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Automatic Evaluation of Nickel Alloy Secondary Phases from SEM Images 

 

Abstract 

Quantitative metallography is a technique to determine and correlate the microstructures of 

materials with their properties and behavior. Generic commercial image processing and analysis 

software packages have been used to quantify material phases from metallographic images. 

However, these all-purpose solutions also have some drawbacks, particularly when applied to 

segmentation of material phases. To overcome such limitations, this work presents a new solution 

to automatically segment and quantify material phases from SEM metallographic images. The 

solution is based on a neuronal network and in this work was used to identify the secondary 

phase precipitated in the gamma matrix of a Nickel base alloy. The results obtained by the new 

solution were validated by visual inspection and compared with the ones obtained by a 

commonly used commercial software. The conclusion is that the new solution is precise, reliable 

and more accurate and faster than the commercial software. 

 

Keywords: Materials Sciences; Metallography; Microstructural Analysis; Nickel Alloy; 

Secondary Phase; Precipitation; Phase Quantification; Dissimilar Metal Weld; Image 

Segmentation; Artificial Neuronal Network. 
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1 Introduction 

Nickel (Ni) base alloys belong to one of the most important classes of corrosion-resistant 

materials that are used in overlay applications (Lievers and Pilkey, 2004). During the weld 

solidification of these alloys, intense microsegregation of some elements, such as molybdenum 

(Mo), niobium (Nb), titanium (Ti) and tungsten (W), into interdendritic regions causes 

supersaturation of the material in its final stage of solidification, which causes the formation of 

secondary phases such as P, ,  (Cieslak et al., 1986), laves and carbides (Dupont, 1996). These 

secondary phases can change the mechanical properties of the material and decrease its resistance 

to corrosion (Yang et al., 2006). For example, in the Inconel 625 alloy the secondary phases in 

as-welded condition are MC carbides of the (NbTi)C type and Nb-rich Laves phase (Cieslak, 

1991). Ni-based alloys are very susceptible to hot cracking due to Nb-rich Laves phase formation 

that has a low melting point (Dupont et al., 2003). Thus, it is very important to quantify the phase 

precipitates so that the most suitable welding parameters that minimize the presence of these 

particles, can be selected. In order to determine the percentage of secondary phases, all-purpose 

image processing and analysis software packages are frequently used (Pan et al., 2005). 

Many computational solutions to segment and quantify material microstructures from 

images have been developed. Generally, most of the commercial solutions, for microstructural 

characterization from images, are based on the traditional threshold method to segment the input 

images. On the other hand, various computational systems have been developed to evaluate 

material microstructures from images that are based on more efficient segmentation techniques. 

For example, Albuquerque et al. (2008) presents a comparative analysis between a commercial 

tool and a custom built backpropagation neuronal network for the identification and 

quantification of material microstructures from metallographic images. In their work, 
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Albuquerque et al. showed that the neuronal approach was more efficient, reliable and accurate. 

To evaluate the segmentation quality and the quantification effectiveness, Albuquerque et al. 

(2009) tested two neuronal topologies, a multilayer perceptron and a self-organizing map, on 

metallographic images of cast iron samples. From their experimental findings, the multilayer 

perceptron neuronal network was shown to be more accurate and more efficient. However, these 

enhanced computational systems have been developed to perform the analysis of material 

microstructures from images and not specifically designed for the study of the secondary phase of 

Ni-base alloys, leading to rather inefficient solutions. This limitation of the present computational 

systems has been overcome by the new solution described in the following sections. 

Additionally, it is important to stress that, as far as the authors know, there are no studies in the 

current literature about the efficiency of segmentation and quantification of Ni-base alloys under 

the welding conditions used in this work, making the results of this work to be of some 

consequence. 

