)

3.1.2. Histogram Partitioning

Histogram partitioning is normally carried out by finding a suitable gray value with
which it is used to divide the histogram to identify and/or isolate objects of interest.
Selecting the suitable gray value can be performed by using a local or global thresholding
technique. Local techniques partition an image into subimages and determine a threshold
for each of these subimages, while global techniques partition the entire image with a
single threshold value. In this section, we are interested in finding the range at which the
pedestrians lie, and this is performed by using iterative global thresholding, beginning
with the histogram equalised image until convergence. At each stage of the iteration, the
threshold value obtained becomes the new minimum dynamic range. The threshold value
at each iteration is obtained using minimum cross-entropy. The details are given as follows.

The thresholding problem is the choice of the best distribution estimate for an event
with unknown probabilities. Let the event with unknown probabilities b+(xi) be the
resulting binary image where xi refers to the grey level of the image pixels or the number of
bins in the image histogram. The problem is to choose a distribution b that best estimates
b+ given what we know. The solution to the problem is the distribution having expected
values that fall within the bounds or equal to the known values, thereby satisfying certain
learned expectations ∑i b+(xi)md(xi) or constraints. However, there is an infinite set of
distributions that satisfy the constraints. Information is a measure of one’s freedom of
choice in making selections [35]; thus, entropy, a measure of information, becomes necessary.
The principle of maximum entropy, which states that the distribution of choice, from all
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that satisfy the constraints, is the one with the largest entropy, is the prescribed solution for
solving such problems. However, in situations where a prior distribution that estimates b+

is known in addition to learned expectations, the principle of minimum cross-entropy, a
generalisation of the maximum entropy principle, applies [36].

Let the original image be the prior distribution with known probabilities w(xi). Cross-
entropy HCE(b, w) is the average number of bits needed to encode data with distribution b
when modelled with distribution w [37] and is defined as follows:

HCE(b, w) = ∑
i

b(xi) log
1

w(xi)
= −∑

i
b(xi) log w(xi)

and can be written as
HCE(b, w) = HE(b) + DKL(b||w) (5)

where the following:
HE(b) = −∑

i
b(xi) log b(xi)

is the entropy of the distribution b and the following:

DKL(b||w) = ∑
i

b(xi) log
b(xi)

w(xi)

is the Kullback–Leibler (K-L) divergence of distributions b and w defined as the excess code
over the optimal code needed to represent data because it was modelled using distribution
w instead of true distribution b [37]. The principle of minimum cross-entropy states that
of all distributions b that satisfy constraints, the distribution of choice is the one with
the smallest cross-entropy [36]. The value of HE(b) in Equation (5) is fixed and during
minimization and it reduces to an additive constant. Therefore, minimizing cross-entropy
reduces to minimizing K-L divergence:

HCE(b, w) = ∑
i

b(xi) log
b(xi)

w(xi)
(6)

which is subject to the following.

∑
i

b(wi) = ∑
i

w(xi) (= 1)

The Monkey Model proposed in [38] views a digital image as a discrete probability
distribution. In the model, a troop of monkeys is responsible for randomly throwing balls
onto an empty array of cells. The image formed shows the number of balls received at
each cell in the array. This view is exactly how infrared images are formed as the pixel
intensity is a measure of the level of infrared emission received from the scene by the
thermal camera’s sensors. Normalizing pixel intensity provides an approximate measure of
the probability of the emission at each pixel from the scene. Therefore, known probabilities
w(xi) of the original image are the normalised pixel intensity values.

The binary image’s distribution b is determined from that of original image w and
can be described using two probability measures µ0(T) and µ1(T), which are the below—
and above—threshold means of the original image, respectively. These expectations are
summarised as follows:

(i) b(xi) ∈ {µ0(T), µ1(T)}
(ii) ∑

w(xi)<T
w(xi) = ∑

i<T
µ0(T)

(iii) ∑
w(xi)≥T

w(xi) = ∑
i≥T

µ1(T)

(7)
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which allows for the determination of µ0(T) and µ1(T) as follows:

µ0(T) =
T

∑
i=y

ipi

µ1(T) =
z

∑
i=T+1

ipi

(8)

where y and z are the smallest and largest grey levels present in the original image, respec-
tively, T is the candidate threshold value, and pi is the probability of grey level i given by
the following:

Pi =
mi
N

(9)

where mi is the number of pixels having grey level xi, and N is the total number of pixels
making up the image. Therefore, we have the following.

i=z

∑
i=y

w(xi) =
i<T

∑
y

µ0(T) +
z

∑
i≥T

µ1(T) (10)

Hence, cross entropy from Equation (6) becomes the following:

HCE(b, w) =
T

∑
i=y

µ0(T) log
(

µ0(T)
w(xi)

)

+
z

∑
i≥T

µ1(T) log
(

µ1(T)
w(xi)

) (11)

and the threshold to be chosen corresponds to the minimum cross entropy and is provided
as follows.

tCE = arg
(

min
y<T≤z

{HCE(b, w)}
)

(12)

Since we know that humans exist in the brightest part of the image, we obtain the
iterative procedure shown in Algorithm 1 until iteration converges. The convergence
condition is as follows:

tn+1 = tn (13)

where tn+1 is the current tCE, while tn is the previous one.

