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Abstract
We present a framework that, given a set of skills a robot can perform, abstracts sensor data into symbols that we use
to automatically encode the robot’s capabilities in Linear Temporal Logic (LTL). We specify reactive high-level tasks
based on these capabilities, for which a strategy is automatically synthesized and executed on the robot, if the task is
feasible. If a task is not feasible given the robot’s capabilities, we present two methods, one enumeration-based and one
synthesis-based, for automatically suggesting additional skills for the robot or modifications to existing skills that would
make the task feasible. We demonstrate our framework on a Baxter robot manipulating blocks on a table, a Baxter
robot manipulating plates on a table, and a Kinova arm manipulating vials, with multiple sensor modalities, including
raw images.
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1 Introduction
Generally-useful robots will be required to generate
intelligent behavior from high-level task specifications,
especially if they are to be used by non-experts. Robots
should have the ability to reason about their actions (or
skills), a task’s goals and its constraints, and generate
the behavior necessary to achieve the task, autonomously.
One promising formalism for describing tasks and skills is
Linear Temporal Logic (LTL) (Pnueli 1977). LTL allows
one to encode (i) skills that have nondeterministic outcomes,
(ii) safety constraints, (iii) reactive tasks, where the robot
responds to the environment, and (iv) tasks with complex
goals that go beyond reaching a goal state (as is typical in
planning languages such as PDDL (McDermott et al. 1998)).
Furthermore, there exist different algorithms that enable a
robot to synthesize a controller that is guaranteed to complete
a specified task for fragments of LTL, such as generalized
reactivity(1) (GR(1)) (Bloem et al. 2012).

However, writing LTL specifications is not trivial. Since it
is a discrete logic, it requires an abstraction of the problem.
Often, abstractions are handcrafted or constructed from a
simplified model of the world which may not fully capture
the outcomes of the robot’s skills. Recently, work has looked
at creating abstractions directly from sensor data (Konidaris
et al. 2018; Jetchev et al. 2013; Mugan and Kuipers 2009;
Ugur and Piater 2015a), but those approaches have not been
extended to seamlessly integrate with mission specification
approaches that employ formal languages such as LTL.

In approaches to synthesizing controllers from LTL
specifications, the robot skills and task are encoded as LTL
formulas and then the algorithms find a strategy such that
the task is guaranteed to be achieved, if feasible Kress-Gazit
et al. (2018). However, if the task is not possible given the
current skills of the robot, it is difficult to understand why,
much less what needs to be done to make the task possible.

Recently, several methods for debugging LTL specifications
have been proposed (e.g. (Raman and Kress-Gazit 2013;
Chatterjee et al. 2008; Könighofer et al. 2009)) along with
methods for suggesting modifications to specifications (e.g.
(Pacheck et al. 2019, 2020; Fainekos 2011; Kim et al. 2015)).
When debugging specifications, the user still needs to decide
how to repair the specification. In general, methods for
finding suggestions that repair a specification often require
changing the task, rather than changing the robot’s skills to
allow the robot to complete the task as specified.

Here, we build on the work in Pacheck et al. (2019) and
Pacheck et al. (2020). Extending Pacheck et al. (2019), we
demonstrate encoding robot skills using multiple types of
sensor data, including raw images. By creating abstractions
and encoding skills directly from sensor data, we are able
to take into account unmodeled nondeterminism in a robot’s
skills without having to hand design abstractions. A user
is then able to use these abstractions to specify a high-
level task for the robot. If the robot is always able to
accomplish the task, we can use existing methods in LTL
to generate a strategy that will guarantee the robot will
accomplish the task (e.g. (Bloem et al. 2012)). If the task
is not possible, we propose two algorithms for repair—
enumeration-based and synthesis-based—that will suggest
additional skills or modifications to skills that would allow
the robot to successfully accomplish the task as specified by
the user. We modify the enumeration-based repair algorithm
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of Pacheck et al. (2019) to allow for suggestions containing
more than one skill and expand the synthesis-based repair
algorithm of Pacheck et al. (2020) to allow for the repair
of reactive tasks, where the robot behavior depends on the
behavior of the uncontrolled environment. Furthermore, we
demonstrate our approach on new tasks and a new physical
robot (the Kinova arm in addition to the Baxter).

Contributions: Given a set of skills a robot is able to
perform, we present a framework that uses sensor data to
automatically create an abstraction and encode skills in LTL
and then, given a task written as an LTL formula over the
abstraction, provides skill suggestions to repair infeasible
tasks. Specifically, (a) We propose a method to automatically
encode the robot capabilities into LTL, directly from sensor
data, which is then used to automatically synthesize high-
level robot behaviors to accomplish a user-specified task.
(b) If a user-specified task is not feasible due to a missing
skill, we present two approaches—enumeration-based and
synthesis-based—for automatically suggesting skills that
repair the task (i.e. make it executable by the robot). (c) We
demonstrate our approach on two physical systems: a Baxter
robot manipulating blocks and pushing plates, and a Kinova
arm manipulating vials.

2 Related Work

This work deals with abstractions, planning, synthesis, and
repair. Each of these areas is often dealt with individually,
with overlap between some, but rarely all, of the areas.

Abstraction Creation: To enable robots to perform high-
level tasks, the robot’s capabilities, state, and environment
are typically abstracted into predicates that include the
robot’s skills and their effects on the robot’s state and
environment. These predicates are often abstractions of the
state space (Kress-Gazit et al. 2018; Mazo et al. 2010;
Finucane et al. 2010).

There are several existing approaches to generating
abstractions directly from low-level observations. These
include learning symbols to model an agent’s skills
(Konidaris et al. 2018), modelling an agent with param-
eterized actions (Ames et al. 2018), and learning agent-
centric symbols that can be transferred to new tasks in simple
video games (James et al. 2020). Ugur and Piater (2015a,b)
learn object-centric representations for a manipulation task.
While their system can be used for symbolic planning on a
physical robot, object features are specified prior to learning.
This approach is extended to learn representations directly
from raw image data using a neural network (Ahmetoglu
et al. 2020). In both cases, however, certain predicates are
manually inserted to generate a sound representation.

Jetchev et al. (2013) learn relational symbols and operators
directly from geometric data. However, the size of the
search space is large, requiring one dimension for every
parameter of every symbol, which restricts its ability to
scale to large problems. Mugan and Kuipers (2009, 2011)
iteratively discretize a continuous state space to construct a
model suitable for planning. Skills are then learned to reach
these discretized states. This can be seen as a “symbols-
first” approach, where skills are learned to achieve an initial
discretization, which is then refined as necessary.

Asai and Fukunaga (2018) learn deterministic action
operators directly from pixels using an autoencoder, where
the bottleneck layer represents the set of propositions set
to true and false. However, it is unclear how to extend
the approach to the stochastic setting. A similar approach
produces deterministic object-centric representations (Asai
2019), but the symbols are encoded implicitly and cannot
be transformed into a language that can be used by existing
planners.

While all of these approaches to generate abstraction can
learn representations for planning, they lack a mechanism
to correct a model that is imperfect or insufficient to solve
a given task. Recent works have begun to bridge the gap
of modifying models that are insufficient to solve a task
(Pacheck et al. 2019, 2020).

Planning: Planning algorithms and frameworks use
abstractions to find a sequence of commands to reach a
goal state (Fikes and Nilsson 1971; Fox and Long 2003;
Ghallab et al. 2016). If there is uncertainty in the outcome
of skills, planners exist that will return the sequence of skills
that is most likely to accomplish the task, but often require
replanning when an unexpected effect occurs (e.g. (Yoon
et al. 2007)). When there is uncertainty in sensing, initial
state, and actuation, conditional planning can return a plan
that will take these into account (Ghallab et al. 2016). If
the robot cannot observe all of its environment, conformant
planning generates a plan for a robot to accomplish its goal
(Ghallab et al. 2016). However, these goals are typically
defined as a desired end state, while we consider more
complex tasks. Additionally, if a planner fails to find a plan,
to the best of our knowledge, planners are unable to suggest
new skills that result in a valid plan.

Synthesis: Work in synthesis for robotics from temporal
logic specifications (Kress-Gazit et al. 2018) allows us to
specify a reactive high-level task for a robot and produce
either a strategy guaranteed to succeed, or a proof that the
task cannot be accomplished (e.g. (Lahijanian et al. 2012;
He et al. 2018; Wongpiromsarn et al. 2010; DeCastro and
Kress-Gazit 2016; Kress-Gazit et al. 2009; He et al. 2019)).

Specification Debugging: Using synthesis, robots can
find a strategy to accomplish a task that accounts for
all possible outcomes of their skills and changes in the
environment. However, if there does not exist a strategy
to accomplish a task, it is difficult even for expert users
to determine the cause, much less find a solution. If
completion of a task cannot be guaranteed, work has
enabled synthesis algorithms to provide explanations as to
what caused the problem (e.g. (Raman and Kress-Gazit
2013; Chatterjee et al. 2008; Könighofer et al. 2009)). For
fragments of LTL, such as GR(1), synthesis algorithms can
also produce counterstrategies that provide details on why
the specification cannot be satisfied (Könighofer et al. 2009).
Tools such as Slugs (Ehlers and Raman 2016) exist that
allow users to step through strategies and counterstrategies
for debugging purposes.

Specification Repair: Beyond providing methods to
debug specifications, work has proposed methods to provide
repair suggestions and automated fixes to be made to
specifications (Alur et al. 2013; Li et al. 2011). Some
frameworks allow for certain aspects of a specification to
be skipped at runtime if they are not possible (Lahijanian
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Figure 1. Example demonstrating the symbol generation process. (A) Two skills a1 and a2 and their precondition and effect sets.
(B,C) The grounding sets of the symbols generated from skill a1. The robot needs to consider the value of both x1 and x2 when
deciding if it can apply a1, so pre-mask(a1) = {True, True}. The robot only needs to consider the value of x1 when deciding if it
can apply a2, so pre-mask(a2) = {True, False}. The application of a1 either changes x1 and x2 or only x1, so
eff-mask1(a1) = {True, True} and eff-mask2(a1) = {True, False}. In effect 1 of a1, σTrue

eff1(a1)
= {σa1,1,x1 , σa1,1,x2} become True

and σFalse
eff1(a1)

= {σa1,2,x1 , σa2,1,x1 , σa2,1,x2} become False. In effect 2 of a1, σTrue
eff2(a1)

= {σa1,2,x1} becomes True,
σFalse

eff2(a1)
= {σa1,1,x1 , σa2,1,x1} becomes False, and σstay

eff2(a1)
= {σa1,1,x2 , σa2,1,x2} do not change. Figure from Pacheck et al.

(2019).

et al. 2016). In Lahijanian et al. (2016), the task is split into
safety constraints that must always be satisfied and liveness
guarantees that should be satisfied if possible. Work by
Fainekos (2011) and Kim et al. (2015) also consider revising
specifications.

These works ((Fainekos 2011; Kim et al. 2015; Alur et al.
2013; Li et al. 2011; Lahijanian et al. 2016)) focus on
restricting the behavior of the environment or modifying the
goals of the robot to make the task possible. In this work, we
provide suggestions that extend the capabilities of the robot
through additional skills or modifications to skills that are
grounded in the sensor-based abstract representation. Instead
of changing what we would like the robot to do, we give it
additional capabilities that allow it to accomplish the desired
task.

3 Preliminaries

3.1 Skills
We model the abilities of the robot as a set of skills,
A, operating over a world with a continuous state space
(x1, . . . , xn) ∈ X ⊆ Rn. Each skill a ∈ A has a region from
which it is applicable, termed the precondition of a, Pre(a) ⊆
X . The application of awill result in the state being in one of
j ∈ {1, . . . , k(a)} possible effect sets, denoted by Effj(a) ⊆
X . We introduce the example in Figure 1 to illustrate the
main ideas of skills and symbol generation. In this two-
dimensional space, a robot has two skills a1 and a2 that
allow it to move between regions, as shown by the arrows.
In Figure 1, a1 has a nondeterministic outcome, resulting in
either Eff1(a1) or Eff2(a1).

3.2 Symbol Generation
The process of symbol generation (Konidaris et al. 2018)
automatically constructs a set of symbols which are used
for planning. The finite set of propositional symbols Σ

represents the effect sets of a ∈ A. Each σ ∈ Σ is grounded
via the grounding operator G to the state space X .

The values of some xi may matter in determining whether
a skill can be applied, while the values of others may not.
We denote this in the precondition mask of a, pre-mask(a) ∈
Bn, where pre-mask(a)(i) = True whether the value of xi
influences if a can be applied, and False otherwise. We
create a classifier to test inclusion in Pre(a), which is defined
for xi for which pre-mask(a)(i) = True . Similarly, when
a skill is applied, it may change some or all of the state
variables. We denote this in the effect mask, eff-maskj(a) ∈
Bn, where eff-maskj(a)(i) = True if the value of xi is
modified by the application of a in the jth outcome and
False otherwise. In Figure 1, to apply a1, the values of
both x1 and x2 matter, so pre-mask(a1) = {True, True}.
However, we need only consider the value of x1 to determine
if a2 can be applied, so pre-mask(a2) = {True, False}.
Effect 1 of a1 changes the value of x1 and x2 so
eff-mask1(a1) = {True, True}, while effect 2 only changes
the value of x1, so eff-mask2(a1) = {True, False}.