 

2 Experimental procedure 

The main goal of this work is the development and evaluation of a new computational 

solution, based on an artificial neuronal network, to automatically and efficiently quantify the 

secondary phases of Ni-base alloys from SEM images. The results obtained by the new solution 

were assessed by visual inspection and compared with the ones from a commercial image 

processing and analysis software package that is frequently used in microstructural evaluation of 

materials from images. The evaluation of the new solution took into account: segmentation 

quality and accuracy; reliability of the results obtained and time. In this section, the experimental 

procedure is detailed. 
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Samples extracted from Inconel 625 alloy coatings deposited by welding on an ASTM 

(American Society for Testing and Materials) A516-Gr 60 steel substrate were used in the 

experimental work. The chemical composition of the weld metal is shown in Table 1. The test 

samples were extracted from the welded plates and subsequently underwent a metallographic 

preparation that included sanding, polishing and electrolytic attack, using 10% chromic acid with 

a 2V tension for 15 seconds. 

An initial attempt was made to obtain the images for the experimental evaluation by light 

microscopy, due to its simplicity when compared to other microscopic techniques. However, 

although the metallographic preparation of the testing samples was adequate, the images did not 

show a satisfactory distinction between the precipitates involved and the matrix, Figure 1. 

Consequently, scanning electron microscopy was used. 

The images were acquired using a Phillips FEG XL30 scanning electron microscope 

(USA). In the backscattering electron (BSE) operation mode it is possible to select the imaging 

contrast by atomic weight (Z-contrast) (Korcakova et al., 2001). However, the images in the SE 

(secondary electron) mode offered a superior contrast between the precipitates and the matrix, 

probably due to the enriched precipitates with higher atomic weight elements, such as Mo, Ti and 

Nb. 

Therefore, after adequate preparation of the test samples, the images were obtained by SEM 

in the SE mode on a 1000x scale and were then analyzed by the two computational solutions for 

comparison and also by two specialists in metallographic image analysis. 

To analyze the SEM images two computational solutions were used. One was an all-

purpose commercial image processing and analysis software, frequently used for microstructural 
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evaluation and the other was the new solution developed here, which was based on a multilayer 

neuronal network. 

In the image segmentation step, the commercial software uses the traditional global 

threshold technique. The numeric value for the threshold has to be defined by the user for the 

image to be analyzed and this consequently introduces the possibility of segmentation errors, 

mainly when the input image contains noise and other artifacts. Additionally, this manual 

procedure is highly subjective and with low reproducibility. The new solution overcomes such 

limitations, without imposing high computational complexities that are required by other image 

segmentation methods such as the watershed or level set methods, by using an artificial neuronal 

network. (For a review on image segmentation methods, see, for example, (Ma et al., 2010).) 

The backpropagation training algorithm is used for the training of the new solution 

network. In this training, the user just needs to define the phases to be segmented and quantified, 

by indicating a set of sample pixels for each phase from one or more representative images. After 

the training, the user only needs to place the images for the new solution and the analysis is fully 

automatic. As far as the authors know, the proposed solution is the first to evaluate the 

microstructure of Ni-Base alloy secondary phases from SEM images, which presents low 

computational complexity, high efficiency, considerable accuracy, reliability and reproducibility. 

 

2.1 Artificial Neuronal Networks 

A human brain is composed of around ten billion neurons and their organization is of high 

structural and functional complexity. These neuron units are densely interconnected, which 

results in a very complex architecture and with an intelligence level that has not yet been 

achieved by any system developed by man. Several numerical models have been developed to 
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simulate neurons and their interconnection, like artificial neuronal networks, in an attempt to 

reproduce human brain potentialities, especially its learning ability (Haykin, 2009). 

McCulloch and Pitts (McCulloch and Pitts, 1943) proposed the first mathematical neuron 

model. It had a binary output and several inputs, each one with a different excitatory or inhibitory 

gain. These gains are known as synaptic weights or simply as weights. 

