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ABSTRACT: 

3D building modeling is a diverse field of research with a multitude of challenges, where data integration is an inherent component. 

The intensively growing market of BIM-related consumer applications requires methods and algorithms that enable efficient updates 

of existing 3D models without the need for cost-intensive data capturing and repetitive reconstruction processes. We propose a novel 

approach for semantic enrichment of existing indoor models by window objects, based on amateur camera RGB images with unknown 

exterior orientation parameters. The core idea of the approach is the parallel estimation of image camera poses with semantic 

recognition of target objects and their automatic mapping onto a 3D vector model. The presented solution goes beyond pure texture 

matching and links deep learning detection techniques with camera pose estimation and 3D reconstruction. To evaluate the performance 

of our procedure, we compare the estimated camera parameters with reference data, obtaining median values of 13.8 cm for the camera 

position and 1.1° for its orientation. Furthermore, a quality of 3D mapping is assessed based on the comparison to the reference 3D 

point cloud.  All the windows presented in the data source were detected successfully, with a mean distance between both point sets 

equal to 3.6 cm. The experimental results prove that the presented approach achieves accurate integration of objects extracted from 

single images with an input 3D model, allowing for an effective increase of its semantic coverage. 

1. INTRODUCTION

Building Information Modeling (BIM) is a diverse and 

multidisciplinary research subject with steadily increasing 

interest and demand (Czerniawski and Leite, 2020; Pintore et al., 

2020). In recent years, we could observe that the scope of BIM-

related topics is not anymore limited to purely professional usage. 

More frequently it leaves space for various consumer products 

that rely on realistic 3D models created from spatial data. The 

intensively growing market of BIM applications triggers the need 

for algorithms that enable efficient update and interaction with 

building models.  

For a long time, the common concern in indoor modeling for BIM 

support has been mostly focused on the geometric reconstruction 

of the main structural building elements: walls, ceilings, and 

floors (Quintana et al., 2016; Ochman et al., 2019; Nikoohemat 

et al., 2020). The second, and significantly less covered, core task 

of as-built BIM creation is object recognition, the process of 

labeling parts of data or extracted primitives with semantic 

classes. Although windows and doors constitute a large 

proportion of indoor objects, many existing studies lack the 

capabilities to model them (Mura et al., 2014; Thomson and 

Boehm 2015; Anagnostopoulos et al., 2016). Detection of wall 

openings in indoor scenes may be a relatively complex task due 

to the existence of other objects, like pieces of furniture, that 

cause occlusions. The prevailing approach within the presented 

in the literature methods that can reconstruct windows objects is 

to use point clouds obtained by laser scanning, where wall 

openings appear as holes in a data (Michailidis et al., 2017; Jung 

et al., 2018; Previtali et al., 2018). In alternative solutions, 

windows were detected in photogrammetric point clouds 
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(Jarząbek-Rychard and Maas, 2020) or image textures (Tang et 

al., 2019). Texture mapping, however, often requires tedious 

human intervention and is usually performed during the 

reconstruction process, which means that the modeling is not able 

to accommodate modifications after the model is created. The 

very complex and frequently changing environment of indoor 

spaces triggers the need for techniques that allow for an 

automatic update of existing 3D models, which increases their 

semantic coverage without the need for costly data capturing and 

repetitive reconstruction process. 

This paper presents a novel approach for semantic enrichment of 

existing indoor 3D vector models by window objects, based on 

single RGB images taken at hand (Fig.1b). An important 

assumption underlying the presented methodology is its 

feasibility for consumer application, which means that the input 

images are assumed to have an unknown camera pose. The only 

given information is an association of the image to the room 

where it was captured. The innovative idea of the approach is the 

parallel semantic recognition of the target objects in the image 

with its automatic positioning in 3D space. Our solution goes 

beyond pure texture matching and bridges deep learning 

detection techniques with camera pose estimation and 3D 

reconstruction. The presented algorithm starts with a joint 

recognition of window target objects and the spatial layout of the 

corresponding indoor space. For this purpose, we employ an 

object detection convolutional neural network Mask R-CNN to 

semantically recognize desirable building elements and their 

bounding regions. The detected ceiling region is then processed 

by a morphological operation, allowing for the extraction of its 

bounding lines, which are matched with the corresponding 3D 
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edges in the model. The estimated 2D/3D correspondences allow 

for the estimation of camera poses formulated as the Perspetive-

3-Line (P3L) problem (Xu et al., 2017). Finally, window 3D 

objects are reconstructed based on the photogrammetric 

projection of the detected pixels into 3D space, and regularized. 