3.2. Candidate Validation

With background effectively suppressed, the resulting image is binarised, and the
white regions are compared with the original image to separate from the remaining back-
ground blobs. This is performed by using standard deviation because humans do not have
uniformly distributed intensities. This means that they have a higher standard deviation
than noise and other sources of high infrared emission that also appear as hot spots. The
threshold value for standard deviation is determined empirically for each video because the
videos were acquired under different weather conditions. Candidate regions with standard
deviation less than the determined threshold are excluded from the results.

4. Experimental Results and Discussion
4.1. Dataset

The performance of the proposed method is tested by the following publicly avail-
able databases:

1. OTCBVS benchmark—Ohio State University (OSU) thermal pedestrian database [39],
which contains ten sessions of 360 × 240 thermal images of the walking intersection
and street of the Ohio State University captured during both day and night over
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many days under a variety of environmental conditions culminating in a total of
284 frames, each having an average of three to four people. The images were captured
using Raytheon 300D thermal sensor with a 75 mm lens camera mounted on an
eight-storey building.

2. LITIV dataset [40], which contains nine sequences of 320 × 240 thermal videos cap-
tured at 30 frames per second with different zoom settings from relatively high
altitudes and at different positions culminating in a total of 6325 frames of lengths
varying between 11 s and 88 s.

3. OTCBVS benchmark—Terravic Motion IR database [41], which features 18 thermal
sequences with 8-bit grayscale JPEG images of size 320 × 240 pixels taken with a
Raytheon L-3 Thermal Eye. Eleven sequences were chosen from the Outdoor Motion
and Tracking (OMT) Scenarios.

4. The Linkoping Thermal InfraRed (LTIR) dataset [42], which consists of 20 thermal
infrared sequences featured in the Visual Object Recognition (VOT) challenge 2015.
Four sequences pertaining to pedestrian detection were chosen: Saturated, Street,
Crossing, and Hiding.

4.2. Qualitative Performance Evaluation

In this section, the performance of the proposed candidate generation method is
showcased under visible differences in image appearance. Generally, hotspot algorithms
require a very wide contrast between the object and the background. However, we observed
that the proposed algorithm produces very good results with different ranges of contrast
between the pedestrian and the background.

Firstly, the difference between using minimum cross-entropy for threshold selec-
tion [31] and the proposed candidate generation algorithm is shown in Figures 4–7. The
images in the LITIV database (Figure 4) appear to have a uniformly dark background,
but thresholding reveals this assumption to be false. Therefore, only pedestrians that are
located within the centre of the image can be extracted for validation, while pedestrians at
the corners are merged with false positive pixels detected as the foreground. However, the
proposed method can extract pedestrians at any location in the image frame. The images in
the LTIR database (Figure 5) have varying histograms widths. Again, we have an image
that looks dark and uniform, but it surprisingly has a lot of details constrained within a few
gray levels in the histogram (Figure 5, row 3 from the Crossing Sequence). Most of the other
images in selected sequences pertaining to pedestrian detection have backgrounds with
intensities competing with pedestrians and minimum cross-entropy is unable to separate
the background from the pedestrians. The brightness of the background is also a problem
for most of the sequences in the Terravic dataset (Figure 6). Thresholding with minimum
cross entropy shows the most varied response when applied on the OSU Thermal database
(Figure 7). While there appears to be sufficient contrast in row 2 of Figure 7, the threshold-
ing algorithm is not able to partition the image appropriately. Instead, the entire image is
classified as ROI. In all these scenarios, the proposed candidate generation method has been
able to detect all likely regions where pedestrians are located. It has also been removing as
much of the background as possible so that pedestrians can easily be validated.
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Figure 4. Comparison of outputs using MCET and the proposed method on images from the LITIV
database. (a) Original image; (b) ground truth; (c) minimum cross entropy; (d) proposed method.



Sensors 2022, 22, 1728 11 of 19

Figure 5. Comparison of outputs using MCET and the proposed method on images from the LTIR
database. (a) Original image; (b) minimum cross entropy; (c) proposed method: Row 1: image
00000218 in Saturated; Row 2: image 00000005 in Street; Row 3: image 00000008 in Crossing; Row 4:
image 00000136 in Hiding.
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Figure 6. Comparison of outputs using MCET and the proposed method on images from the Terravic
Thermal database. (a) Original image; (b) minimum cross entropy; (c) proposed method.