Fundamentally, an artificial neuron, that is, a perceptron, is the mathematical model of a 

neuron cell and the basic unit that makes up an artificial neuronal network (ANN). Perceptron 

architecture consists of a set of inputs, each one associated to a synaptic weight and an activation 

function. All neurons of the input layer are fully interconnected to all neurons of a hidden layer 

that are fully interconnected to all neurons of the output layer, making up a network that is 

designated as a perceptron network. However, perceptron networks only achieve good 

performances when the modeled system is linearly separable (Haykin, 2009). Therefore, 

perceptron networks should not be used to solve complex classification problems involving non-

linearly separable problems, in which multilayer perceptron networks should be employed. In this 

case, the input signal values are correlated with the network outputs through the correct 

adjustment of the neuron synaptic weights until the desired solution is outputted. This adjustment 

process can be performed off-line and then the ANN is supervised, as the one used in the new 

solution, or can be performed in-runtime, in which case the ANN is not supervised (Haykin, 

2009). 

The backpropagation multilayer perceptron learning algorithm was developed in the early 

1970’s by several researchers (Singh and Rao, 2005). This extensive development resulted in a 

wide dissemination of perceptron networks, which also stimulated their industrial use. Currently, 

the backpropagation algorithm is the most common and most effective network, and it is easy to 
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build complex models for multilayered neuronal networks. Mainly due to its accuracy and high 

speed it has been widely used (Werbos, 1974). 

One of the most common backpropagation network topologies has an input layer, an 

output layer and, at least, one hidden layer. There is no theoretical limitation to the number of 

hidden layers, but typically there is just one, the most usual case, or two hidden layers (Alsmadi 

et al., 2009). 

 

2.1.1 Architecture of the neuronal network used 

As previously stated, the main aim of this new computational solution was to evaluate the 

microstructure of the secondary phases of Ni-base alloys from SEM images using a multilayer 

perception neuronal network in the image segmentation step. Thus, in this step, each pixel of the 

input image is classified according to the secondary phase to which it belongs. 

The new solution adopted multilayer perceptron architecture for the neuronal network and 

the backpropagation algorithm to train it. The network topology was defined as: an input layer 

composed of 3 neurons; one hidden layer composed of 7 neurons, this number was defined by 

adopting the heuristic rule proposed by Kolmogorov (Bodyanskiy et al., 2005), in which the 

number of neurons in the hidden layer is twice the number of neurons in the input layer plus 1 

(one); and finally, 3 neurons in the output layer that is related to the number of possible 

classifications. Figure 2 shows the 3/7/3 topology of the neuronal network used. The logistic 

function (Elliott and Better, 1993, 1993) was used as the activation function, which has three 

possible output values: 1 (one), 0 (zero) and -1 (one). 

The SEM images used were grayscale images. However, the neuronal network used had 3 

inputs, and so it could also be employed in the segmentation of color images. Thus, when applied 
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in color images, the red, green and blue components of each image pixel are presented to the 

corresponding input neuron of the network and when applied to grayscale images the value of 

each image pixel is presented to an input neuron of the network and the other two are unused. 

Moreover, as the network has 3 outputs and the logistic function was used as the activation 

function up to 27 classes could be classified. 

The process of training a neuronal backpropagation network consists of two steps: 

The first step is characterized by the forward direction. It first considers the neuronal network 

input values, and then it calculates the activations and outputs of all neurons in the hidden layer 

and in the output layer. Therefore, the flow of input values in the network starts in the input layer 

neurons, goes through the knots in the hidden layer, and finally, to the neurons in the output 

layer, where the network result is obtained. 