We define factors fq ∈ F ⊂ 2X that denote which state
variables xi always change together. A separate σ is created*

for each a, j, and fq when eff-maskj(a)(i) = True ∀xi ∈
fq . We add subscripts to σ and say each σa,j,fq grounds to a
set over the state variables xi ∈ fq . We find the grounding by
fitting either a Gaussian or using Kernel Density Estimation
with a Gaussian kernel and consider G(σa,j,xi

) to be the
set of states spanned by five standard deviations from the
mean. If the raw data is found to be the same by a two-
sample Kolmogorov-Smirnov test (Hollander et al. 2014) or
in the case of higher dimensions if the mean and variance are
similar (Konidaris et al. 2018), the two symbols are merged
into one symbol. The set of symbols referring to a single
factor fq is Σfq = {σa,j,fq |a ∈ A, j ∈ {1, . . . , k(a)}}. The

∗Note that σ are only generated from effect sets in Konidaris et al. (2018).
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set of all symbols is Σ =
⋃
fq∈F Σfq . For readability, when

fq = {xi}, we denote σa,j,fq as σa,j,xi
. In Figure 1B,

Eff1(a1) results in two symbols, σa1,1,x1 and σa1,1,x2 ,
because eff-mask1(a1) = {True, True}. Only one symbol,
σa1,2,x1

is generated from Eff2(a1) as eff-mask2(a1) =
{True, False}. In this example, all factors are singletons.

During the symbol generation process, skills that have
different effects from different preconditions are partitioned
into multiple skills (Konidaris et al. 2018).

3.3 Linear Temporal Logic (LTL)
Let AP be a set of atomic propositions and π ∈ AP be a
Boolean variable. The syntax of a formula in LTL (Pnueli
1977) obeys the following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

where negation (¬,“not”) and disjunction (∨,“or”) are
Boolean operators and © (“next”) and U (“until”) are tem-
poral operators. We define True = ϕ ∨ ¬ϕ and False =
¬True. Given these operators, one can derive conjunc-
tion (ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)), implication (ϕ1 → ϕ2 ≡
¬ϕ1 ∨ ϕ2), equivalence (ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 →
ϕ1)), eventually (♦ϕ ≡ True Uϕ), and always (�ϕ ≡
¬♦¬ϕ). We define a symbolic state as the set of all proposi-
tions that are currently True and denote all possible symbolic
states by VAP = 2AP . We use AP ′ = {π′ | π ∈ AP} as
the set of primed versions of the variables in AP to denote
variables at the next time step. The set of all possible
symbolic states at the next time step is VAP′ = 2AP

′
.

The semantics of an LTL formula ϕ are defined over
an infinite sequence w = w1w2 . . . (Pnueli 1977). Each wi
corresponds to the set of π that are True at step i. We denote
that a sequence w satisfies an LTL formula at instance i by
w, i |= ϕ. Intuitively, w, i |=©ϕ if ϕ is True at step i+ 1,
w, i |= �ϕ if ϕ holds at every step after and including i in w,
and w, i |= ♦ϕ if ϕ holds at some step on or after i in w.

We consider the GR(1) fragment of LTL (Bloem et al.
2012). Let AP = E ∪ S be the set of atomic propositions,
where E is the state of the world as represented by the learned
symbols Σ and additional user-defined symbols R, and S
refers to the activation of robot skills, A. In GR(1), formulas
are of the form:

ϕ = ϕe → ϕs

ϕe = ϕei ∧ ϕet ∧ ϕeg
ϕs = ϕsi ∧ ϕst ∧ ϕsg

(1)

where ϕe are assumptions about the environment’s behavior
and ϕs are guarantees for the robot, also referred to as the
system, and:

• ϕe
i and ϕs

i are predicates over E and E ∪ S, respectively,
characterizing the initial states.

• ϕet and ϕst are safety constraints of the form
∧
i�ψi

where ψi are over v and ©u where v ∈ E ∪ S for ϕet
and ϕst , and u ∈ E for ϕet and u ∈ E ∪ S for ϕst .

• ϕe
g and ϕs

g are the liveness requirements and characterize
events that should occur infinitely often. Here, ϕe

g =∧m
i=1 �♦Jei and ϕs

g =
∧n
j=1 �♦Jsj where Jei and Jsj are

predicates over E ∪ S.

An implementation of the specification is guaranteed to
satisfy ϕs, provided that the environment satisfies ϕe.

3.4 Synthesis
We use GR(1) synthesis (Bloem et al. 2012) to find a strategy
to accomplish a task. In this work, a task consists of a
set of system liveness guarantees (ϕs

g), initial conditions
(ϕe

i ∧ ϕs
i ), and a set of “hard” system safety guarantees

(ϕs
t,hard). When synthesizing, we consider two-player games

played between a system and its environment where the
system reacts to the environment (Bloem et al. 2012). The
environment is considered to be adversarial and attempts to
keep the system from accomplishing its task. This ensures
the system is able to accomplish its task regardless of what
happens in the environment. We define a game structureG =
(AP, E ,S, θinit, τe, τs, τ hard

s ,Φ) where AP , E , and S are as
defined in Section 3.3. We define θinit as the set of states
that satisfy ϕe

i ∧ ϕs
i . We define τe ⊆ VAP × VE′ as the set of

current and next states satisfying ϕe
t , τs ⊆ VAP × VAP′ as

the set of current and next states satisfying ϕs
t , and τ hard

s ⊆
VAP × VAP′ as the set of current and next states satisfying
the hard system constraints in ϕs

t,hard. Hard system constraints
in τ hard

s cannot be modified by the synthesis-based repair
process in Section 6.2. Note that in Bloem, et al. (Bloem
et al. 2012), τe and τs are defined as logical formulas; here
we define them as sets of states. The winning condition is
given by Φ = ϕe

g → ϕs
g.

Given a game structure G, the realizability problem is
to decide if the game is winning for the system; either (a)
for every environment action, the system is able to achieve
ϕs or (b) the system is able to falsify ϕe. To determine if
a specification is realizable, we find all the states Z from
which the system is able to win via a fixed point computation
(Bloem et al. 2012). We iterate through every system liveness
guarantee, Jsj , and determine the set of states the system
can always either transition to the next liveness goal from
or falsify ϕe. The synthesis problem is to compute a strategy
for the system to make the specification realizable (Bloem
et al. 2012).

We define a strategy computed using the synthesis process
as C = (E ,S, Q,Q0, δ, L), where:

• E and S are the environment and system propositions,
respectively, defined above

• Q is a set of states
• Q0 ⊆ Q is the set of initial states
• δ : Q× 2E → Q is the transition function
• L : Q→ 2E × 2S is a labeling function that returns the

propositions in E ∪ S that are True in state q ∈ Q

Here, δ depends on E as the system reacts to the environment
state.

If Equation (1) is unrealizable, meaning that there does
not exist a strategy C that will satisfy the task, the
synthesis algorithm can provide a counter-strategy that
represents the behavior of the environment that will cause
the system to fail to accomplish its task (Könighofer
et al. 2009; Chatterjee et al. 2008). We define a counter-
strategy as Cc.s. = (E ,S, Q,Q0, Qn.o.t, δc.s., Lt, Ln.o.t), where
E ,S, Q,Q0 are the same as in C and:
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Skills Data Abstraction
generation

Construct robot-
�xed speci�cation  

(Problem 1) 

User-provided
speci�cation 

Repair  
(Problem 2) 

Synthesis-
realizable? Execution

+

YesNo

System

Figure 2. Framework for automatically encoding robot capabilities, executing tasks, and repairing unrealizable tasks. Novel
contributions are in bold and red. Figure adapted from Pacheck et al. (2019).

• Qn.o.t ⊆ Q is the set of states from which there are no
outgoing transitions (n.o.t.)

• δc.s. : Q \Qn.o.t × 2E → Q is the transition function
• Lt : Q \Qn.o.t → 2E × 2S is the labeling function for

states with outgoing transitions
• Ln.o.t : Qn.o.t → 2E is the labeling function for states

with no outgoing transitions. The system has no valid
transitions from Qn.o.t, so only E is needed to label Qn.o.t.

In Section 6.1, we use the states with no outgoing transitions,
Qn.o.t, to narrow the search for skills to repair unrealizable
specifications in the enumeration-based repair approach.

4 Problem Formulation
Our goal is to automatically encode the capabilities of a robot
in a LTL formula and find a strategy for a reactive high-level
task. If no strategy can be found, we find additional skills or
modifications to skills that would allow the robot to complete
the given task.

Problem 1: Given a set of skills A, automatically abstract
and encode the capabilities of the robot in an LTL formula,
ϕskills. Allow a user to specify a reactive high-level task and
find a strategy to fulfill it.

Problem 2: Given an unrealizable specification ϕunreal,
find skill suggestionsAnew, in the form of additional skills or
modifications to current skills, such that constructing ϕskills
with A ∪Anew makes the specification ϕunreal realizable.

5 Specification Encoding
To address Problem 1, we automatically encode the robot’s
capabilities in ϕskills using the symbols in Σ, which are
learned from low-level sensor information (Konidaris et al.
2018), and the skills A of the robot. The skills-based
specification, ϕskills, can be reused for different tasks
performed by the same robot. The user then writes the
task specific specification, ϕtask, over Σ ∪R ∪A, which is

combined with ϕskills to create ϕfull. The set R contains
additional user-defined environment propositions which
correspond to signals the user wants the robot to react to. We
use a synthesis tool, such as Slugs (Ehlers and Raman 2016),
to either find a strategy, C, for accomplishing ϕfull if the
specification is realizable or a counter-strategy, Cc.s., if the
specification is unrealizable. An overview of the framework
is depicted in Figure 2.

5.1 Skills-Based Specification (ϕskills)
The skills-based specification encodes the preconditions
and postconditions of skills, along with mutual exclusion
constraints on the skills and symbols.

Given a set of skills A, we first create symbols σ ∈ Σ,
representing the effects of a ∈ A (Konidaris et al. 2018). We
slightly abuse notation and use a as a proposition that is True
when the skill a is active, and False otherwise.

The skills-based specification (ϕskills) is composed of the
system safety (ϕs

t,skills = ϕs
t,pre ∧ ϕs

t,mx skills) and environment
safety (ϕe

t,skills = ϕe
t,eff ∧ ϕe

t,no act ∧ ϕe
t,mx syms) specifications.

The system safety specification includes constraints on when
the system is allowed to perform skills (ϕs

t,pre) and optionally
the mutual exclusion of skills (ϕs

t,mx skills). The environment
safety specification includes how each σ is allowed to change
with the application of a skill (ϕe

t,eff), the effect of no
skill being performed (ϕe

t,no act), and the mutual exclusion of
symbols over the same factor (ϕe

t,mx syms).

5.1.1 System Safety (ϕs
t,skills): We encode constraints on

when skills can be performed in ϕs
t,pre based on the precon-

ditions of the skills. For each action, we find all possible
combinations of symbols that overlap with the precondition
mask and determine which combinations fall within the
precondition set (Konidaris et al. 2018). We define σpre(a) =
{σp ∈ Σpre-mask(a)|G(σp) ⊆ Pre(a)}, where Σpre-mask(a) =∏
fq∈F s.t. ∀xi∈fq,pre-mask(a)(i)=True Σfq . The set σpre(a) con-

tains all the combinations of σ that satisfy the precondition
of a. We encode in ϕs

t,pre that when none of the preconditions
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ϕs
t,pre =

∧
a∈A

�

¬
 ∨
σp∈σpre(a)

 ∧
σ∈σp

©σ

→ ¬© a

 (2)

σFalseeffj(a) =
⋃

fq s.t. ∀xi∈fq,eff-maskj(a)(i)=True

{σ ∈ Σfq | G(σ) ∩ G(σa,j,fq ) = ∅} (3)

ϕe
t,eff =

∧
a∈A

�

a→ ∨
j∈{1,...,k(a)}


 ∧
σ∈σTrue

effj(a)

©σ

∧
 ∧
σ∈σFalse

effj(a)

¬© σ

∧
 ∧
σ∈σstay

effj(a)

(σ ↔©σ)



 (4)

in σpre(a) are satisfied, the robot is not allowed to perform
a as shown in Equation (2). Equation (2) states that skill a
cannot be executed at the next step when no combinations
of symbols σp ∈ σpre(a) are True at the next step. This
allows the robot to choose to execute a skill only when the
preconditions of a skill are satisfied. We write ϕs

t,pre over
VAP′ instead of over VAP as in Pacheck et al. (2019) to
generate additional types of skill suggestions in Section 6.2
and match assumptions made in Pacheck et al. (2020). In
Figure 1, σpre(a2) = {{σa1,1,x1}, {σa1,2,x1}}.

