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Abstract 

 The machine learning approaches are applied in the dynamical simulation of 

open quantum systems. The long short-term memory recurrent neural network (LSTM-

RNN) models are used to simulate the long-time quantum dynamics, which are built 

based on the key information of the short-time evolution. We employ various 

hyperparameter optimization methods, including the simulated annealing, Bayesian 

optimization with tree-structured parzen estimator and random search, to achieve the 

automatic construction and adjustment of the LSTM-RNN models. The implementation 

details of three hyperparameter optimization methods are examined, and among them 

the simulated annealing approach is strongly recommended due to its excellent 

performance. The uncertainties of the machine learning models are comprehensively 

analyzed by the combination of bootstrap sampling and Monte-Carlo dropout 

approaches, which give the prediction confidence of the LSTM-RNN models in the 

simulation of the open quantum dynamics. This work builds an effective machine 

learning approach to simulate the dynamics evolution of open quantum systems. In 

addition, the current study provides an efficient protocol to build the optimal neural 

networks and to estimate the trustiness of the machine learning models.  
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I. Introduction 

With the rapid development of computer artificial intelligence, machine 

learning (ML) plays more and more important roles in theoretical chemistry, including 

the construction of the molecular Hamiltonian,1-10 the analysis of trajectory-based 

molecular dynamics evolution,11-15 the prediction of molecular properties and chemical 

reactions,16-20 the design of novel functional materials.21-22 In addition to these, 

considerable efforts were made to employ the ML approach to simulate dynamics 

evolutions recently.23-35  

The quantum evolution of the nonadiabatic dynamics of high-dimensional 

systems is always a key research object in theoretical simulations,36-39 due to their 

important roles in chemistry, physics and biology. The system-plus-bath model is 

widely used to treat the dynamics of complex systems,36 in which the reaction center is 

treated as the reduced system and its dynamics is studied in detail, while a large number 

of surrounding degrees of freedom are treated as environment. The theoretical 

description of the dissipative dynamics of open quantum systems has been received 

considerable attentions over several decades.37-58 Although many theoretical 

approaches, ranging from full quantum37, 43-50, 59 to semiclassical and mixed-quantum-

classical dynamics approaches,38-39, 51-54, 58, 60 were developed to simulate the reduced 

dynamics of open systems, all of them may perform well in some situations but suffer 

from some deficiencies in other cases.51, 56-57, 61-62 For instance, numerically exact 

dynamics approaches, such as the hierarchical equations of motion (HEOM)37, 40-42 and 

the hybrid stochastic-deterministic HEOM,63 the multiconfigurational time-dependent 

Hartree (MCTDH),43-46, 59 tensor-network decomposition,47-49, 64-67 and so on,50 may 

give the correct  description of the open quantum dynamics, while the employment of 
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them to solve realistic problems often suffers from either numerical convergence 

problems or high computational costs. 

In these years, several theoretical efforts tried to employ the ML approaches to 

simulate the quantum dynamics of reduced systems.23-34 Some works tried to build a 

ML model based on the short-time dynamics and then use it to predict the long-time 

evolution. These treatments are highly correlated to the transfer tensor method 

originally proposed by Gerrillo and Cao.68 In the transfer tensor approach, a linear 

dynamics map was built from the historical short-time dynamics. When all critical 

dynamical information is compressed into the transfer tensor, the long-time reduced 

dynamics can effectively be simulated by such transfer tensor under the assumption of 

the time-translational invariance. This interesting idea aroused the further research 

attentions. For example, it is possible to combine the transfer tensor method with the 

mixed quantum-classical Liouville dynamics, as shown by Geva, Cao and co-

workers.69 The transfer tensor formulism is a linear map model, while it is possible to 

build a nonlinear dynamical map model. Along this idea, different ML approaches, such 

as recurrent neural networks (RNN),25-26, 28, 32-33, 70-71 convolutional neural networks 

(CNN)28, 30 and kernel ridge regression (KRR)27  were used to build such nonlinear map 

models. For instance, Zhao and co-workers25-26 took the RNN70 and long short-term 

memory recurrent neural networks (LSTM-RNN)72 in the simulation of the evolution 

of open quantum systems. And they also combined the CNN and the fully-connected 

neural networks (FCNN) to predict the non-adiabatic dynamics of a paradigmatic model 

with the Landau-Zenner transition.29 Lin et. al23 tried to access the confidence interval 

of the forecasting long-term dynamics in the LSTM-RNN simulation by addressing the 

prediction uncertainty with the bootstrap resampling technology.73-76 Wu et. al28 

proposed the hybrid CNN-LSTM framework to achieve the higher prediction accuracy 
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of the long-term quantum dynamics. In similar but different approaches by Rodríguez30 

and Ullah,27 a group of system-plus-bath models with different parameters were taken 

and their exact dynamics results are collected. After all dynamical evolutions were 

broken into many small pieces of time durations, a unified ML model (CNN by 

Rodríguez30 and KRR by Ullah27) was built to simulate the long-term quantum 

evolution of other similar reduced models, when their early-time dynamics are known. 