Thus, after the definition of the network input value, x , in this case corresponding to the 

image value of each pixel selected for the training, the activations of the neurons in the hidden 

layer are calculated as: 

0

( ) ( ) ( ),  with 1,..., ,
p

i ij j

j

u t w t x t i q


                  (1) 

where q  indicates the number of neurons in the hidden layer. Finally, the outputs that correspond 

to these neurons are calculated as: 

0

( ) ( ( )) ( ( ) ( )),
p

i i i i ij j

j

z t u t w t x t


                                                      (2) 

where 
i  corresponds to the activation function of the hidden layer. Here, the logistic function, 

also called sigmoid function, a continuous function that allows the gradual transition between 

states was adopted as the activation function and is given as: 
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1 exp[ ( )]
i i

i

u t
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                            (3) 

The next phase repeats the operations associated to equations (1) and (2) for the output 

layer neurons: 

0

( ) ( ) ( ),  with k 1,..., ,
q

k ki i

i

u t m t z t M


                 (4) 

where M is the number of neurons in the output layer. As would be expected, in these equations 

the outputs of the hidden layer neurons, ( )iz t , correspond to the inputs of the output layer 

neurons. Finally, the classification obtained from the neurons in the output layer is: 

0

( ) ( ( )) ( ( ) ( )),
q

k k k k ki i

i

y t u t m t z t


                                (5) 

where k
 is the activation function of the output layer that was considered to be the logistic 

function. 

In the second step of the neuronal backpropagation network training, the feedback 

information is transferred through the network in a reverse direction and calculates the local 

gradients and the adjustment of synaptic weights of all neurons in the hidden and output layers. 

However, in this step, if the neural network does not provide the output expected, the data flows 

through the network from the neurons in the output layer to the neurons in the hidden layer. 

 

After the calculation of activations and outputs performed in the previous step, the first 

phase in this second step calculates the local gradients of the output layer neurons: 

'( ) ( ) ( ( )), 1,..., ,
k k k

t e t u t k M                               (6) 
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where ( )
k

e t  corresponds to the error, ( )
k

e t , obtained between the desired output, ( )
k

d t , for the 

neuron k  and the associated output generated, ( )ko t , given as: 

( ) ( ) ( )
k k k

e t d t o t 
.
                                         (7) 

Considering once again the logistic function as the activation function of the neurons in 

the hidden and output layers, one obtains: 

( ( )
'( ( )) ( )[1 ( )].

( )

k k
k k k

k

d u t
u t y t y t

du t


                            (8) 

The second phase of this step calculates the local gradients of the hidden layer neurons: 

'

1

( ) ( ( )) ( ),  with 1,..., ,
n

i i i ki k

k

t u t m t i q


                             (9) 

where the '( ( )) iu t
 
is calculated as: 

( ( )
'( ( )) ( )[1 ( )].

( )

i i
i i i

i

d u t
u t y t y t

du t


                                        (10) 

Then, the third phase updates or adjusts the network synaptic weights. Thus, the weight 

updating, 
ijw , for the hidden layer is given by: 

( 1) ( ) ( ) ( ) ( ) ( ),
ij ij ij ij i j

w t w t w t w t t x t                             (11) 

where ( ) t  corresponds to the learning rate, considered as equal to 0.1 in the implementation of 

the new solution. For the output layer, the updating rule of synaptic weights, 
kim , is: 

( 1) ( ) ( ) ( ) ( ) ( ).ki ki ki ki k im t m t m t m t t z t                                                         (12) 

The criteria adopted to stop the training of the neuronal network used are an absolute error 

equal or inferior to 0.01 or a number of iterations equal to 2,500. 
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In the developed solution, the neuronal network is trained from a given set of SEM 

images representing the material understudy and the values of these image pixels that are 

representative of each material phase to be segmented by the network. According to the quality of 

the segmentation results, a new adjustment of the network synaptic weights may be necessary, 

that is, to obtain better results, the network is retrained by using more or better training images 

and/or image pixels. 

From a total set of 72 images acquired by SEM, 18 randomly chosen images were used to 

train the neuronal network. From each image 12 pixels were selected and averaged for each of the 

two phases to be segmented. The remaining 54 images were then analyzed by the new solution 

and by the commercial system and the results evaluated. 

Initially, the comparison of the two computational solutions was based on the quality of 

the segmentations obtained. Thus, various image segmentations were carried out in order to reach 

a 95% reliability level, considering statistical analyses like mean, standard deviation and relative 

error. Additionally, the times required to study each input image were analyzed as well as the 

total times to study a set of 20 images randomly chosen from the 54 test images. 