We can encode mutual exclusion of skills in ϕs
t,mx skills at

both the current and next step. In the examples presented,
skills are mutually exclusive, although in general they need
not be.

Note that ϕs
t,mx skills is considered a “hard” constraint

(ϕs
t,hard) for synthesis-based repair (Section 6.2) and so is

not allowed to be changed. On the other hand, ϕs
t,pre is not

a “hard” constraint and can be modified during synthesis-
based repair, meaning that we can modify the preconditions
of the skills.

5.1.2 Environment Safety (ϕe
t,skills): To encode a skill’s

(possibly nondeterministic) effects, we consider the skill
outcome to be determined by the environment.

We denote the symbols which become True

with the application of a skill a as σTrueeffj(a)
=

∪fq s.t. ∀xi∈fq,eff-maskj(a)(i)=True σa,j,fq (Konidaris et al.
2018). In Figure 1, σTrueeff2(a1) = {σa1,2,x1

}.
When a is applied, symbols belonging to the same factor

fq whose grounding sets do not overlap with those in σTrueeffj(a)

become False due to mutual exclusion. We denote this set
of symbols σFalseeffj(a)

in Equation (3). In Figure 1, σFalseeff2(a1) =

{σa1,1,x1 , σa2,1,x1}.
When performing synthesis (Kress-Gazit et al. 2018),

if a symbol is not constrained, it can be set to any
value. We must therefore consider the “frame problem”
(Ghallab et al. 2004) and constrain symbols that are not
modified by the current skill to stay the same. The set
σstay

effj(a)
= ∪fq s.t. ∀xi∈fq,eff-maskj(a)(i)=FalseΣfq contains the

σ not modified by skill a in the jth outcome. In Figure
1, because x2 is not modified in effect 2 of a1, σstay

eff2(a1)
=

{σa1,1,x2 , σa2,1,x2}.
We encode how the truth values for σ can change when

a skill is applied in ϕe
t,eff in Equation (4). Equation (4)

states that when skill a is performed, it leads to one of
j nondeterministic outcomes with σ ∈ σTrueeffj(a)

becoming
True, σ ∈ σFalseeffj(a)

becoming False, and the truth value of

σ ∈ σstay
effj(a)

remaining the same. Symbols whose grounding

sets overlap with those in σTrueeffj(a)
and are therefore not

in σTrueeffj(a)
, σFalseeffj(a)

, or σstay
effj(a)

are not constrained. In the
examples presented in this work, there are no symbols
whose grounding sets overlap that have not been merged into
one symbol. During the synthesis process, the adversarial
environment chooses which nondeterministic outcome j
would result in the worst case scenario for the system.
This enables us to guarantee that no matter what the
nondeterministic effect of an action is, the system is still able
to complete its task.

When no skill is performed, we encode in ϕe
t,no act that the

truth values of σ remain the same.

ϕe
t,no act = �

[(∧
a∈A
¬a

)
→

(∧
σ∈Σ

(σ ↔©σ)

)]
(5)

We encode the mutual exclusion of non-overlapping
symbols over the same factor in ϕe

t,mx syms at both the current
and next step. We enforce that only one of the symbols in a
factor is True at a time. In Figure 1, σa1,1,x1

, σa1,2,x1
, and

σa2,1,x1
are all grounded over x1 and do not overlap, so only

one of them can be True at a time.

5.2 Task Specification, Synthesis, and
Execution

The user writes the task-specific specification, ϕtask, which
may include additional environment propositions vu ∈ R.
The task-specific specification can include constraints on
the initial state(s) of the system and environment, system
liveness, and environment liveness in ϕs

i,task, ϕe
i,task, ϕs

g,task,
and ϕe

g,task, respectively. Additional system safety constraints
are added in ϕs

t,task, which we consider to be a “hard”
constraint and which is not allowed to be changed during the
synthesis-based repair. Tasks can encode objectives such as
repeatedly accomplishing a goal or goals, always avoiding
some states, always making sure a constraint holds, or
reacting to environment events. We give examples of tasks
and ϕs

g,task, ϕe
g,task, and ϕs

t,task in Section 7.
The full specification ϕfull is shown in Equation (6). We

generate a strategy for satisfying ϕfull using a synthesis tool,
such as Slugs (Ehlers and Raman 2016). If ϕfull is realizable,
the resulting strategy C = (E ,S, Q,Q0, δ, L), where E =
Σ ∪R and S = A, is used to control the robot. If ϕfull
is not realizable, we repair the specification using either
an enumeration-based or synthesis-based repair approach
(Section 6).

To assist the user in writing ϕtask, we visualize the
grounding of the symbols and combinations of symbols.
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ϕfull = ϕe
i,task ∧

ϕe
t,skills︷ ︸︸ ︷

ϕe
t,eff ∧ ϕe

t,no act ∧ ϕe
t,mx syms ∧ϕe

g,task → ϕs
i,task ∧

ϕs
t,skills︷ ︸︸ ︷

ϕs
t,pre ∧ ϕs

t,mx skills ∧ ϕs
t,task︸ ︷︷ ︸

ϕs
t,hard

∧ϕs
g,task (6)

Figures 4(E,F) and 5 show examples of individual symbol
groundings. Figures 4(A-D), 6(C,F), 7(A-D), 8(B,D), 10, 12,
13, 14, and 15(G-I) visualize the combination of multiple
symbols. To visualize each combination of symbols, we
sample from the intersection of the grounding sets of the
symbols.

6 Specification Repair
We address Problem 2 of making an unrealizable specifica-
tion realizable by searching for additional skills or modifi-
cations to existing skills. We present and compare both an
enumeration-based and synthesis-based approach, based on
methods first proposed in Pacheck et al. (2019) and Pacheck
et al. (2020), respectively.

6.1 Enumeration-Based Repair
In the enumeration-based repair approach, we search for one
or more skills, anew ∈ Anew, that would make an unrealizable
task realizable when ϕskills is constructed withA ∪Anew. We
build on the enumeration-based repair process presented in
Pacheck et al. (2019). There, we assume that only one skill,
anew is required to repair the specification. In this work, we
relax that assumption and repair specifications that may need
more than one additional skill. We assume the robot has all
the symbols it needs to define the task. We also assume that
our new skills will consist of a precondition set and effect
mask we have already seen, restricting the search space for
the new skills. By assuming our new skills will consist of
a precondition set and effect mask we have already seen, we
will not find all possible skills to repair the task and may even
be unable to repair the specification. It is possible to relax
these assumptions to consider all possible preconditions
and postconditions; however, without these assumptions, the
number of possible skills is too large to reasonably consider.
In this work we are able to find skill suggestions for all
examples in Section 7 with the enumeration-based approach
while making the above assumptions.

We leverage the structure of Cc.s. to focus the repair
process. The counter strategy,Cc.s., contains the environment
behaviors that make a specification unrealizable. In general,
a GR(1) specification is unrealizable either because (i) the
robot violates safety constraints, (ii) gets stuck in a loop
when trying to satisfy its liveness goals, or (iii) is unable
to reach the liveness goals from its initial conditions. When
the robot can only satisfy at least one of its liveness goals
by using skills that leave the environment unable to act,
the counter strategy contains states with no successors (i.e.
Qn.o.t. 6= ∅). We find the skills that lead to these states, and
use their precondition sets to narrow the search space for
Anew. Then, we generate new effect sets, based on existing
effect masks, and combine them with existing precondition
sets to create new skills.

Algorithm 1 shows our enumeration-based procedure for
repairing unrealizable specifications. On Line 1, we create

new effect sets, Σ+, based on existing effect masks, based
on the assumption that new skills will change similar states
as current skills. For each existing effect mask, we find all
the state variables that are in the mask. We then compute
all possible combinations of σa,j,fq that ground to those
state variables, regardless of which skill they were originally
generated from.

On Line 2, we find An.o.t.: the set of skills whose
preconditions were satisfied that lead to states with no
outgoing transitions. Based on An.o.t., we then construct a
set of candidate skills, Acandidate-skills-n.o.t on Line 3. Each one
consists of the precondition set of a skill in An.o.t. and a new
effect set found in Σ+. We then construct a second set of new
skills, Acandidate-skills-all, in Line 4 based on the precondition
sets of all skills A. Slightly abusing notation, we denote
candidate skills in Acandidate-skills-n.o.t and Acandidate-skills-all as
pairs containing the preconditions of a skill and which
symbols become True, while using the name of a skill to
denote skills in An.o.t.

We then consider combinations of a skill in
Acandidate-skills-n.o.t and nnew-skills-desired − 1 skills in
Acandidate-skills-all. We assume that one new skill needs to
include a precondition from the skills An.o.t., but do not
assume any other new skills need to start from one such
precondition. In Lines 7-13, we write the unrealizable
specification with the new skills and attempt to synthesize
a strategy. If the specification is realizable, we store the
skill combination. All Anew which make ϕfull realizable are
returned to the user, enabling them to select the skill they
deem easiest to physically implement.

6.2 Synthesis-Based Repair
Our second approach to repair unrealizable specification is
synthesis-based repair where, as opposed to the enumeration-
based approach, we take advantage of the synthesis process
to guide the repair. We extend the synthesis-based repair
introduced in Pacheck et al. (2020) to find suggestions for
skills that can repair reactive tasks. Here we give a brief
overview of the process (see Pacheck et al. (2020) for a
full description), and describe modifications we have made
to the repair process that allow us to find suggestions for a
larger class of specifications. With these modifications we
are able to find repair suggestions for specifications with
reactive liveness guarantees, which is not possible with the
repair process in Pacheck et al. (2020).

The repair process takes an unrealizable specification
and finds suggestions of new skills or modifications to
existing skills. Modifications to existing skills are in the
form of additional preconditions that should be added to
skills, thereby allowing the robot to use them in additional
situations, or postconditions that should be removed from
skills, essentially reducing nondeterminism. Additional
preconditions are a set of symbol combinations σadded

pre(a) that
should be added to the existing preconditions, i.e. σnew

pre(a) =
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Algorithm 1: Enumeration-Based Repair
Input: Cc.s.(E ,S, Q,Q0, Qn.o.t, δc.s., Lt, Ln.o.t), nnew-skills,A, ϕtask
Output: αsuggestions

1 Σ+ :=
⋃
a∈A,j∈{1,...,k(a)}

∏
fq∈F s.t.∀xi∈fq,eff-maskj(a)(i)=True Σfq // Create new postconditions

2 An.o.t := {a ∈ A| ∃σp ∈ σpre(a), q ∈ Q, e ∈ 2Es.t. δ(q, e) ∈ Qn.o.t, σp ∈ Lt(q)} // Skills leading to
states with no outgoing transitions

3 Acandidate-skills-n.o.t := {(σpre(an.o.t), σ) | an.o.t ∈ An.o.t, σ ∈ Σ+ s.t. @ aorig ∈ A where σpre(an.o.t) =
σpre(aorig) and σTrueeff(an.o.t)

= σTrueeff(aorig)
} // New skills based on An.o.t

4 Acandidate-skills-all := {(σpre(a), σ) | a ∈ A, σ ∈ Σ+ s.t. @ aorig ∈ A where σpre(a) = σpre(aorig) and σTrueeff(a) = σTrueeff(aorig)
}

// New skills based on A
5 αsuggestions := ∅
6 αcombinations = combinations of Acandidate-skills-n.o.t and (nnew-skills − 1) skills from Acandidate-skills-all
7 for Anew ∈ αcombinations do
8 Write ϕskills with A ∪Anew
9 Synthesize ϕfull with ϕskills and ϕtask

10 if Realizable then
11 αsuggestions := αsuggestions ∪ Anew
12 end
13 end
14 return αsuggestions

Algorithm 2: restrictPostconditions (additions to Pacheck et al. (2020) are in blue)
Input: Game structure G, Winning states Z, User-defined variablesR, Extra skills Aextra-skills, Extra skill that can be

changed aextra-skill-modify
Output: Updated τe

1 R1 := {(vAP , v′e) | vAP ∈ VAP , ve ∈ VE ,∃vs ∈ VS s.t. (vAP , v
′
e, v
′
s) ∈ τs and (ve, vs) ∈ Z};

2 R2 := {vAP ∈ VAP | ∃ve ∈ VE s.t. (vAP , v
′
e) ∈ τe and (vAP , v

′
e) ∈ R1};

3 R2 := R2\Z;
4 R2 := {(ve, vs) ∈ R2 | if vs ∈ Aextra, vs = aextra-skill-modify};
5 τ new

e := {(vAP , v′e) | vAP ∈ VAP , ve ∈ VE s.t. vAP ∈ R2 and (vAP , v
′
e) ∈ R1 ∩ τe};

6 τ new-expanded
e = {(vAP-expanded, v

′
e-expanded) | ∃(vAP , v′e) ∈ τ new

e , r1, r2 ∈ 2R s.t.
(vAP-expanded = vAP \ r1 or vAP-expanded = vAP ∪ r1) and (v′e-expanded = v′e \ r′2 or v′e-expanded = v′e ∪ r′2)};

7 τolde := {(vAP , v′e) | vAP ∈ VAP , ve ∈ VE s.t. vAP /∈ R2 and (vAP , v
′
e) ∈ τe};

8 return τ new-expanded
e ∪ τolde ;

σpre(a) ∪ σadded
pre(a). The repair process can also remove one or

more postconditions j ∈ {1, . . . , k(a)}.
To find new skills, we add a set of additional skills,
Aextra-skills, to the specification that are unrestricted—they
can be executed from any combination of symbols and can
result in any combination of symbols. The preconditions of
aextra-skill ∈ Aextra-skills are σpre(aextra-skill) = 2Σ. In practice, we
simply do not include constraints on the preconditions of
Aextra-skills in ϕs

t,skills. Similarly, there are no constraints on
the postconditions of aextra-skill ∈ Aextra-skills. The extra skills
still need to satisfy constraints on the mutual exclusion of
symbols in ϕe

t,mx syms. New skills are of the form of a set
of preconditions, σnew

pre(a) and collection of postconditions for
that skill σTrue−new

effj(a)
.