To evaluate the performance of our procedure, we compare the 

estimated values of camera poses and orientation with reference 

data. Furthermore, a quality assessment of 3D mapping is 

performed based on the comparison to the reference 3D point 

cloud. The experimental results prove that the presented 

approach allows for effective integration of a 3D model with 

objects detected in 2D single images, achieving an efficient 

automatic upgrade of the model’s semantic level. 

 

2. METHODOLOGY 

2.1 Object recognition using deep learning methods 

The presented methodologic pipeline of image processing (Fig.2) 

starts with the detection of chosen indoor objects in RGB images. 

Besides target windows, the algorithm aims at the recognition of 

walls and ceiling objects for the subsequent extraction of an 

indoor space layout (edges of an indoor cube). To perform this 

task, we select Mask R-CNN (He et al., 2017), a robust deep 

learning detection framework. Extended from the faster R-CNN 

architecture (Ren, et al., 2015), Mask R-CNN provides a mask 

prediction branch composed of a small Fully Convolutional 

Network for segmenting each Region of Interest (ROI) with 

simultaneous classification prediction and bounding-box 

prediction. In the final output, besides the class label and 

bounding box for each ROI, Mask R-CNN additionally generates 

a binary mask of each detected object. Example results of indoor 

object recognition are presented in Fig.3a. At that stage, the 

Figure 1. Input data: 3D vector model of a building interior (a), single RGB images of windows (b). 

                                                       (a)                                                                                                        (b)                                                                 

 

Figure 2. General workflow of the image processing algorithm and its final results: detected window pixels and the 2D vectorized 

edges of an indoor space. 
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detected objects may slightly overlap with each other and have 

irregular outlines. To improve the initial hypothesis of the ceiling 

boundary, the spatial difference with wall objects is applied. The 

final binary masks of the detected ceiling and windows are 

presented in Fig.3c and Fig.3e. 

 

2.2 Extraction of indoor space edges  

Although deep learning techniques are powerful tools for region 

object detection, they show deficits in the precise extraction of its  

bounding edges, which are crucial for the subsequent estimation 

of the camera poses. Therefore, in our approach (illustrated in 

Fig.4) contours extracted from the binary masks provided in the 

previous step serve as initial information for more accurate 

extraction of the ceiling-wall edges. To automatically detect 

pixels belonging to the precise object boundaries in RGB photos, 

we apply one of the common edge detection methods. For the 

presented research we choose Canny edge detector. The 

algorithm, composed of several stages, is much more complex 

than other detection methods (like e.g. Sobel or Prewitt operator), 

thus it enables to effectively detect a wide range of edges in the 

image. In the next step, the binary image with marked edges is 

masked with a buffer of n pixels (in the following experiments 

n= 3) around the delineated ceiling object extracted by Mask R-

CNN. The resulting region of interest with marked edge pixels 

serves as an input for the vectorization of edges performed by the 

Figure 3. Object detection in RGB image using Mask R-CNN: extracted objects (windows, ceilings, walls), partially overlapped (a), 

detected separated objects and their corresponding masks: ceiling (b) and (c) and window (d) and (e). 
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(e)                                                                 

 

 

                                    (a)                                             (b)                                                                 

 

Figure 4. Edge detection process: ceiling mask extracted by R-CNN (a), detected outer contour (b), corresponding RGB image (c), 

extracted image edges (d), edges derived by masking image edges using detected outer contour (white) and the final straight lines 

detected by Hough transform (green) (e). 
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Hough transform. Straight-line segments and their corresponding 

line equations are detected by finding peaks in the Hough space 

of the binary image. According to the assumption underlying the 

Hough transform, the algorithm returns numerous hypotheses of 

line positions, based on the same pixels connected in multiple 

configurations. Thus, to reduce the search space for potential 

pixels belonging to the estimated line, the number of peaks in the 

Hough space is limited to 3, and the part of the image within the 

buffer of 3 pixels from the extracted line is excluded from the 

processing. The finally extracted ceiling edges are shown in 

Fig.4e. To establish correspondences between the edges of a 3D 

model and the edges extracted from the image, the lines are sorted 

according to their coordinates and stored as a topological chain. 