 

3 Experimental Results and Discussion 

First, the testing samples were metallographically prepared by mechanical sanding and 

polishing using diamond paste as abrasive. To reveal the microstructure of the Ni-base alloy 

welding metal, a chemical etching with an aqueous solution containing 10% of chromic acid was 

carried out. The etching clearly revealed the material matrix and secondary phases precipitated at 

the end of alloy solidification. Then, 72 SEM images were acquired with a 640 x 480 resolution. 
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The commercial system, adopted here just for purposes of comparison and validation, 

required the following steps: load the image; transform the original image into an 8-bit image; 

segment the converted image using the traditional threshold method, by manually selecting the 

threshold; quantify the segmented regions. On the other hand, the new computational solution, 

after the training of the neuronal network as described above, only required these steps: load the 

image; segment the original image and obtain the quantification results automatically. 

As mentioned in the previous section, the SEM images were obtained in the SE mode, 

giving a contrast level suitable for a reasonable differentiation between the material precipitates 

and phases. Therefore, the material samples, which had sufficient metallographic quality and the 

good SEM images acquired from them, could be successfully processed by both the 

computational solutions under evaluation. Figure 3a shows one of the images that was easily and 

successfully segmented by both computational solutions, as the precipitates and phases are 

satisfactory defined and distinguished. Both the segmentations carried out were adequate and 

similar, Figure 3b and 3c. 

However, occasionally, neither computational solution was able to identify some of the 

smaller or poorly defined precipitates with accuracy. Nevertheless, to improve the quality of the 

segmentation of the new solution was very simple and immediate: to obtain good segmentation 

results from these lower quality images, it was only necessary to perform a new network training 

to obtain a better adjustment of the synaptic weights. On the other hand, the attempt to improve 

the segmentation of the same images with the commercial solution revealed to be troublesome or 

even impossible. This is because the threshold method is based upon the histogram obtained from 

the input image and the threshold level to be used is manually selected, which is very 

complicated from low quality images. In addition, since it is a global segmentation method, it 
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frequently leads to improved results in certain areas but worse results in others. This problem is 

illustrated in Figure 4, considering the area detached from the original image, Figure 4a, which is 

magnified in Figure 4b, one can see that the image presents precipitates with a high glow and the 

matrix (center of the dendrite). These precipitates have a dark gray tone and also structures in 

light gray that correspond to the interdendritic region, which are not the precipitates of interest 

and can lead to erroneous results. Figure 4c shows that the segmentation by the commercial 

system was incorrect as the interdendritic region (matrix) is incorporated in the segmented 

precipitates. However, Figure 4d shows a correct segmentation of the same image by the new 

solution. 

Using the new solution with its neuronal network trained with other SEM images with 

good quality and adequate contrast between matrix and precipitates, the segmentation of such 

images were successfully carried out. Then, the proposed solution was employed on a new test 

image that presented a distinct contrast between matrix and precipitates in comparison with the 

images used in the network training, Figure 5a. Now as can be seen in Figure 5b, the new 

solution erroneously considered part of the matrix that presented a light gray level as precipitate 

particles, resulting in an unreliable segmentation. However, this problem was once more 

successfully solved by retraining the neuronal network from the image to be analyzed, Figure 5c. 

This shows the versatility of the new solution. It should be pointed out that the use of the 

commercial system on these images of reduced quality and high complexity never led to correct 

segmentations, as it always considered part of the matrix as precipitates. 