To find skill suggestions, the synthesis-based repair pro-
cess performs synthesis until it determines the specification
is unrealizable. The repair process then iteratively mod-
ifies τe and τs, which correspond to ϕe

t,skills and ϕs
t,skills,

respectively, and attempts to perform synthesis until the
specification is realizable. The repair process returns τ new

e

and τ new
s , from which we extract the skill suggestions.

To modify τe, the process of restricting postconditions
takes the current game structureG, a set of winning states Z,
the user-defined variablesR, the set of extra skillsAextra-skills,
and which extra skill can be changed on this iteration
aextra-skill-modify. The process of restricting the postconditions
removes transitions from τe as shown in Algorithm 2. We
start with the current set of winning states Z and attempt to
expand it. In Line 1, we find R1, the set of states from which
the system has the ability to reach Z. Then, in Line 2, we find
R2, the set of states from which at least one next state will
be in R1. This set includes states where one nodeterministic
action outcome may reach R1 (and can therefore reach Z)
but another may not. We then remove already winning states
from R2 in Line 3. In Pacheck et al. (2020), we find τ new

e by
removing all the postconditions associated with R2 that do
not result in R1 in Line 5 (skipping Line 4). We then return
τ new
e and τolde (the transitions that were not modified).

In Pacheck et al. (2020), the repair process can remove any
transition, while running restrictPostconditions,
in order to attempt to repair the specification. In the case of
reactive specifications, this can result in unwanted behavior.
The process of restricting postconditions is able to remove
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Figure 3. Baxter Blocks: (A) The arrows show the skills given to the Baxter robot to move blocks between lettered locations.
Dashed arrows represent skills with nondeterministic outcomes. Note that one skill takes blocks from A and AT to D and another
from A and AT to E while all the other skills have preconditions that are only one location. (B) Initial setup of the Baxter Blocks
example. Baxter Plates: (C) The colored arrows represent the skills given to the Baxter robot to move the two plates between the
clean, set, and dirty locations. The skill moving the green (oval) plate from clean to set is not possible when the blue (square) plate
is set and the skill moving the green plate from dirty to clean is not possible when the blue plate is dirty or clean. The skill moving
the blue plate from set to dirty is not possible when the green plate is set. (D) Initial setup of the Baxter Plates example. Kinova
Vials: (E) The arrows represent the skills given to the Kinova robot to move the vials. The skills move the green, red, and yellow
vials between the top-left, top-right, rack-left, rack-right, right-top, and right-bottom locations. The skills move the vials between the
yellow (top and right) and white (rack) holders (and vice-versa) but not between the two yellow holders. (F) Initial setup of the
Kinova Vials example. (A) and (B) are from Pacheck et al. (2019).

transitions that correspond to changes in the values of vu ∈
R, as symbols in both R and Σ are treated the same.
As a result, the synthesis-based repair process proposed in
(Pacheck et al. 2020) may offer suggestions for skills that can
change (or keep the same) the value of symbols vu ∈ R. We
show an example of this as mentioned in the Baxter Plates
example in Section 7.

In this work, we modify Algorithm 2 to repair reactive
specifications. Modifications to the algorithm are shown in

blue. We add Lines 4 and 6 to Algorithm 2. We do not
allow the repair process to change the value of symbols
vu ∈ R. The modifications in τ new

e found in Line 5 may
include restrictions on the truth value of vu ∈ R. Since we
do not want to allow such modifications, for each possible
modification in τ new

e , we add transitions corresponding to all
possible changes in the truth value of vu ∈ R in Line 6.
Now, the environment is able to make transitions with no
restriction on vu ∈ R, while still having restrictions on
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σ ∈ Σ. The addition of Line 6 does not allow us to find
any suggestions for some specifications. As we show in
Section 7, for some specifications, the only way for the
synthesis-based repair process to find suggestions is by
changing the values of variables vu ∈ R, essentially trying to
enforce the behavior of external events, which is not desired.

For some specifications, multiple skills are required to
find suggestions. To account for this, we only allow the
repair process to change one additional skill aextra-skill-modify ∈
Aextra-skills per iteration in (Line 4). Without Line 4, the repair
process attempts to change all of the extra skills to the same
postconditions at once, which can cause the repair process to
fail.

Additionally, we only perform one iteration of the while
loop in Algorithm 2: Repair of Pacheck et al. (2020). In
the previous work, we modified τs and τe, then applied
the controllable predecessor operator to Z with the new
τs and τe until the current liveness guarantee overlapped
with Z. However, because we are making modifications but
not allowing the user-defined variables to be restricted, the
process of restricting the postconditions may expand Z in
ways not captured by only the application of the controllable
predecessor. The new skills may allow for the system to
have more control over the outcome of skills at other states
not currently in Z. By performing synthesis after only one
iteration of the repair process, we are able to find suggestions
for more specifications.

We find τ new
s by relaxing the preconditions as in Pacheck

et al. (2020). The process is similar to restricting the
postconditions. We find all the states from which the system
can reach Z without violating τ hard

s . We then find the states
that will always lead to these states from which the system
can reach Z. We add these states τs and thereby expand the
preconditions.

After finding τ new
e and τ new

s that allow the specification
to be synthesized, the repair process finds a strategy for
the system to achieve the liveness guarantees from the
initial conditions. We then compare the preconditions and
postconditions of the skills performed during the strategy
to the preconditions and postconditions of the skills initially
given to the robot. The new postconditions for the extra skills
are then those seen in the strategy. The new preconditions for
the extra skills are those seen in the strategy. Similarly, the
additional preconditions for extra skills are those seen in the
strategy (Pacheck et al. 2020).

To find multiple suggestions, once one suggestion has
been found by the synthesis-based repair process, the new
skills making up the suggestion are disallowed along with
any additional preconditions. A new strategy is found if
possible and another suggestion extracted. We continue
finding additional suggestions and disallowing previous
suggestions until there are no more suggestions (Pacheck
et al. 2020).

6.3 Enumeration-Based vs Synthesis-Based
Repair

We demonstrate the repair of unrealizable specifications
using both the enumeration-based and synthesis-based
approach in Section 7.

Table 2 shows the synthesis-based repair is faster than
the enumeration-based repair, especially as the number of
skills and symbols increases. The difference in time to find
suggestions was especially apparent in the Kinova Vials
example, where we were not able to run the enumeration-
based repair to completion. This disparity is pronounced
because the enumeration-based repair needs to enumerate
all possible combinations of skills, which does not scale
well when there are multiple skills required to repair a
specification. It is possible to terminate both repair processes
early and only receive a portion of the suggestions; however,
it is not possible to know at which point in the repair process
the suggestion desired by the user will be found.

While the enumeration-based repair takes longer than the
synthesis-based repair, the suggestions returned tend to be
more interpretable due to both the number and type of skills
suggested. The enumeration-based repair attempts to find
skills that have the preconditions of existing skills and the
effect masks of existing skills. As a result, the suggested
skills will look similar to the existing skills. The synthesis-
based repair process suggests skills with postconditions and
preconditions that do not necessarily look similar to the
existing skills. There is no limit on the number of skills
provided by the synthesis-based repair process in a single
suggestion. This can make suggestions more difficult to
interpret. For example, in the suggestion shown in Figure 15,
the synthesis-based repair process suggests 3 skills, while
the enumeration based repair process only suggestion 2
skills. For the synthesis-based repair process, the skills
that are suggested are highly dependent on the choices
the system makes during the process of finding a strategy.
Changing the order of states visited by the system during
the determinization process will likely result in different
suggestions.

The synthesis-based repair does not always find sugges-
tions to repair the specification. As shown in Section 7,
there are certain specifications for which the only way the
synthesis-based repair can provide suggestions is by sug-
gesting skills that change the value of user-defined variables,
essentially enforcing a behavior on uncontrolled events .

7 Robot Demonstrations
We demonstrate automatically creating ϕskills, writing and
executing task specifications, and the repair process with
examples involving a Kinova robot manipulating vials and
a Baxter robot manipulating blocks and pushing plates. The
Baxter Blocks example shows skills with nondeterminism
and several unrealizable specifications. The Baxter Plates
example shows the use of raw camera images to create
symbols and the benefit of enumeration-based repair over
synthesis-based repair. The Kinova Vials example shows
the benefits of the synthesis-based repair approach over the
enumeration-based repair approach.

7.1 Environment Setup
We have three different demonstration environments.

Baxter Blocks: In the Baxter Blocks example a Baxter
robot is manipulating blocks on a table as shown in
Figure 3(A, B). There are three blocks: red, blue and green
(also labelled 1, 2, and 3, respectively). The red and blue
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Number of given
skills

Number of
partitioned skills

Number of symbols
generated

Number of pre/post
pairs collected

Number of formulas
in ϕskills

Baxter Blocks 9 20 19 1052 83
Baxter Plates 6 7 9 100 35
Kinova Vials 48 48 18 860 195

Table 1. Overview of the different robot demonstration environments. For each demonstration environment, we gave the robot a set
of skills, collected data on the preconditions and postconditions, generated symbols, and automatically encoded the preconditions
and postconditions in an LTL formula. Partitioned skills are those that have different effects from different preconditions. The
number of formulas in ϕskills include constraints on the preconditions, postconditions, mutual exclusion of skills, and mutual
exclusion of symbols.

blocks can be placed at locations A, D and E, and can also
be stacked at AT. The green block can be placed at locations
B, C, F, and G. The location of the blocks are determined by
AprilTags (Wang and Olson 2016) detected by the Baxter’s
wrist cameras. The state space is the x, y, and z position of
each of the blocks.

Baxter Plates: The Baxter Plates example contains a
Baxter robot manipulating plates on a table as shown in
Figure 3(C, D). There are two plates (a blue square plate
and a green oval plate) that can be moved between the clean,
set, and dirty regions. The state in this example is the image
recorded by the USB camera shown in the right of Figure 3D.

Kinova Vials: The Kinova Vials example deals with a
Kinova arm moving three colored vials (green, red and
yellow) as shown in Figure 3(E, F). The vials can be in
six regions: top-left, top-right, rack-left, rack-right, right-top,
and right-bottom. There can only be one vial in each region
at a time. The position of the vials is determined by a motion
capture system using structures placed on top of the vials as
shown in Figure 3F. The state is the x and y location of all of
the vials.

7.2 Skills
The robots are given a set of executable skills.

Baxter Blocks: The skills for the Baxter Blocks example
are implemented as controllers that move the arm of the
Baxter over the position of the block as determined by the
AprilTags (Wang and Olson 2016) attached to each block.
The skill then lifts up the block and moves it to over the
destination location. Finally, the skill lowers the block and
releases it.

The left arm of the Baxter moves the red and blue blocks
while the right arm moves the green block. The skills allow
the robot to move the red and blue blocks from D and E to
A and AT (and vice-versa). Another skill attempts to move
the green block from F to C, but due to C being elevated, the
skill sometimes results in the block ending in G. Similarly,
the skill from G to C sometimes results in the green block
ending in C and sometimes in G. Finally, there are skills
that move the green block reliably from C to B and B to
F. Figure 3A shows the skills available to the Baxter where
skills with dashed lines have nondeterministic outcomes.