 

2.3 Camera pose estimation from line correspondences  

Camera pose estimation is an important step in a broad range of 

applications, related to augmented reality, robotics, and computer 

vision. The pose of a calibrated camera is usually determined by 

analysing n correspondences between 3D reference features and 

their 2D projections. Contrary to the well-studied Perspetive-n-

Point (PnP) problem that utilizes point features (e.g., Lepetit et 

al., 2009), solutions dedicated to line features (known as, 

Perspective-n-Line problem, PnL) remains challenging. For the 

determination of the camera pose in 3D space there are six 

degrees of freedom. Thus, to get a finite set of solutions, at least 

three correspondences should be given, since each 

correspondence offers two dimensions of constraint on the pose 

parameters. In our research, because of the limited features of the 

input 3D model (vertices and edges of a cuboid) and their 

visibility in the images, only the line-based solutions can be 

applied. Furthermore, due to the clutters that usually occlude 

wall-floor edges, and shadows that hinder detection of vertical 

edges, we limited the set of the corresponding lines to 3 ceiling-

wall edges. Using the minimum possible size of the 

correspondence set, we thus face the special case of the PnL, i.e. 

the Perspetive-3-Line (P3L) problem (described in detail by Xu 

et al., 2017). Given a calibrated camera and three reference lines 

𝐿𝑖(𝑖 ∈ {0,1,2}) with their corresponding 2D projections in the 

image space as 𝑙𝑖, the camera pose can be determined based on 

these 3D/2D correspondences (𝐿𝑖 

.
⇔ 𝑙𝑖 ). The problem involves 

two tasks: estimating the rotation matrix 𝑹 and the translation 

vector 𝒕 ∈ 𝑅3. In general, it involves solving nonlinear equations 

of 8-th order polynomials. It is then well known that the solution 

to the P3L problem is not uniquely determined. On the other 

hand, the potential solutions obviously differ from each other, 

which makes it possible to choose the real one based on the 

roughly given initialization - in the presented experiment, we use 

for this purpose the initial camera location calculated as the 

centre of gravity of the vertices in each cuboid (indoor space). 

 

2.4 3D reconstruction of the detected objects 

The core idea of 3D window object reconstruction is based on the 

photogrammetric projection of the detected window pixels on the 

given 3D vector model. The projection is performed through the 

collinearity equations, along with the previously extracted 

exterior orientation parameters of the camera. A set of 3D 

window points is computed by the intersection of walls (provided 

by the input model) with viewing rays assigned with the pixels of 

windows binary masks, detected by Mask R-CNN (Section 2.1). 

3D coordinates of window corner points are estimated by the best 

fitting rectangle algorithm (assuming window edges to be vertical 

and horizontal in 3D space) performed on the projected window 

contour points derived by the convex hull method. Due to the 

many occlusions of the lower part of the window (typically 

computer screens and other things placed on the desktops), its 

bottom outline is often very irregular. Therefore, the extracted 

lower edge of the window is shifted to the lowest detected 

window point. As the result of fitting objects to the computed 3D 

points, we obtain rectangles of varying sizes, which are not 

always properly aligned. In the last step of the presented pipeline, 

window vector models are subjected to global regularization. The 

objects are grouped according to two regularities constraints: 

same shape and same vertical alignments. The final windows 

layout is obtained by enforcing positional and shape changes 

according to median values calculated for each group. 

 

3. RESULTS AND DISCUSSION 

To verify the performance of the presented approach, we use part 

of the data belonging to the Stanford 2D-3D-Semantic Dataset 

(2D-3D-S) (Armeni et al., 2016). The dataset provides a variety 

of mutually registered modalities from 2D, 2.5D, and 3D 

domains, with instance-level semantic and geometric 

annotations. The data are collected in 6 large-scale indoor areas 

that originate from 3 different buildings of mainly educational 

and office use. For our experiment we choose three subsets of the 

data: i) 3D point cloud of an indoor area, which served as a base 

for 3D modeling of an input indoor model, ii) RGB images 

providing additional texture information for this area (with 

visible windows), with an association to the corresponding 

building spaces, iii) RGB images belonging to other buildings, 

used for transfer learning by Mask R-CNN. Since our image-

model matching procedure is based on a single photo without 

exterior orientation parameters, the images belonging to the 

second subset have to present 3 visible ceiling-wall edges for 

correspondences matching. Such images were not provided for 3 

out of the 23 offices. Besides the listed subsets, we also use 

camera information as reference data for the verification of the 

pose estimation algorithm performance. The initial indoor model 

subjected to the refinement is reconstructed according to the 

modified 3D modeling approach described in (Jarząbek-Rychard 

and Borkowski, 2016) adapted for indoor scenes. As direct input 

data, the reconstruction algorithm uses only wall points, 

according to the semantic classification provided by the 

benchmark. The model is stored as a list of x,y,z coordinates of 

wall vertices and their topological relations (connecting edges).  