In the training phase of the neuronal network employed in the new solution, only the 

values of sample pixels of each material phase to be analyzed were considered. To evaluate the 

influence of the number of sample pixels used on the segmentation results in terms of accuracy 
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and speed, 20 images were randomly selected from the original set of 72 SEM images. From 

these 20 images, 14 images were randomly used in the training and the other 6 images were used 

in the evaluation. In the first evaluation only 6 training pixels of the precipitates and matrix 

regions were selected and the solution failed in the segmentation of 3 test images. However, after 

a correct adjustment of the network synaptic weights through the selection of new and more 

adequate training pixels, the solution could accurately segment all test images. The total time for 

the analysis of the 6 test images was 168 seconds. In the second evaluation, 9 pixels of each 

region understudy were used instead and all segmentations were adequate for all 6 testing images 

and the total time was reduced to 140 seconds. In the third evaluation, 12 pixels of each region 

understudy were used and the same segmentations were obtained with a reduction in the required 

time to 112 seconds. Finally, in the fourth and last evaluation, 15 pixels of each phase to be 

segmented were used, and the same segmentation results were obtained in a total time of 109 

seconds. Thus, based on these evaluations, for further studies, 12 training pixels for each material 

phase were used. This option presented accurate results and low computational cost, Figure 6. 

In some images acquired by SEM, it was noted that the associated samples were 

chemically attacked more than necessary or that the glow and contrast used were not adequate. 

As an example, Figure 7a shows one of these images in which the material was excessively 

attacked. Assessing the original image (Figure 7a), it is possible to observe glowing regions along 

the borders of the interdendritic regions. This increased glow brings the tone of this region closer 

to the precipitate tone. Figure 7b shows the pixels considered in the training phase of the 

neuronal network employed in the new solution to segment this image. Figure 7c, shows the 

resultant segmented image that shows three distinct regions: dendrite core in green, interdendritic 

region in yellow and particle precipitates in blue. From these images, one can conclude that when 
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the image pixels corresponding to the precipitates are analyzed by the neuronal network, it 

interprets them as being secondary phases due to the similarities in terms of tone between 

precipitates and matrix. As a result, the image is wrongly segmented, Figure 7c. This figure 

shows the presence of segmented dots in blue along the interface between the green region (core) 

and the yellow region (interdendritic) and blue dots also along the center of the yellow region. In 

fact, there is excessive segmentation of the glowing regions of the matrix, causing an erroneous 

increase in the quantity of precipitates. Obviously, the best solution in these cases is to repeat the 

metallographic preparation of the sample by submitting them to a new chemical attack with lower 

exposure times. Accordingly, Figure 8a shows the SEM image of a reprocessed sample, which 

was successfully segmented by the new solution. This image has three regions that are clearly 

distinct: dendrite center in dark gray, interdendritic region in light gray and glowing dots that 

constitute the secondary phases precipitated during the material solidification. As shown by 

Figure 8b, this image was successfully segmented by the new solution. 

To illustrate another usual problem related to the incorrect adjustment of contrast and 

glow during the acquisition of the SEM images, which were effectively overcome by the 

proposed solution. Figure 9a shows an image that was only partially segmented successfully by 

the proposed solution, previously trained using images very distinct from this one. However, after 

retraining the neuronal network using adequate sample pixels, the images were correctly 

segmented, Figure 9b. 

At this time, it is important to emphasize that in the cases of the images shown in Figures 

8 and 9, the commercial system was not applied, since the threshold level used in the 

segmentation is manually defined in function of the input image, making the results totally 

dependent on the operator’s subjectivity. 
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The second part of the comparison between the two computational solutions was based on 

their efficiency in terms of the time required to fully analysis 20 images randomly selected. Table 

2 shows the times needed to carry out the segmentation and the subsequent quantification of each 

one of these 20 images. This table shows that the average time to perform a quantification using 

the new solution was approximately 9 seconds, while the commercial system had an average time 

of around 20 seconds. This is almost a 55% reduction in the average time required to analyze a 

SEM image by the proposed solution when compared to the commercial system. 

The commercial solution, besides being more time consuming, requires higher user 

intervention. The user must be experienced and he/she needs to define the threshold level for 

each input image. This manual definition of the threshold value is tiring and frequently leads to 

errors. The new computational solution, on the other hand, significantly reduces the analytic time. 