Baxter Plates: In the Baxter plates example, there are
six skills that involve reproducing a trajectory demonstrated
to the robot to move the green and blue plates from
clean to set, set to dirty, and dirty to clean. Skills require
the plate to be in the named initial location in order to
be executed (e.g. the blue plate must be clean in order

for ablue-clean-to-set to be executed). Some skills have
additional restrictions on when they can be executed—the
skill agreen-clean-to-set cannot be executed when the blue
plate is in set, agreen-dirty-to-clean cannot be executed
when the blue plate is dirty or clean, and ablue-set-to-dirty
cannot be executed when the green plate is in set. Figure 3C
shows the skills available to the Baxter and the approximate
paths the plates follow between locations.

Kinova Vials: The skills in the Kinova Vials example
allow the robot to move the vials between the yellow outer
racks and the white rack (and vice-versa), but not between
the two yellow racks. For each skill, the arm moves between
predetermined waypoints to move above the initial location,
move down, grasp the vial, move up, move to above the
destination location, move down, release the vial into the
rack, move up, and then move back to a home position shown
in Figure 3F. Figure 3E shows the skills available to the
Kinova arm; note that all the arrows are bi-directional.

7.3 Symbol Generation
We collected data to automatically generate symbols and
encode the skills into an LTL formula for each example.

During the data collection process, an oracle tells the robot
which skills can be executed based on the locations of the
blocks, plates, or vials, and the robot randomly executes one
of those skills. In the Baxter Blocks and Plates examples, the
oracle determines which skills can be executed based on the
AprilTags (Wang and Olson 2016) data, while the Kinova
Vials example uses motion capture data. Note that while the
oracle in the Baxter Plates example uses AprilTags (Wang
and Olson 2016) to determine which skills can be executed,
the symbol generation process uses only raw camera images.
For each example, we collected multiple precondition-skill-
postcondition sets of data, along with which actions could
be executed at each precondition. Table 1 lists the number of
skill executions for each of the three examples.

Baxter Blocks: After collecting the data, we generated
symbols and partitioned the skills for each of the examples
(Konidaris et al. 2018). As shown in Table 1, we generated
19 symbols and 20 partitioned skills for the Baxter Blocks
example. The symbol generation process partitioned the
skills that could move either the blue or red block from E
or D to A or AT (and vice-versa) into two skills each. The
symbols generated refer to the x, y, or z position for each of
the blocks.

Baxter Plates: For the Baxter Plates example, we
generated symbols directly from images taken by an external
stationary USB camera, as shown in Figure 3D. To generate
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Figure 4. Visualization of symbol combinations (A): σ9 ∧ σ7 ∧ σ10 ∧ σ11 ∧ σ13 ∧ σ12 ∧ σ17 ∧ σ18 ∧ σ16, (B):
σ9 ∧ σ7 ∧ σ10 ∧ σ3 ∧ σ4 ∧ σ12 ∧ σ17 ∧ σ18 ∧ σ16, (C): σ9 ∧ σ7 ∧ σ10 ∧ σ3 ∧ σ4 ∧ σ12 ∧ σ0 ∧ σ1 ∧ σ2, (D):
σ9 ∧ σ7 ∧ σ10 ∧ σ3 ∧ σ4 ∧ σ12 ∧ σ0 ∧ σ18 ∧ σ16. All other symbols were False. Ten samples were drawn from the intersection of
the grounding sets of each symbol combination. Possible transitions are shown between the subfigures, corresponding to
transitions in Equations (8) and (9). Applying skill ae-to-a-2 to (A) results in (B). Applying skill af-to-c in (B) results in (C) or (D).
Examples of symbol groundings are shown in (E) and (F) in black circles. The raw data is shown in green and the Gaussian fit to it
in red. Figure adapted from Pacheck et al. (2019).

the symbols, we first resize the images to 120× 72,
convert them to grayscale and then apply independent
component analysis (Hyvärinen and Oja 2000), keeping the
top 5 components. The symbol generation process is then
applied to these lower-dimensional vectors—preconditions
are estimated using a support vector machine (C = 2, γ = 4)
(Cortes and Vapnik 1995), while effects are modelled using
a kernel density estimator (Rosenblatt 1956; Parzen 1962)
with a Gaussian kernel and bandwidth determined by 3-
fold cross validation. This procedure generates 5 factors
and 9 symbols, where each symbol is a subset of the low-
dimensional representation of an image.

Kinova Vials: In the Kinova Vials example, we generated
18 symbols and 48 partitioned skills. Each symbol
corresponds to a vial being located in a different region. Due
to the nature of the state space and skills, we were able to
factor the state space such that each symbol is over both the
x and y position of a vial, as opposed to only the x or y
position, as in the Baxter Blocks example. Each skill in the
Kinova Vials example changes both the x and y position of
a vial; in the Baxter Blocks example the x, y, and z position
of blocks do not always change together.

7.4 Skills-Based Specification
We automatically encode the symbols and skills in ϕskills for
each example. We show selected parts from the specification
for each example.

Baxter Blocks: In the Baxter Blocks example, we
automatically encoded the symbols {σ0, . . . , σ18} ∈ Σ and
skills {af-to-c, . . . , ad-to-at-2} ∈ A in ϕskills. In Equation
(7), we show part of the system safety formula ϕs

t,skills.
We show part of the environment safety formula ϕe

t,eff in
Equations (8) and (9). Figure 4(A-D) visualizes the result of
applying skills ae-to-a-2 and af-to-c.

The precondition requirements of ac-to-b are encoded in
ϕs

t,skills in Equation (7).

�(¬© σ1 → ¬© ac-to-b) (7)

Based on the data the robot has seen, it determines that
it only needs to consider the value of y3 in deciding if
skill ac-to-b can be performed. There is only one symbol
falling inside the precondition set so σpre(ac-to-b) = {{σ1}}.
Therefore, equation (7) states that if σ1 is not True, i.e. block
3 is not at approximately y = −0.3m, skill ac-to-b can not
be applied.

The part of ϕe
t,skills pertaining to the effect of

skill ae-to-a-2 is shown in Equation (8) where
σstay

eff1(ae-to-a-2)
= {σ0, σ1, σ2, σ5, . . . , σ10, σ12, σ14,

. . . , σ18}. This corresponds to block 2 moving from
location E to A and blocks 1 and 3 not moving. A potential
outcome of applying skill ae-to-a-2 is visualized in Figure
4B.

The part of ϕe
t,skills referring to the nondeterministic

effects of skill af-to-c is shown in Equation (9)
where σstay

eff1(af-to-c)
= {σ1, . . . , σ16, σ18} and σstay

eff2(af-to-c)
=

{σ3, . . . , σ14}. Equation (9) encodes that when skill af-to-c
is applied, either σ0 becomes True and σ17 becomes False
with symbols in σstay

eff1(af-to-c)
not changing (block 3 ends in

G), or σ0, σ1, and σ2 become True and σ15, σ17, σ16, and σ18

become False with symbols in σstay
eff2(af-to-c)

not changing
(block 3 ends in C). This is visualized in Figures 4C and
D.

Baxter Plates: In the Baxter Plates example, the
symbols correspond to images and the combination
of symbols can be visualized together. For example,
Figure 5 illustrates the preconditions and effects when
the agent executes ablue-clean-to-set. The precondition
requirements of ablue-clean-to-set are encoded in ϕs

t,skills
in Equation (10). The postconditions of ablue-clean-to-set
are encoded in ϕe

t,skills as shown in Equation (11) where
σstay

eff1(ablue-clean-to-set)
= {σ0, σ1, σ2, σ4, σ6, σ7, σ8}.

Kinova Vials: For the Kinova Vials example, we
also encode the preconditions and postconditions of the
skills to move the vials in ϕskills. We show part of the
specification involving agreen-right-bottom-to-rack-left.
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�( ae-to-a-2 → (©(σ3 ∧ σ4) ∧©(¬σ11 ∧ ¬σ13)
∧

σ∈σstay
eff1(ae-to-a-2)

(σ ↔©σ)))
(8)

�(af-to-c → ((©σ0 ∧©¬σ17

∧
σ∈σstay

eff1(af-to-c)

(σ ↔©σ))∨

(©(σ0 ∧ σ1 ∧ σ2) ∧©(¬σ15 ∧ ¬σ17 ∧ ¬σ16 ∧ ¬σ18)
∧

σ∈σstay
eff2(af-to-c)

(σ ↔©σ))))
(9)

�(¬© (σ6 ∧ σ3)→ ¬© ablue-clean-to-set) (10)

�(ablue-clean-to-set → (©σ5 ∧©¬σ3

∧
σ∈σstay

eff1(ablue-clean-to-set)
)

(σ ↔©σ))) (11)

�(¬© ((σ7 ∧ σ0 ∧ σ13) ∨ (σ7 ∧ σ0 ∧ σ14) ∨ (σ7 ∧ σ0 ∧ σ15) ∨ (σ7 ∧ σ0 ∧ σ17)∨
(σ8 ∧ σ0 ∧ σ13) ∨ (σ8 ∧ σ0 ∧ σ15) ∨ (σ9 ∧ σ0 ∧ σ13) ∨ (σ9 ∧ σ0 ∧ σ14)∨
(σ9 ∧ σ0 ∧ σ15) ∨ (σ9 ∧ σ0 ∧ σ17) ∨ (σ11 ∧ σ0 ∧ σ14) ∨ (σ11 ∧ σ0 ∧ σ15))→
¬© agreen-right-bottom-to-rack-left)

(12)

�(agreen-right-bottom-to-rack-left →

(©σ4 ∧©(¬σ0 ∧ ¬σ1 ∧ ¬σ2 ∧ ¬σ3 ∧ ¬σ5)
∧

σ∈σstay
eff1(agreen-right-bottom-to-rack-left)

(σ ↔©σ)) (13)

Figure 5. Symbolic representation of the precondition and effect for ablue-clean-to-set. The outcome of the action is computed by
adding the positive effect to the precondition, and then removing the negative one. Since our representation is factorized, the
preconditions and effects depend only on a subset of the factors that constitute the symbolic state space. In this case, σ3 and σ5

both refer to the same factor, while σ6 refers to a different factor. The precondition for the skill represents states where the blue
plate is in the clean position and the green plate is elsewhere. The effect of the skill is that the blue plate is now in the clean
position; the green plate remains unaffected. The location of the plates is entangled in the individual symbols, so we need to view
combinations of symbols to know the location of the plates.

The preconditions of agreen-right-bottom-to-rack-left are
combinations of different locations of the red and yellow
vials when the green vial is in right-bottom and the rack-
left location is clear as shown in Equation (12). For all
of the Kinova Vials skills, the skills could have up to
16 preconditions, as the precondition classifier does not

necessarily learn that the vials not moving cannot be in the
same physical location. In this example, there are only 12
preconditions, with one (σ7 ∧ σ0 ∧ σ13) having both the red
and yellow vials at the right-top location.

The postconditions of agreen-right-bottom-to-rack-left
make the green vial in the rack-left location and not in
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the right-bottom location without changing the position of
the red and yellow vials as shown in Equation (13) where
σstay

eff1(agreen-right-bottom-to-rack-left)
= {σ6, σ7, . . . , σ16, σ17}.

7.5 Realizable Base Task Specifications
We introduce additional environment variables vu ∈ R that
the user controls. Using R, we write reactive tasks. We
describe the user-defined task for each example and show
parts of the specification in this section. We show the full
ϕskills for each example in Appendix A.

Baxter Blocks: For the Baxter Blocks example, we intro-
duce an additional environment variable R = {Switch}.
The task liveness specifications are shown in Figure 6. When
Switch = True, the red block (block 1) should eventually
be in A, the blue block (block 2) in AT, and the green block
(block 3) in F as shown in Figure 6(A-C) and encoded in the
LTL formula above the subfigures. When Switch = False,
the red block (block 1) should be in AT, the blue block (block
2) in A, and the green block (block 3) in C as shown in
Figure 6(D-F) and encoded in the LTL formula above the
subfigures.

We include a fairness assumption on the environment
that the green block (block 3) will eventually be placed in
location C when ag-to-c is applied shown in Equation (14).
Without this, the specification is unrealizable because in the
worst case, skill ag-to-c always results in the green block
(block 3) ending in G.

ϕe
g,task = �♦(ag-to-c → (σ0 ∧ σ1 ∧ σ2)) (14)

Baxter Plates: For the Baxter Plates example, we
introduce two additional user-defined variables R =
{BluePerson, GreenPerson}. The task liveness specifi-
cation is to make the blue plate set when BluePerson =
True, the green plate set when GreenPerson = True, the
blue plate not set when BluePerson = False, and the
green plate not set when GreenPerson = False as shown
and encoded in Figure 7A, B, C, and D respectively. Note
that in the Baxter Plates example, we need to specify the
location of both plates in the liveness guarantees due to the
entanglement of the symbols.

The symbol generation process was not able to fully
determine the effects of two of the skills, due to the
lossy nature of the compressed state representation. The
symbol generation process learns that for the skills
agreen-clean-to-set and ablue-clean-to-set, a possible
outcome is that no plates move. We add a fairness assumption
that the skills should always eventually succeed in moving
the plates shown in Equation (15).