 

 
Figure 5. Angular differences between the estimated camera 

orientation and the reference data. 

Figure 6. 3D shifts between the estimated camera position and 

the reference data. 
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To train Mask R-CNN for the detection of chosen indoor objects 

(windows, ceilings, walls) we use a network with a backbone 

Res-Net-50, pretrained on the open deep learning dataset 

ImageNET (Deng et al., 2009) and apply transfer learning 

techniques. The dataset consists of 100 images, with 

corresponding ground-truth annotations with the chosen 3 

semantic classes. We split the data into 80 images for training 

and 20 images for validation. The test dataset consists of 20 

images captured in the target building and directly serving for its 

further enrichment procedure. As an optimization algorithm we 

used Stochastic Gradient Descent (SGD), the learning rate is set 

to 0.005, the weight decay to 0.0005, and the momentum to 0.9. 

The method was implemented in PyTorch and processed using 

free NVIDIA Tesla P100 GPU provided by Google Colab. The 

obtained results serve as a base for the subsequent 2D/3D line 

correspondences and the estimation of camera poses (described 

in Section 2.2 and 2.3). 

 

The evaluation of the camera pose estimation is performed based 

on the comparison with the reference data, computed for each 

image matched with the 3D model. The quality analysis is built 

on the differences calculated for two indicators: angular camera 

orientation (Fig.5) and 3D camera position (Fig.6). The absolute 

values of angular discrepancies oscillate between 0.3° and 2.7°,  

giving the median value of 1.1°. The median planar displacement 

of the camera position is equal to 13.8 cm, with the values in the 

range of 5-35 cm. The estimated exterior orientation parameters 

enable to project the detected window pixels on the 3D walls of 

the input 3D model. To assess the performance of the automatic 

3D mapping, the computed 3D window points are compared to 

the semantically classified reference 3D point cloud. The mean 

approximate distance between both point sets is equal to 3.6 cm. 

There is one outlier at 64 cm, while for most of the points the 

difference is close to 0 cm. The visual comparison is presented in 

Fig.7. Except for one case, when the window is falsely extended 

to the edge of the wall, all projected window points form proper 

layout and shapes, even preserving the shape of occlusions. The 

main difference between the results and the reference set is in the 

sharpness of window boundaries. The final building model 

enriched in window vector models, after regularization of their 

global layout, is shown in Fig.8. The visual assessment 

demonstrates that the proposed method can preserve a high 

accuracy fit between the objects detected in the images and the 

input indoor model. 

 

 

Figure 7. Detected window pixels projected on the 3D model (dense 3D points) (green), and reference 3D point cloud (red). 

Figure 8. Final results: input 3D model automatically enriched in window vector objects. 
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4. CONCLUSION 

This paper presents an innovative approach to the automatic 

upgrade of existing indoor 3D models using up-to-date semantic 

information extracted from single RGB images with unknown 

camera poses. The new insight of the research covers the parallel 

estimation of the image exterior orientation parameters with 

recognition of target objects and their 3D reconstruction. To 

solve these problems, we propose a novel methodology that 

employs deep convolutional neural networks together with 

projective photogrammetry. Although the presented experiments 

are focused on the detection and modeling of window objects, the 

algorithms behind can be easily adapted for other planar objects 

visible in indoor scenes. The evaluation of the procedure for 

extraction and matching of the correspondences between input 

3D model and images shows that the method allows estimating 

camera poses with a median value of 13.8 cm for the camera 

position and 1.1° for its orientation. The quality assessment of 3D 

object mapping, revealing 3.6 cm of the mean approximate 

distance, indicates a high correlation between extracted object 

points and the reference data. In this study, we confirmed that the 

proposed approach can achieve effective integration of vector 3D 

models with objects detected in single images acquired in indoor 

scenes. The underlying methodology so far assumes that the 

internal camera parameters are available from a priori calibration.  

In future work, we aim at the comparison of the performance of 

the presented pose estimation approach against other available in 

the literature methods dedicated to indoor application. We also 

plan to increase the applicability of the method allowing for the 

use of the images captured by smartphone cameras, which often 

show instable interior orientation (Elias et al., 2020). 

Furthermore, we intend to extend the scope of BIM-related 

information by adding the possibility to detect other indoor 

objects (e.g. doors, radiators, furniture), and investigating 

thermal infrared images as an additional data source. 
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