Furthermore, the new solution minimizes user intervention, as it always segments images that are 

compatible to the ones used in the network training, correctly and automatically. 

After recording the required time to analyze each image by both computational solutions, 

the total time required to segment and subsequently quantify a batch of 20 images of the same 

type was taken. For the new solution, about 5 minutes and 20 seconds were required, including 

the time needed to train the neuronal network. The commercial software required approximately 

8 minutes and 50 seconds to do the same work. Thus, the new solution presents a reduction of 

40% in the required time when compared to the commercial system. 

Another factor that was analyzed and compared was the influence of user experience in 

handling the two computational solutions. The total time that three users, specialists in 

metallographic analysis and without previous contact with the solutions under evaluation, needed 

to analyze a group of 20 test images was recorded, Figure 10. This figure shows that the required 
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time to use the commercial software varied significantly, as the segmentation method employed 

strongly depends on user skill and attention. However, the same variation was lower when the 

new solution was considered, as the user influence is minimal. 

Afterwards the new solution showed that with a set of 54 test images, it could achieve a 

reliability of 95%. While the commercial software only achieved a reliability of 34% with the 

same images. One can conclude that the commercial software needs around 350 test images to 

achieve a statistical reliability of 95%, which would result in a considerable increase of the 

analytic time required. This large number of test images would also impose some constraints, 

such as a potential tiring effect on the user due to the long analytic time. Figure 11 shows the 

average values as well as the standard deviations resulting from this experiment. From this 

Figure, a significant difference between the standard deviations from the new solution and the 

commercial software is clearly seen. This experiment once again emphasizes the two advantages 

of the new solution: higher efficiency and reliability. 

Finally, given that there are no works in the current literature able to assist the evaluation of 

the proposed solution in terms of reliability, due to the specificity of the welding conditions that 

modifies the involved phase characteristics, including its quantity and geometry, 9 test images 

were randomly selected from the test image set and analyzed by the new solution and also by 

visual inspection by two specialists on microstructural analysis. In Table 3, the statistical analysis 

of the results obtained is presented. From this Table, one can conclude that the results obtained 

are very similar, proving the accuracy of the new solution. Only for illustrative purposes, Figure 

12 shows one of the 9 test images, the resultant image of the visual inspection performed by one 

of the specialists (it should be noted that the results between the two specialists were very 

similar) and the resulting image by the new solution. From the results obtained, one can confirm 
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that the quantification made by the new solution is of superior quality as it includes small 

precipitate particles that were not successfully visually detected by the specialists. 

To conclude, from the experimental evaluations performed, the new computational 

solution, which is based on an artificial neuronal network and the first custom developed system 

to accomplish the automatic evaluation of secondary phases of Ni-base alloys from SEM images, 

revealed low computational complexity, high efficiency, considerably accuracy and stableness. 

Its main disadvantage is the required training of the neuronal network. However, this step only 

needs to be carried out once for the same sort of SEM images. 

 

4 Conclusions 

Based on the quantification results of secondary phases in Ni-based alloys from SEM 

images using two computational solutions, one commercial software commonly used in this 

domain that is based on the traditional threshold method and a new solution based on a neuronal 

network, it was possible to conclude that the new solution is more efficient and reliable and less 

effected by image noise and other disturbances and also less dependent on user subjectivity. 

Additionally, its utilization, even by less experienced users, revealed to be easy and fast, making 

the analysis less tiring and therefore less likelihood of introducing errors. 

With the new solution, it was possible to achieve a statistical reliability level of 95% from 

the 54 SEM test images, while the commercial system only presented 34%. In addition, the new 

solution is nearly 50% faster than the commercial software. These advantages also confirm that 

the new solution is a suitable option to be used in the characterization of secondary phases 

formed in the dissimilar welds of Ni-based alloys. 
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TABLE CAPTIONS 

Table 1. Chemical composition of weld metal. 

Table 2. Results obtained from the two solutions under evaluation for the quantification of 20 

SEM test images. 