Figure 7. Comparison of outputs using MCET and the proposed method on images from the OSU
Thermal database. (a) Original image; (b) minimum cross entropy; (c) proposed method.
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Secondly, the detection results of the proposed method are shown in Figures 8–10.
It can be observed that the method produces good results, especially in the area of a
reduction in false positives. In cases where the pedestrians are close and overlapping,
the proposed method tends to use one bounding box to detect them, similarly to LTIR
sequences (Figure 9). In Figure 10, it can be observed that, under light rain conditions, there
is a general difficulty in detecting the feet of some pedestrians, which is likely because
they have been cooled by rain. Under partly cloudy conditions, although the pedestrians
are very bright, the challenge is that there are several objects equally as bright as the
pedestrian. The worst performance is under hazy weather in the afternoon, and we can
observe fragmentation in one of the detected pedestrians while only the upper body is
detected in another.

Figure 8. Detected pedestrians on images from the LITIV and Terravic dataset after validation.
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Figure 9. Detected pedestrians on images from the LTIR dataset after validation.

Figure 10. Detected pedestrians on images from the OSU thermal dataset after validation.
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4.3. Quantitative Performance Evaluation

Quantitative evaluation is performed using four measures—True Positive, False Posi-
tive, Precision, and Recall. True Positive (TP) measures the number of detections that are
pedestrians. False Positive (FP) measures the number of detections that are not pedestrians.
Recall computes the ratio of the total number of pedestrians detected correctly to the total
number of pedestrians.

Recall =
TP

TP + FN
Precision computes the ratio of true detections to the total number of detections.

Precision =
TP

TP + FP

The OSU thermal dataset was first evaluated as it provides information about the
weather conditions during the time of capture. Table 1 provides the weather conditions
under which the video sessions were acquired such as cloud conditions, time of day (TOD),
the amount of ultraviolet rays from the sun (UV), and the temperature in degrees Celsius.
Table 2 shows the detection results of the proposed method on each of the sessions used for
the experiment. As the proposed method relies on the premise that pedestrians are brighter
than the background, the third session of the dataset was discarded from the experiments
because the pedestrians were polar-reversed. Therefore, the total number of pedestrians
used for the experiment is 883. The proposed method detected 867 pedestrians (TP) and 3
non-pedestrians (FP), thus achieving an average precision of 0.9967 and an average recall
of 0.9814.

Table 1. Weather conditions for OSU thermal database.

Session Cloud Condition TOD UV Temp. (◦C)

1 Light Rain Afternoon 1 13

2 Partly Cloudy Morning 1 5

4 Fair Morning 4 9

5 Partly Cloudy Morning 1 25

6 Mostly Cloudy Morning 1 21

7 Light Rain Afternoon 1 36

8 Light Rain Afternoon 2 30

9 Haze Afternoon 0 18

10 Haze Afternoon 2 23

From the weather conditions in Table 1 and results in Table 2, the following can be
observed about the performance of the proposed method. First, the proposed method
performs best in the morning under partly cloudy and fair conditions, while the worst
performance is observed in the afternoon under hazy conditions. Although both sessions 9
and 10 have hazy weather, session 9 only had a single visible pedestrian walking across
the scene for most of the video while session 10 had between three and six pedestrians at
any given time with varying levels of brightness. Therefore, we are inclined to proceed
with the lower performance of the method under hazy conditions even though session
9 had excellent precision and recall. Second, the proposed method performs best under
temperatures lower than 20 ◦C regardless of the time of day or cloud cover. This is
because, although the clothing worn by pedestrians normally impedes infrared emissions
detected from the body, causing the pedestrians to appear non-homogeneous, this is less
of a problem at lower temperatures as the amount of infrared that escapes the clothing
still appears brighter than the surrounding atmosphere. From the above observations, we
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conclude that while the proposed method performs an excellent job in detecting pedestrians
under different weather conditions, the best time to use infrared for monitoring is when
atmospheric temperatures are low.

Table 2. Detection results of the proposed method.