Ullah et. al77 employed the CNN model in the simulation of the exciton dynamics in 

the light-harvesting complexes and confirmed the excellent performance of this 

artificial-intelligence based open quantum dynamics approach. Banchi et. al24 proposed 

to employ the RNNs with Gated Recurrent Unit (GRU)78 to simulate the non-

Markovian quantum processes, starting from various initial conditions. Secor et. al79 

recently demonstrated that the quantum propagator can be represented by the FCNN. 

Choi et. al showed that the unsupervised ML models can be used to represent the major 

features in quantum evolutions of qubit systems.71 

No matter which ML models were used to treat the quantum dynamics of open 

quantum systems, some practical implement problems must be concerned. One major 

question is how to set up the proper neural network (NN) structures in the training 

process. For examples, how many layers should be chosen and how many neurons 

should be given for each layer. These parameters named as the “hyperparameters” 

determine the accuracy of the NN models.80-81 Normally, they are given before the 

training step, and the real parameters (such as weight or bias at each neuron) are 

determined by the regression. Only when several regression processes with different 

hyperparameters are performed, the suitable hyperparameter set can be determined 

according to the model performance. It is not trivial to obtain the reasonable 

hyperparameter set, particularly when many hyperparameters must be adjusted in the 



6 

 

deep learning. Thus, the automatic and efficient hyperparameter optimization 

approaches are highly useful. The second critical issue in the application of the NN 

model is relevant to the proper definition of the model uncertainty. Take the prediction 

of the dynamical evolution as an example. When the further dynamics is already known, 

it is easy to use the long-time dynamics data to benchmark the prediction results of ML 

models. However, in reality such long-time dynamical evolution is completely missing 

before the ML forecast, and we have no data of future dynamics to clarify the reliability 

of the ML models. In such case, if the model uncertainty can be derived formally in 

mathematics view, we may get the primary assessment on the confidence of the ML 

model. This gives us the important rule to judge the reliability of the ML model in long-

time dynamics simulation of open quantum system. Therefore, we must find the proper 

way to estimate the model uncertainty.  

In the current work, we tried to address the above two essential issues in details. 

We tried to employ the LSTM-RNN approach70, 72 to learn the short-time quantum 

dynamics evolution and used the trained ML models to predict the long-time quantum 

evolution. The exact quantum dynamics was obtained by using the time-dependent 

tensor-train approach.47-49, 64-67  

In the construction of the LSTM-RNN models, we tried to use three automatic 

approaches to optimize the hyperparameters, including simulated annealing (SA),82-84 

Bayesian optimization with tree-structured parzen estimator (BO-TPE)85-87 and random 

search (RS) methods.87-89 These methods allow us to directly obtain the optimal 

hyperparameters including the NN topology. These three approaches were widely used 

in the ML field85, 88, 90-94 and some of them were already applied in quantum chemistry. 

For instance, Westermayr et. al 95 employed the RS to optimize the hyperparameters in 

the construction of the deep learning NNs that were used to simulate the nonadiabatic 
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excited-state molecular dynamics. Deng et. al96 proposed that the Bayesian 

optimization is an effective approach in the solution of inverse problems in time-

dependent quantum dynamics. Except them, other algorithms are also available.97-98 To 

address the ML model uncertainty, two popular Monte-Carlo (MC) approaches, namely 

bootstrap resampling73-76 and MC dropout,99-102 were chosen to evaluate the confidence 

interval of model prediction. Similar approaches were occasionally employed in 

theoretical chemistry community. For example, Peterson et. al99 implemented the 

bootstrap resampling approach in the uncertainty analysis of the NN-based potential 

energy surfaces. Wang et. al103 used the deep NN model with the MC dropout approach 

to analyze the power degradation tendency in the proton-exchange-membrane fuel cell, 

along with the prediction interval.  

The present work provides us a practical step-by-step protocol, which allows us 

to build the reasonable ML models in an automatic manner, to propagate the quantum 

dynamics evolution efficiently and to access its uncertainty reliably. This paves a rather 

clear way to implement the ML model to treat the quantum evolution. In addition, we 

provide very detailed discussions on how to perform the automatic hyperparameters 

optimization and evaluate the ML model uncertainty. Since these two issues must be 

considered in realistic applications, the current work is very helpful to the future 

research works that use supervised ML models to study other physical-chemical 

problems.   

                                                                                                                                                                                          

II. Methods 

2.1. The Hamiltonian. 
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In current work, we considered a system-plus-bath model, in which the system 

part is composed of two local-excited (LE) electronic states and the bath part includes 

many vibrational modes, i.e.  