�♦(agreen-clean-to-set → σ8)∧
�♦(ablue-clean-to-set → σ5)

(15)

Kinova Vials: For the Kinova Vials example, we
introduce the additional environment variableR = {React}.
The task is to arrange the vials in one configuration when
React = True and another when React = False. When
React = True, the Kinova should arrange the vials such that
the green vial is in the right-bottom position, the red vial is
in the top-left position, and the yellow vial is in the top-right
position (Figure 8(A,B)). WhenReact = False, the Kinova

should arrange the vials such that the green vial is in the top-
left position, the red vial is in the right-bottom position, and
the yellow vial is in the right-top position. The LTL formula
encoding the task liveness specification is shown above the
visual interpretation of the task in Figure 8.

We add an additional constraint to ϕs
t,task that the red and

green vials should never be in the same yellow rack as shown
in Equation (16) and Figure 15(A,B,D,E).

ϕs
t,task =�¬(σ0 ∧ σ7) ∧�¬(σ1 ∧ σ6)∧

�¬(σ2 ∧ σ9) ∧�¬(σ3 ∧ σ8)∧
�¬© (σ0 ∧ σ7) ∧�¬© (σ1 ∧ σ6)∧
�¬© (σ2 ∧ σ9) ∧�¬© (σ3 ∧ σ8)

(16)

7.6 Synthesis and Execution
For each example, we are able to find a strategy to fulfill
the original task. Throughout this paper, computation times
refer to running Slugs (Ehlers and Raman 2016) and our
algorithms on an Ubuntu 18.04 machine with 12 GB RAM.
For the Baxter Blocks example, we synthesize C with 256
states in 1 second. For the Baxter Plates example, it took 1
second to synthesize C with 124 states. The strategy for the
Kinova Vials example took 22 seconds to synthesize and had
232 states.

We demonstrate the strategy for the Baxter Blocks
example. We controlled the value of Switch ∈ R through a
user interface. We sampled the current state x ∈ X to find out
which symbols were True. A symbol σa,j,fq was True if the
state was in the grounding set for the symbol, G(σa,j,fq ). All
other symbols were False. We show an example execution
of C for the Baxter Blocks example in Figure 9. We show
an example sequence of states in C for the Baxter Plates
example in Figure 10.

7.7 Repair of Unrealizable Tasks
We demonstrate the repair process by finding skill
suggestions for six unrealizable specifications. For each
example, we made the specification unrealizable by either
adding additional task constraints to ϕs

t,task or modifying
ϕs

t,skills. Each unrealizable specification shows different
aspects of the repair process.

For the Baxter Blocks example, we investigate four
unrealizable specifications. In two specifications, we add
constraints to avoid a skill or set of states. In these two
specifications we find An.o.t 6= ∅, allowing us to narrow
the search space for new skills to those with the same
preconditions as a ∈ An.o.t. For two other specifications, we
modify the skills available to the robot and find An.o.t = ∅,
requiring us to perform an exhaustive search for new skills
over all current preconditions sets.

For the Baxter Plates and Kinova Vials examples, we
investigate one unrealizable specification each. In the Baxter
Plates example, we add a reactive task constraint and
show the benefits of the enumeration-based repair approach
over the synthesis-based approach. In the Kinova Vials
example, we add a constraint to avoid certain states and
show the benefits of the synthesis-based repair approach
over the enumeration-based approach. For these unrealizable
specifications, we find An.o.t 6= ∅. The Baxter Plates and
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Figure 6. In the Baxter Blocks example, the robot reacts to the value of Switch ∈ R. When Switch = True, the robot needs to
stack the blue block on the red block in location A and the green block in location F. When Switch = False, the robot needs to
stack the red block on the blue block in location A and the green block in location C. Figure from Pacheck et al. (2019).

Figure 7. In the Baxter Plates example, A) when BluePerson = True the blue plate should be set, B) when
GreenPerson = True the green plate should be set, C) when BluePerson = False the blue plate should not be set, and D)
when GreenPerson = False the green plate should not be set. The left column of each subfigure shows the physical
interpretation of the liveness guarantee and the right column shows the corresponding image generated based on the symbols.

Figure 8. In the Kinova Vials example, the robot reacts the the truth value of React ∈ R. When React = True, the red vial should
be in the top-left location, the yellow vial in the top-right location, and the green vial in the right-bottom location. When
React = False, the red vial should be in the right-bottom location, the yellow vial in the right-top location, and the green vial in the
top-left location.

Kinova Vials examples both required two skills to repair,
which increased the complexity of the repair process.

We describe the constraints added to each example that
make the specifications unrealizable in this section and
show selected formula. We show the full unrealizable task
specifications, ϕskills, in Appendix A.

We give an overview of the number of solutions and time
taken to find those solutions in Table 2.

Baxter Blocks: The two Baxter Blocks unrealizable
specifications for which we can narrow the search space of
possible skills have the same ϕskills and ϕtask as in Section 7.4
and 7.5, with the addition of ϕs

t,task, as shown in Figure 11
and described below. For each specification, we add the
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Figure 9. The Baxter robot executing a strategy to fulfill the desired liveness guarantees in Figure 6 without any additional user
provided constraints. The value of Switch was controlled through a user interface. Figure adapted from Pacheck et al. (2019).

Figure 10. Sequence of states needed to achieve the liveness guarantees in Figure 7 for the Baxter Plates example. The strategy
gives skills that react to the truth value of BluePerson and GreenPerson. We show the physical and symbolic interpretation of
each state. The upper image of each pair is the visualization of the symbolic state, created by combining the symbols that are True.
The lower image of each pair is the physical state. Above each pair of images, we show which symbols are True, which action
should be taken, and the truth value of BluePerson and GreenPerson.

constraint that only one block can move at a time as shown
in Appendix A.1.

Unrealizable Specification 1: In Figure 11A, we show
the added constraint that the green block (block 3) never be
in location B, ϕs

t,task = �¬(σ0 ∧ σ15) ∧�¬© (σ0 ∧ σ15).

This type of scenario could occur if there was an obstacle
in location B.

Unrealizable Specification 2: In Figure 11B, we show
the added constraint that the robot never use skill ac-to-b,
ϕs

t,task = �¬ac-to-b ∧�¬© ac-to-b. This type of scenario
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Enumeration-based Synthesis-based

Unrealizable
spec

Number of
suggestions Time (sec)

Number of
suggestions Time (sec)

Baxter Blocks

1 6 163.2 50 70

2 3 171.6 36 47

3 68 6420 32 49

4 17 2868 35 32

Baxter Plates 5 9 1214 1 1.1

Kinova Vials 6 22 25167 25 381
Table 2. Overview of the repair suggestions found. The synthesis-based repair approach takes substantially less time than the
enumeration-based repair approach. For the Kinova Vials example, we were not able to run the enumeration-based repair approach
until completion; the numbers listed are for stopping the repair process midway.

.

Figure 11. (A) The added constraint in Unrealizable Specification 1 that the green block (block 3) should never be in location B. (B)
The added constraint in Unrealizable Specification 2 that the skill c-to-b should never be executed. (C) A skill moving the green
block (block 3) from location C to location F makes both Unrealizable Specification 1 and 2 (and 3 and 4) realizable. Figure from
Pacheck et al. (2019).

Figure 12. Selected suggestions from the synthesis-based repair process for Unrealizable Specifications 1 and 2. A) Suggestion 1
for Unrealizable Specification 1 proposes three skills with nondeterministic postconditions. B) Suggestion 2 for Unrealizable
Specification 1 proposes three skills. These skills have the precondition and postcondition that block 2 is hovering over location E.
This is physically impossible, but the specification does not disallow it. C) Suggestion 1 for Unrealizable Specification 2 proposes
two skills with nondeterministic postconditions.

could occur if a motor enabling skill ac-to-b was damaged
and the skill could not be performed.

Unrealizable Specifications 1 and 2 Repair: For both
Unrealizable Specifications 1 and 2, the enumeration-based
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repair process found An.o.t = {ac-to-b}, corresponding to
the precondition that the green block (block 3) be in location
C. We only searched for one additional skill, so we did not
need to find combinations of skills in Line 6 of Algorithm 1.
The repair process searched through 62 skills to find six
skill suggestions for Unrealizable Specification 1 and three
skill suggestions for Unrealizable Specification 2 in 2.7
minutes and 2.9 minutes, respectively. The user needs to
determine which suggestion to implement. Some suggestions
were not physically possible, making them impossible to
implement, such as a suggestion with σpre(anew) = {{σ1}}
and σTrueeff(anew) = {σ17, σ1, σ16}, corresponding to moving the
green block (block 3) to the x position of location F and
the y and z position of location C, which would leave
the block floating in the air. If desired, the user could add
additional constraints to the specification to remove the
physically impossible suggestions. One skill suggestion for
both Unrealizable Specifications 1 and 2, with σpre(anew) =
{{σ1}} and σTrueeff(anew) = {σ17, σ18, σ16}, corresponding to
moving the green block (block 3) from location C to F, is
physically possible. When this skill is added to Unrealizable
Specifications 1 and 2, the task is realizable.

The synthesis-based repair process found 50 suggestions
in 70 seconds for Unrealizable Specification 1 and 36
suggestions in 47 seconds for Unrealizable Specification 2.
Figure 12 shows selected suggestions to repair Unrealizable
Specifications 1 and 2. The repair suggestions for
Unrealizable Specifications 1 and 2 involve adding one or
more new skills or relaxing the preconditions.

The synthesis-based repair process produces suggestions
that exploit all possible preconditions of the existing skills.
Suggestion 1 proposes 3 skills to repair Unrealizable
Specification 1. For all of the skills in Suggestion 1, the red
block (block 1) is in location D and blue block (block 2) is
in location A. Each row in Figure 12A shows one skill. The
first skill moves the green block (block 3) from location G to
either floating above a new location with the x position of F
and the y position of C (Postcondition 1), a new location with
the x position of F and the y position of C (Postcondition 2),
F (Postcondition 3), or D (Postcondition 4). The other two
skills move the green block (block 3) from on the table in
location C or stacked in location C.

Only Postcondition 3 was seen during the original symbol
learning. However, the synthesis-based repair process
exploits the existing preconditions and postconditions of
other skills when it creates or modifies skills, enabling the
robot to create behaviors not observed before.

The remainder of the suggestions to repair Unrealizable
Specification 1 involving adding new skills are similar to
Suggestion 1, with multiple skills that move the green block
(block 3) to different locations that may not be physically
possible, but still fall in the precondition of skill af-to-c. The
other suggestions have different configurations of the red and
blue blocks (blocks 1 and 2). Since we do not add constraints
that different blocks can not be in the same physical position
or floating in the air, some suggestions may be physically
impossible. Suggestion 2 for Unrealizable Specification 1 in
Figure 12B shows a suggestion with the blue block (block 2)
in location E, but with a z value that is above the table.

The synthesis-based repair process generates similar
suggestions for Unrealizable Specification 2. Suggestion 1

proposes two skills to make the specification realizable. One
skill moves the green block (block 3) from location G to
either location B, E, or F. The other skill moves the green
block (block 3) from location C to to either location B, E, or
F.

The suggestions that relax the preconditions of the
skills for Unrealizable Specification 1 and 2 are physically
impossible. These involve adding preconditions that allow
for blocks to be floating in the air or at the same location
as other blocks, which is not possible. We show examples of
preconditions being relaxed in the Kinova Vials Unrealizable
Specification 6. If desired, additional constraints could be
added to the specification to generate suggestions without
these physically impossible suggestions.

Unrealizable Specifications 3 and 4 involved modifying
the base specification.

Unrealizable Specification 3: We removed skill ac-to-b
from A before writing the specification, using the same set
of symbols Σ as in Section 7.3. The user defined task was the
same as in Figure 6.

Unrealizable Specification 4: We removed all data
pertaining to skill ac-to-b before the symbol generation
process. This resulted in a different set of symbols, Σ. The
user defined task was the same as represented in Figure 6.
There were no longer symbols corresponding to the green
block (block 3) being in location B, as symbols are only
generated from effect sets, so the subscripts of the symbols
in the liveness guarantees shown in Figure 6 were different.

Unrealizable Specification 3 and 4 Repair: For both
Unrealizable Specification 3 and 4, the enumeration-based
repair process found An.o.t = ∅, requiring an exhaustive
search of the skill space. For Unrealizable Specification 3,
the repair process searched through 1172 skills and found
68 possible new skills in 107 minutes. For Unrealizable
Specification 4, the repair process searched through 788
skills and found 17 possible skills to repair the specification
in 48 minutes. The repair process suggested a skill that
would move the green block (block 3) from both locations
C and G to location F for both specifications. With the
fairness assumption in Equation (14), this has the same result
as giving the robot a skill moving the green block (block
3) from C to F. When we added a skill that moved the
green block (block 3) from C to F, both specifications were
realizable.