Table 3. Statistical analysis of the quantification of precipitate particles from SEM images by the 

new solution and by the visual inspection of two specialists. 
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FIGURE CAPTIONS 

Figure 1. Image acquired by light microscopy. 

Figure 2. Topology of the neuronal network used in the new solution. 

Figure 3. a) Original SEM image, b) image segmented by the new solution and c) image 

segmented by the commercial software. 

Figure 4. Comparison between the two computational solutions under evaluation: a) Original 

SEM image, b) Magnification of the detail indicated in a), c) image segmented by the commercial 

solution and d) image segmented by the new solution. 

Figure 5. Illustration of effect of the neuronal network training: a) Image obtained by SEM; b) 

Segmentation performed with an initially training of the neuronal network and c) Segmentation 

performed after the retraining of the neuronal network. 

Figure 6. Analysis on the influence of the number of pixels per phase used in the training of the 

neuronal network in the required segmentation time. 

Figure 7. a) Image obtained by SEM with excessive chemical etching, b) pixels used in the 

training of the neuronal network and c) segmentation obtained using the new solution. 

Figure 8. a) Image obtained by SEM with an adequate level of chemical etching and b) 

Segmentation obtained using the new solution. 

Figure 9. a) Image obtained by SEM used in the first training of the neuronal network and b) 

Segmentation obtained using the new solution. 

Figure 10. Comparison on the performance of three users in the segmentation of 20 SEM images 

using the new solution and the commercial solution. 

Figure 11. Statistical analysis on results obtained by the computational solutions in the analysis 

of 54 SEM test images. 
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Figure 12. a) An original SEM image with precipitate particles, b) segmentation result by visual 

inspection by one specialist and c) the segmentation result by the new solution. 
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TABLES 

Table 1 

 

Chemical composition (% weight) 

Ni Cr Mo Nb Fe Si Al Ti 

57.1 20.1 8.2 3.0 10.9 0.22 0.20 0.28 
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Table 2 

Image # 

New Solution 

(Neuronal network) 

Commercial System 

(Threshold method) 

Time [s] Area [%] Time [s] Area [%] 

1 10 1.56 22 1.27 

2 9 1.54 21 1.10 

3 9 1.80 25 1.70 

4 10 2.15 20 1.97 

5 9 2.02 18 2.30 

6 10 1.84 23 2.00 

7 10 2.10 24 2.20 

8 10 2.84 19 2.50 

9 10 2.44 22 2.30 

10 9 1.84 23 2.12 

11 9 4.21 20 3.80 

12 8 2.26 18 3.30 

13 8 2.66 17 3.20 

14 8 2.63 18 3.40 

15 8 3.40 22 4.00 

16 9 3.37 15 3.50 

17 9 2.88 17 3.30 

18 9 1.53 25 1.50 

19 9 2.16 19 2.60 

20 9 2.34 16 2.50 

Average 9.1 2.74 20.2 2.53 

Standard 

deviation 
0.7 0.76 2.9 0.84 
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Table 3 

Image # 

New 

Solution 

[%] 

Specialist 1 

[%] 

Specialist 2

[%] 

Average 

Specialists 

[%] 

Difference 

Specialists/New 

Solution [%] 

1 1.80 1.75 1.78 1.77 0.03 

2 1.84 1.81 1.83 1.82 0.02 

3 4.21 4.20 4.21 4.21 0.00 

4 2.84 2.83 2.82 2.83 0.01 

5 2.88 2.87 2.85 2.86 0.02 

6 2.16 2.01 2.12 2.07 0.10 

7 2.34 2.22 2.31 2.27 0.07 

8 3.40 3.25 3.34 3.30 0.11 

9 1.53 1.47 1.50 1.49 0.05 

Average 2.55 2.49 2.53 2.51 0.38 

Standard 

Deviation 
0.86 0.87 0.87 0.87 0.04 

 

 

 

 

 

 

 