Session #People #TP #FP Precision Recall

1 91 88 0 1.0000 0.9670

2 100 100 0 1.0000 1.0000

4 109 109 0 1.0000 1.0000

5 101 101 2 0.9805 1.0000

6 97 94 0 1.0000 0.9690

7 80 93 1 0.9893 0.9893

8 96 98 0 1.0000 0.9898

9 95 95 0 1.0000 1.0000

10 97 89 0 1.0000 0.9175

In Table 3, we compare the performance of the proposed method using TP and FP with
other methods in the literature tested on the OSU thermal dataset. Davis and Keck [39]
and Oluyide et al. [43] employed background modelling for candidate generation while
Manda et al. [19] employed histogram partitioning. Zhao et al. [21] utilised temperature
maps for detection. From this table, it is interesting to observe that the results in these other
methods follow the same trend as the proposed method. That is to say that the best results
are in the morning and under cloud cover conditions of partly cloudy and fair weather and
also at low temperatures below and/or around 20 ◦C. Therefore, it is safe to conclude that
while major efforts have been made to accurately detect pedestrians, the prevailing weather
conditions still affect the results. Moreover, given that the proposed method cumulative
outperforms the methods we have put forward from the literature and has the highest
number of pedestrians (or detected all the pedestrians) on seven out of the nine sessions,
we conclude that our method provides excellent results in detecting pedestrians under
different weather conditions.

Table 3. Comparison of TP and FP values of the proposed method with other methods.

#TP #FP

#Ped [39] [21] [19] [43] Ours [39] [21] [19] [43] Ours

1 91 88 77 78 85 88 0 3 0 0 0
2 100 94 99 98 97 100 0 2 2 2 0
4 109 107 107 109 109 109 1 7 10 0 0
5 101 90 97 101 97 101 0 16 16 1 2
6 97 93 92 97 93 94 0 8 0 0 0
7 94 92 78 80 90 93 0 8 0 1 1
8 99 75 89 96 93 98 1 8 0 0 0
9 95 95 91 95 95 95 0 4 16 0 0

10 97 95 91 83 89 89 3 18 6 0 0

1–10 883 829 821 837 848 867 5 74 50 4 3

Furthermore, we compare the precision and recall of the proposed method with meth-
ods using the state-of-the-art object detector trained and/or tested with images in the
OSU thermal database and presented the results in Table 4. Huda et al. [24] trained the
detector using a private infrared database while Krišto et al. [25] and Haider et al. [27]
trained the detector using samples from the OSU database. It can be observed that the pro-
posed method outperforms state-of-the-art YOLO-based human detection methods [24,25]
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and performs slightly better than [27]. Many state-of-the-art methods do not perform
similarly on thermal infrared images for several reasons. Firstly, thermal images are not
RGB-turned-grayscale images but tone-mapped radiometric data. Because the information
measured and displayed by RGB and Infrared images are different, the same method
applied to both usually will not yield the same level of performance. Secondly, most of the
state-of-art used features learned from visible images to classify pedestrians in infrared
images. However, the level of details and image quality are not the same, which also results
in poorer performance.

Table 4. Comparison of precision and recall of the proposed method with the state-of-the-art.

Method Precision Recall

[25] 0.8600 0.8900

[24] 0.7100 0.6100

[27] 0.9920 0.9775

Ours 0.9967 0.9814

Lastly, we present the quantitative evaluation of the proposed methods on sequences
chosen from the LTIR database, the nine (9) sequences from the LITIV database, and
the eleven (11) sequences from the Outdoor Motion and Tracking (OMT) scenarios in the
Terravic Database using precision and recall in Table 5. While target detection is challenging
due to the loss of radiometric information in the conversion to digital images, it is also
challenging to generalise methods across IR images taken with different thermal sensors
and under different conditions. In [25], a model trained using a private IR dataset was
tested on public datasets including OSU thermal, and it was found that the dataset with
the highest performance was the one closest to trained data. However, it can be observed
that the proposed method does produce good results across different datasets, especially
given that a lot of false regions have been removed by the candidate generation stage. The
drawback to the proposed method is in cases of severe temperature differences caused
by clothing and accessories blocking infrared emission from the pedestrian, leading to
fragmented segmentations in the ROI extraction step.

Table 5. Detection results on all datasets used in the study.

Database Sequence Precision Recall

LTIR Saturated 0.9845 0.9644

LTIR Street 0.9590 0.9878

LTIR Crossing 0.9990 0.9995

LTIR Hiding 0.9833 0.9963

LITIV All 0.9793 0.9891

Terravic 11 (OMT) 0.9818 0.9930

OSU All 0.9967 0.9814

5. Conclusions

In this study, a new approach for candidate generation or ROI extraction based on
dynamic range adjustment was presented. The method makes use of a combination of
histogram specification and partitioning, which provides a clear starting point, a way to
move towards the brighter regions, and a clear convergence point guaranteed to effectively
suppress the background so that candidate validation could be carried out. The results
show the validity of our method to detect pedestrians with different visual appearances,
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thermal sensors, and different weather conditions. Future work will involve optimising the
algorithm to improve processing times.
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