The synthesis-based repair found 32 suggestions to
repair Unrealizable Specification 3 in 49 seconds and
35 suggestions to repair Unrealizable Specification 4 in
32 seconds. Figure 13 shows selected suggestions from
the synthesis-based repair process to repair Unrealizable
Specifications 3 and 4.

We show one suggestion to repair Unrealizable Specifi-
cation 3 in Figure 13A. This suggestion is similar to those
for Unrealizable Specifications 1 and 2. The repair process
suggests two new skills that move the green block (block 3),
one that has a precondition of location C and one that has a
precondition of location G. Both skills have postconditions
that move to either location B, E, or F. The remainder of the
suggestions to repair Unrealizable Specification 3 are similar
but have different configurations of the red and blue blocks
(blocks 1 and 2). Again, the suggestions involving relaxing
the preconditions are physically impossible.
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Figure 13. Selected suggestions from the synthesis-based repair process for Unrealizable Specifications 3 and 4. (A) Two
additional skills to move block 3 that have nondeterministic postconditions of locations B, E, and F. One skill starts from location C
and one from location G. (B) One suggestion to repair Unrealizable Specification 4 involves two new skills. One moves block 3 from
location G to F and the other moves block 3 from location C to F.

One of the suggestions to repair Unrealizable Specifica-
tion 4 is shown in Figure 13B. This suggestion proposed
two skills to move the green block (block 3) to location F
from either C or G. Note that since we removed data to
generate Unrealizable Specification 4, there is only a symbol
pertaining to the green block (block 3) being elevated off the
table.

Baxter Plates: For the Baxter Plates example, we
investigate one unrealizable specification.

Unrealizable Specification 5:
The user-defined liveness guarantees are the same as in

Figure 7. We add the additional constraints that the when
either BluePerson or GreenPerson is True, the same
colored plate should not be moved out of the set position.
This is encoded in ϕs

t,task as shown in Figure 14A.
Unrealizable Specification 5 Repair: The enumeration-

based repair process found An.o.t 6= ∅. We considered repair
suggestions that consisted of two additional skills. The repair
process searched through 3840 potential new skills and
found 9 suggestions in 20.23 minutes. We show one of the
suggestions in Figure 14B. The first skill has the precondition
σ5 and postcondition σ8. When this skill is executed in the
repaired strategy, this corresponds to the blue plate moving
from set to dirty when the green plate is set. The second skill
has the precondition σ8 and postconditions σ3 ∧ σ4. This
corresponds to moving the green plate from clean to set when
the blue plate is set.

The synthesis-based repair process found 1 suggestion
in 1.1 seconds. This suggestion is to reduce the nonde-
terminism in skill agreen-clean-to-set such that it does
nothing. This suggestion is valid symbolically because it
works to violate the liveness assumption that the skill
�♦(agreen-clean-to-set → σ8).

We investigated if the synthesis-based repair would find
suggestions for repair if the symbol generation process was
able to determine the skill symbolic structure correctly. We
modified the learned skills to remove the nondeterminism,

removing the option for skills agreen-clean-to-set and
ablue-clean-to-set to not change any environment variables.

The synthesis-based repair was unable to find any other
suggestions for repair. During the synthesis-based repair
process, Algorithm 2, restrictPostconditions,
finds the required postconditions for new skills. The
algorithm takes the current set of winning states, Z. The
postconditions of new skills need to be in Z. As found by
the enumeration-based repair, we need two new skills: one
with postconditions σ0 ∧ σ2 ∧ σ5 ∧ σ6 ∧ σ8 and one with
postconditions σ0 ∧ σ2 ∧ σ3 ∧ σ4 ∧ σ8. However, during the
synthesis process, all states with either postcondition are
removed from Z before the repair process is started. As a
result, we are unable to find a suggestion with the synthesis-
based repair process.

When we use the synthesis-based repair as proposed in
Pacheck et al. (2020) without modification, we are able
to find suggestions to repair the specification. However,
these suggestions only contain skills which change the
truth value of the user define variables BluePerson and
GreenPerson, which is not desired. Essentially, they let
the robot do its task by enforcing restrictions on how the
people are behaving. One such suggestion modifies the skills
such that when the green plate and blue plate are both
clean, if BluePerson = True, it must be False at the
next step if agreen-clean-to-set is not executed to make
sure the green plate could be set if needed. The suggestion
also includes extra skills that enforce when the green plate
and blue plate are both set and BluePerson = False

and GreenPerson = True, GreenPerson must become
False so the robot can move the green plate, enabling it to
then move the blue plate.

Kinova Vials: For the Kinova Vials example, we
investigate one unrealizable specification.

Unrealizable Specification 6: The user-defined task was
the same as in Figure 8. We added the constraint that the
red and green vials should never be in the white rack at the
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Figure 14. (A) The added constraint in Unrealizable Specification 5 for the Baxter Plates example. When BluePerson is True at
both the current and next step and the blue plate is set, the blue plate should be set at the next step. Similarly, when GreenPerson
is True at both the current and next step and the green plate is set, the green plate should be set at the next step. (B) One of the 9
suggestions found by the enumeration-based repair process. The suggestion proposes two new skills. The first skill moves the blue
plate from set to dirty when the green plate is set. The second skill moves the green plate from clean to set when the blue plate is
set. (C) The synthesis-based repair process finds one suggestion to repair the specification. This suggestion proposes modifying
the skill agreen-clean-to-set such that it does nothing to violate the added environment liveness assumption.

same time, in addition to the constraint that the red and green
vials should never be in yellow racks at the same time. This
additional constraint inϕs

t,task is encoded in Equation (17) and
the physical interpretation is shown in Figure 15(C,F).

�¬(σ4 ∧ σ11) ∧�¬(σ5 ∧ σ10)

�¬© (σ4 ∧ σ11) ∧�¬© (σ5 ∧ σ10)
(17)

We also add the constraint to ϕs
t,task that two vials cannot

be in the same physical location at the same time. We
show portion of this constraint in Equation (18) and the full
constraint in Appendix A.3.

�¬(σ0 ∧ σ6) ∧�¬(σ0 ∧ σ12) ∧�¬(σ1 ∧ σ7) ∧ . . . (18)

Additionally, we add that only one vial can be moved at a
time. We show the constraint that if the red vial moves, the
green and yellow vials cannot move in Equation (19). The
constraints for the green and yellow vials are similar and
we show them in Appendix A.3. Without these additional
constraints, the suggestions returned are difficult to interpret
and unusable because the suggestions involve moving
multiple vials at once, which a single arm cannot do.

Unrealizable Specification 6 Repair: For the
enumeration-based repair, we found that An.o.t 6= ∅.
However, at least two skills are required to repair
the specification. This necessitates looping through
combinations of the skills in An.o.t and the 48 other
partitioned skills. We stopped the repair process after 7
hours and found 22 suggestions. One of the suggestions was
a skill to move the green vial from the right-bottom location
to the top-left location and another skill to move the green
vial from the top-left location to the right-bottom location.
Figure 15G shows this suggestion.

The synthesis-based repair process returns 25 suggestions
in 381 seconds. This is orders of magnitude faster

than the enumeration-based repair process. One of the
suggestions is shown in Figure 15H. The suggestion
proposes three new skills: one with preconditions σ0 ∧
σ10 ∧ σ15 and postcondition σ2 ∧ σ10 ∧ σ15, one with
preconditions σ4 ∧ σ8 ∧ σ15 and postconditions (σ4 ∧ σ6 ∧
σ15) ∨ (σ4 ∧ σ7 ∧ σ15), and one with preconditions σ4 ∧
σ7 ∧ σ15 and postcondition σ4 ∧ σ8 ∧ σ15. Note that the
synthesis-based repair suggestion contains three skills, even
though the specification could be repaired with two, while
the enumeration-based repair only contains two skills. This is
because the synthesis-based repair has no restrictions on how
many skills it can propose and does not attempt to minimize
the number of skills suggested. The enumeration-based
repair would consider two skills to repair a specification
before considering three, as it would add substantial
computation expense.

The synthesis-based repair process also produces sugges-
tions that relax the preconditions of skills. We show one such
suggestion in Figure 15I. The suggestion suggests relaxing
the preconditions of ared-rack-left-to-top-left to include
states when the red vial is in the right-bottom location, the
green vial is in the rack-left, and the yellow vial is in the
rack-right or top-right locations. It also suggests allowing
ayellow-rack-left-to-top-right to be allowed when the yel-
low vial is in the right-top location, the red vial is in the
right-bottom location, and the green vial is in the rack-
left location. The third precondition it suggests relaxing is
that for ared-rack-left-to-right-bottom to include the state
when the red vial is in the top-left location, the yellow vial
is in the rack-right or right-top locations, and the green
vial is in the rack-left location. It also suggests allowing
ayellow-rack-left-to-right-top to be executed when the
yellow vial is in the top-left location, the red vial is in the top-
left location, and the green vial is in the rack-left location.
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Figure 15. (A-F): Images showing the configurations of the red and green vials that should not occur based on the task
specification. In the suggestion plots, the red vials are denoted by red triangles, the green vials by green squares, and the yellow
vials by yellow circles. (G): One suggestion given by enumeration-based repair. There are two skills suggested. Note that some of
the vials in the preconditions overlap because the preconditions are taken from existing skills. When determining which symbols are
contained in the precondition classifier, we do not enforce mutual exclusion of the symbols in the same physical space. Even
though these preconditions would violate the mutual exclusion of symbols added in ϕtask, these states are never visited, so the
specification is not violated. (H) Suggestion from the synthesis-based repair. There are three skills suggested. (I) A suggestion from
the synthesis-based repair process to relax the preconditions. The repair process suggests relaxing the preconditions of four skills.

((σ6 ↔ ¬© σ6) ∨ (σ7 ↔ ¬© σ7) ∨ (σ8 ↔ ¬© σ8) ∨ (σ9 ↔ ¬© σ9) ∨ (σ10 ↔ ¬© σ10) ∨ (σ11 ↔ ¬© σ11))→
((σ0 ↔©σ0) ∧ (σ1 ↔©σ1) ∧ (σ2 ↔©σ2) ∧ (σ3 ↔©σ3) ∧ (σ4 ↔©σ4) ∧ (σ5 ↔©σ5))∧
((σ12 ↔©σ12) ∧ (σ13 ↔©σ13) ∧ (σ14 ↔©σ14) ∧ (σ15 ↔©σ15) ∧ (σ16 ↔©σ16) ∧ (σ17 ↔©σ17))

(19)
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Note that skills involving moving the yellow vial are not
strictly necessary to repair the specification, but are included
due to the choices made by the synthesis-based repair process
when extracting a strategy.

8 Conclusion

In this work, we present a framework for automatically
encoding the skills of a robot in an LTL formula from
sensor data. We provide a task to the robot and generate a
strategy to accomplish the task if possible. If the task is not
possible, we show two methods to repair the specifications
by providing skill suggestions that would make the task
possible. We demonstrate the process of encoding the skills
in an LTL formula, an enumeration-based repair process, and
a synthesis-based repair process on three examples.

In the future, we plan to extend this work to automatically
implement controllers based on the symbolic suggestions.
Additionally, we plan to extend the synthesis-based repair
process to handle a larger class of specifications, such as
those in the Baxter Plates example or specifications with
constraints on what happens during the execution of the
skills.
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A Appendix
We provide the full ϕskills for the Baxter Blocks, Baxter
Plates, and Kinova Vials examples in the structuredslugs
format Ehlers and Raman (2016). We form the parts of
ϕfull for each specification by conjuncting each line of the
structuredslugs file. [ENV INIT] forms ϕe

i and [SYS INIT]
forms ϕs

i . We place the temporal operator always (�) in
front of each line in [ENV TRANS], [SYS TRANS], and
[SYS TRANS HARD] before conjuncting them to form
ϕe

t , ϕs
t , and ϕs

t,hard, respectively. We prepend each line
in [SYS LIVENESS] and [ENV LIVENESS] with �♦
before conjuncting them to form ϕs

g and ϕe
g, respectively.

The section [SYS TRANS HARD] does not appear in a
standard structuredslugs file and is included for use with
the synthesis-based repair process (Section 6.2). When we
evaluate the specifications using Slugs Ehlers and Raman
(2016), we combine the [SYS TRANS HARD] section with
[SYS TRANS].

Indented lines are continuations of a single line and a
consequence of the limited column width.

Comments (lines beginning with ”#”) in the structured
slugs file show where the automatically generated portion of
the specification from Section 5.1 go. For each specification,
we show the line(s) added to make the specification
unrealizable.

A.1 Baxter Blocks
[INPUT]
# 19 automatically generated symbols s0-s18
Switch

[OUTPUT]
# 18 partitioned skills
extra1

[ENV_INIT]
!s0
!s1
!s14
!s15
!s2
!s3
!s4
!s5
!s6
!s8
!Switch
s10
s11
s12
s13
s16
s17
s18
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s7
s9

[SYS_INIT]
!a_to_d_4
!a_to_d_5
!a_to_d_6
!a_to_d_7
!a_to_e_11
!a_to_e_12
!a_to_e_13
!a_to_e_14
!b_to_f_19
!c_to_b_10
!d_to_a_15
!d_to_a_16
!d_to_at_8
!d_to_at_9
!e_to_a_17
!e_to_a_18
!e_to_at_2
!e_to_at_3
!f_to_c_0
!g_to_c_1
!extra1

[ENV_TRANS]
# Automatically generated postconditions
# and mutual exclusion of symbols

[SYS_TRANS]
# Automatically generated preconditions

[SYS_TRANS_HARD]
# Mutual exclusion of skills

# Only one block can move at a time
((s6 <-> !s6’) | (s9 <-> !s9’) |

(s14 <-> !s14’) | (s7 <-> !s7’) |
(s10 <-> !s10’) | (s8 <-> !s8’)) ->
((s11 <-> s11’) & (s3 <-> s3’) &
(s13 <-> s13’) & (s4 <-> s4’) &
(s12 <-> s12’) & (s5 <-> s5’) &
(s0 <-> s0’) & (s17 <-> s17’) &
(s1 <-> s1’) & (s15 <-> s15’) &
(s18 <-> s18’) & (s16 <-> s16’) &
(s2 <-> s2’))

((s11 <-> !s11’) | (s3 <-> !s3’) |
(s13 <-> !s13’) | (s4 <-> !s4’) |
(s12 <-> !s12’) | (s5 <-> !s5’)) ->
((s6 <-> s6’) & (s9 <-> s9’) &
(s14 <-> s14’) & (s7 <-> s7’) &
(s10 <-> s10’) & (s8 <-> s8’) &
(s0 <-> s0’) & (s17 <-> s17’) &
(s1 <-> s1’) & (s15 <-> s15’) &
(s18 <-> s18’) & (s16 <-> s16’) &
(s2 <-> s2’))

((s0 <-> !s0’) | (s17 <-> !s17’) |
(s1 <-> !s1’) | (s15 <-> !s15’) |
(s18 <-> !s18’) | (s16 <-> !s16’) |
(s2 <-> !s2’)) -> ((s6 <-> s6’) &

(s9 <-> s9’) & (s14 <-> s14’) &
(s7 <-> s7’) & (s10 <-> s10’) &
(s8 <-> s8’) & (s11 <-> s11’) &
(s3 <-> s3’) & (s13 <-> s13’) &
(s4 <-> s4’) & (s12 <-> s12’) &
(s5 <-> s5’))

# Unrealizable Specification 1
!(s0’ & s15’)
!(s0 & s15)

# Unrealizable Specification 2
!(c_to_b_10’)
!(c_to_b_10)

[SYS_LIVENESS]
Switch -> (s6 & s7 & s10 & s3 & s4 &

s5 & s17 & s18 & s16)
!Switch -> (s6 & s7 & s8 & s3 & s4 &

s12 & s0 & s1 & s2)

[ENV_LIVENESS]
(g_to_c_1) -> (s0 & s1 & s2)

A.2 Baxter Plates
[INPUT]
# 9 automatically generated symbols
# symbol_0 to symbol_8
blue_person
green_person

[OUTPUT]
# 7 automatically partitioned skills
extra1
extra2
extra3

[ENV_INIT]

!symbol_7
!symbol_5
!symbol_4
!symbol_8
symbol_0
symbol_1
symbol_2
symbol_3
symbol_6

[SYS_INIT]
!blue_dirty_to_clean_partition_0_3
!green_clean_to_set_partition_0_1
!green_set_to_dirty_partition_0_2
!extra1
!extra2
!blue_set_to_dirty_partition_0_5
!extra3
!green_clean_to_set_partition_0_0
!blue_clean_to_set_partition_0_4
!green_dirty_to_clean_partition_0_6
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[ENV_TRANS]
# Automatically generated postconditions
# and mutual exclusion of symbols

[SYS_TRANS]
# Automatically generated preconditions

[SYS_TRANS_HARD]
# Mutual exclusion of skills

# Unrealizable Specification 5
blue_person & blue_person’ &

((symbol_0 & symbol_1 & symbol_2 &
symbol_5 & symbol_6) |
(symbol_0 & symbol_1 & symbol_5 &
symbol_6 & symbol_7) |
(symbol_0 & symbol_2 & symbol_5 &
symbol_6 & symbol_8)) ->
((symbol_0’ & symbol_1’ & symbol_2’ &
symbol_5’ & symbol_6’) |
(symbol_0’ & symbol_1’ & symbol_5’ &
symbol_6’ & symbol_7’) |
(symbol_0’ & symbol_2’ & symbol_5’ &
symbol_6’ & symbol_8’))

green_person & green_person’ &
((symbol_0 & symbol_2 & symbol_3 &
symbol_6 & symbol_8) |
(symbol_0 & symbol_2 & symbol_3 &
symbol_4 & symbol_8) |
(symbol_0 & symbol_2 & symbol_5 &
symbol_6 & symbol_8)) ->
((symbol_0’ & symbol_2’ & symbol_3’ &
symbol_6’ & symbol_8’) |
(symbol_0’ & symbol_2’ & symbol_3’ &
symbol_4’ & symbol_8’) |
(symbol_0’ & symbol_2’ & symbol_5’ &
symbol_6’ & symbol_8’))

[SYS_LIVENESS]
blue_person ->

((symbol_0 & symbol_1 & symbol_2 &
symbol_5 & symbol_6) |
(symbol_0 & symbol_1 & symbol_5 &
symbol_6 & symbol_7) |
(symbol_0 & symbol_2 & symbol_5 &
symbol_6 & symbol_8))

green_person ->
((symbol_0 & symbol_2 & symbol_3 &
symbol_6 & symbol_8) |
(symbol_0 & symbol_2 & symbol_3 &
symbol_4 & symbol_8) |
(symbol_0 & symbol_2 & symbol_5 &
symbol_6 & symbol_8))

!blue_person ->
!((symbol_0 & symbol_1 & symbol_2 &
symbol_5 & symbol_6) |
(symbol_0 & symbol_1 & symbol_5 &
symbol_6 & symbol_7) |
(symbol_0 & symbol_2 & symbol_5 &
symbol_6 & symbol_8))

!green_person ->

!((symbol_0 & symbol_2 & symbol_3 &
symbol_6 & symbol_8) |
(symbol_0 & symbol_2 & symbol_3 &
symbol_4 & symbol_8) |
(symbol_0 & symbol_2 & symbol_5 &
symbol_6 & symbol_8))

[ENV_LIVENESS]
green_clean_to_set_partition_0_1 ->

(symbol_8)
blue_clean_to_set_partition_0_4 ->

(symbol_5)

A.3 Kinova Vials
[INPUT]
# 18 automatically generated symbols
# s0 to s17
react

[OUTPUT]
# 48 skills
extra1
extra2
extra3

[ENV_INIT]

!s1
!s10
!s11
!s12
!s13
!s14
!s16
!s17
!s2
!s3
!s4
!s5
!s6
!s7
!s9
!react
s0
s15
s8

[SYS_INIT]

!green_rack_left_to_right_bottom_0
!green_rack_left_to_right_top_1
!green_rack_left_to_top_left_2
!green_rack_left_to_top_right_3
!green_rack_right_to_right_bottom_4
!green_rack_right_to_right_top_5
!green_rack_right_to_top_left_6
!green_rack_right_to_top_right_7
!green_right_bottom_to_rack_left_8
!green_right_bottom_to_rack_right_9
!green_right_top_to_rack_left_10
!green_right_top_to_rack_right_11
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!green_top_left_to_rack_left_12
!green_top_left_to_rack_right_13
!green_top_right_to_rack_left_14
!green_top_right_to_rack_right_15
!red_rack_left_to_right_bottom_16
!red_rack_left_to_right_top_17
!red_rack_left_to_top_left_18
!red_rack_left_to_top_right_19
!red_rack_right_to_right_bottom_20
!red_rack_right_to_right_top_21
!red_rack_right_to_top_left_22
!red_rack_right_to_top_right_23
!red_right_bottom_to_rack_left_24
!red_right_bottom_to_rack_right_25
!red_right_top_to_rack_left_26
!red_right_top_to_rack_right_27
!red_top_left_to_rack_left_28
!red_top_left_to_rack_right_29
!red_top_right_to_rack_left_30
!red_top_right_to_rack_right_31
!yellow_rack_left_to_right_bottom_32
!yellow_rack_left_to_right_top_33
!yellow_rack_left_to_top_left_34
!yellow_rack_left_to_top_right_35
!yellow_rack_right_to_right_bottom_36
!yellow_rack_right_to_right_top_37
!yellow_rack_right_to_top_left_38
!yellow_rack_right_to_top_right_39
!yellow_right_bottom_to_rack_left_40
!yellow_right_bottom_to_rack_right_41
!yellow_right_top_to_rack_left_42
!yellow_right_top_to_rack_right_43
!yellow_top_left_to_rack_left_44
!yellow_top_left_to_rack_right_45
!yellow_top_right_to_rack_left_46
!yellow_top_right_to_rack_right_47
!extra1
!extra2
!extra3

[ENV_TRANS]
# Automatically generated postconditions
# and mutual exclusion of symbols

[SYS_TRANS]
# Automatically generated preconditions

[SYS_TRANS_HARD]
# Mutual exclusion of skills

# Realizable Specification
# The red and green vials should not be
# in the same yellow rack
!(s0’ & s7’)
!(s1’ & s6’)
!(s2’ & s9’)
!(s3’ & s8’)
!(s0 & s7)
!(s1 & s6)
!(s2 & s9)
!(s3 & s8)

# Only one vial can be in a location
!(s0’ & s6’)
!(s0’ & s12’)
!(s6’ & s12’)
!(s1’ & s7’)
!(s1’ & s13’)
!(s7’ & s13’)
!(s2’ & s8’)
!(s2’ & s14’)
!(s8’ & s14’)
!(s3’ & s9’)
!(s3’ & s15’)
!(s9’ & s15’)
!(s4’ & s10’)
!(s4’ & s16’)
!(s10’ & s16’)
!(s5’ & s11’)
!(s5’ & s17’)
!(s11’ & s17’)
!(s0 & s6)
!(s0 & s12)
!(s6 & s12)
!(s1 & s7)
!(s1 & s13)
!(s7 & s13)
!(s2 & s8)
!(s2 & s14)
!(s8 & s14)
!(s3 & s9)
!(s3 & s15)
!(s9 & s15)
!(s4 & s10)
!(s4 & s16)
!(s10 & s16)
!(s5 & s11)
!(s5 & s17)
!(s11 & s17)
# Only one vial can move at a time
((s6 <-> !s6’) | (s8 <-> !s8’) |

(s7 <-> !s7’) | (s9 <-> !s9’) |
(s11 <-> !s11’) | (s10 <-> !s10’)) ->
((s0 <-> s0’) & (s1 <-> s1’) &
(s2 <-> s2’) & (s3 <-> s3’) &
(s4 <-> s4’) & (s5 <-> s5’)) &
((s12 <-> s12’) & (s13 <-> s13’) &
(s14 <-> s14’) & (s15 <-> s15’) &
(s16 <-> s16’) & (s17 <-> s17’))

((s0 <-> !s0’) | (s1 <-> !s1’) |
(s2 <-> !s2’) | (s3 <-> !s3’) |
(s4 <-> !s4’) | (s5 <-> !s5’)) ->
((s6 <-> s6’) & (s8 <-> s8’) &
(s7 <-> s7’) & (s9 <-> s9’) &
(s11 <-> s11’) & (s10 <-> s10’)) &
((s12 <-> s12’) & (s13 <-> s13’) &
(s14 <-> s14’) & (s15 <-> s15’) &
(s16 <-> s16’) & (s17 <-> s17’))

((s12 <-> !s12’) | (s13 <-> !s13’) |
(s14 <-> !s14’) | (s15 <-> !s15’) |
(s16 <-> !s16’) | (s17 <-> !s17’))
-> ((s6 <-> s6’) & (s8 <-> s8’) &
(s7 <-> s7’) & (s9 <-> s9’) &
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(s11 <-> s11’) & (s10 <-> s10’)) &
((s0 <-> s0’) & (s1 <-> s1’) &
(s2 <-> s2’) & (s3 <-> s3’) &
(s4 <-> s4’) & (s5 <-> s5’))

# Unrealizable Specification 6
!(s4’ & s11’)
!(s5’ & s10’)
!(s4 & s11)
!(s5 & s10)

[SYS_LIVENESS]
react -> (s8 & s15 & s0)
!react -> (s2 & s13 & s6)

[ENV_LIVENESS]
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