                                                            .S B SBH H H H                                                                 (1) 

The system part is written as  

                                                    
2

1

,S k kk k k kl k

k k l

H V V   
 

                                                (2) 

where kkV  represents the energy of the excited state | k  and 
klV  represents the 

electronic coupling term. Here we assume that two LE electronic states couple with 

their own individual bath modes. The bath Hamiltonian is defined as  

                                                          
2
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1
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                                                   (3) 

The bilinear system-bath interaction is considered as 

                                                          
2

1
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bN

SB k kj kj k
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H Q  


                                                    (4) 

In Eq.3 and 4, 𝑁𝑏 represents the total number of bath modes coupled with the single LE 

state. Three parameters, 
kj , 

kjQ , and 
kjP , are the corresponding frequency, position 

and momentum of each bath mode, respectively. The kj  characterizes electron-phonon 

coupling strength. The subscripts k  and j  refer to the indices of the electronic state 

and the bath mode, respectively. The bath is characterized by the Debye-type spectral 

density: 

                                                                      
2 2

2
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c

J



 




                                                          (5) 
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Where 
c  and   refer to the characteristic frequency and the reorganization energy, 

respectively. The spectral density is represented by a series of discretized bath modes: 

                                                         2

1

1
( ) ( ).

2

N

k ki ki

i

J      


                                                  (6) 

The coupling strength of each mode ki  is evaluated by the following equation: 

                                                               1/22
( ( ) ) ,ki k kiJ  


                                                      (7) 

when the sampling interval   is given.  

The electronic ground state is described by a multi-dimensional harmonic 

potential with the minimum at 0kjQ  . The initial condition in dynamics is defined as 

the vertical excitation of the lowest vibrational level of the electronic ground state to 

one LE state.  

In current work, we considered symmetric and asymmetric site-exciton models 

with different parameters, and all detailed information are given in Table S1 in 

Supporting Information (SI). 

 

2.2. Tensor-Train. 

In the tensor-train framework, a quantum state is reformulated as a matrix-

product state (MPS)49: 

                                          
 

1

1
i m

i

s ss

i m

s

s s s A A A ,                            (8) 

where  is  represents m  local basis. is
A is a site-dependent rank-3 tensor with 

dimensions 1i i is     ( 0 1m   ). Based on the gauge transformation, the above 
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MPS can be reconstructed as multiform, particularly, the left (right) canonical MPS in 

terms of the left (right) orthonormal tensor component isL  ( is
R ), or the mixed-

canonical MPS: 
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where isM  represents the corresponding tensor on the active site i;  
1

1: 1

, i

i

L  


  and 

 1:

, i

i m

R 


  are effective states generated from the left and right orthonormal basis, 

respectively. 

Similarly, an operator is also redefined in terms of the matrix product operator 

(MPO) within m local basis: 

               
     

1 1
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    W W W ,           (10) 

where 
,i is s

W  is a site-dependent rank-4 tensor with dimensions 1i i i is s 
    

( 0 1m   ). Several avenues are proposed to construct the MPO.49, 104 In this work, 

the site-exciton model Hamiltonian was rewritten with the second quantization, as the 

occupation number representation is convenient for the MPO construction.64-67, 105  

Based on the defined MPS and MPO, several algorithms were developed to 

solve the time-dependent Schrödinger equation. In this work, the time-dependent 

variational principle (TDVP) is used to perform the dynamics evolution.49, 106-109 The 

primary idea behind the TDVP is to constrain the time propagation of a quantum state 

to a specific MPS manifold.106, 108 It can be understood as the projection of the evolution 

vector onto the tangent space defined by a given MPS manifold: 
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   ,                                     (11) 

where  t  denotes the total wave function, 
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ˆ
T t

P


 is the projector on the tangent 

space, which can be decomposed into two terms using the left projector ˆ L

iP  and right 

projector ˆ R
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In practice, the above equation of motion can be solved approximately by solving m  

forward-evolving equations and ( 1)m  backward-evolving equations individually and 

sequentially: 
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     .                                     (16) 

The reduced density matrix for the electronic part is given by the following equation 

                                                ij i jt Tr t t     ,                                        (17) 

where the diagonal (i = j) and off-diagonal (i ≠ j) elements represent the electronic 

populations and coherences, respectively. 

For the initial condition, the lowest vibrational level of the ground state 

minimum is vertically placed to one LE state. The basis set for the bath mode is 

determined by the convergence test of the TDVP dynamics propagation. The cutoff 
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value is set as 10-13 for single value decomposition in the MPS and MPO constructions. 

The whole dynamics propagation lasts for 1.0 ps with the time step of 0.5 fs. 

 

2.3. LSTM-RNN. 

As shown in Figure 1(a), the RNN belongs to a class of directional NNs, which 

receives the outputs of the previous time step and uses them as inputs of the current 

step. By taking the temporal features into account, the RNN can be used in the 

prediction of the future evolution. Therefore, the RNNs were widely used in various 

time-series analysis tasks,70, 110-113 such as speech recognition and natural language 

processing.  

The essential part of the RNN is the recurrent layer, which corresponds to the 

function  

                                                            
( ) ( ) ( 1) ( )[ , ] ( , ),t t t ty h f h x                                                  (18)  

where 
( )tx  is the input at the current time step and 

( 1)th 
 is the output given by the 

previous time step.  The recurrent layer gives the output of 
( )ty  and 

( )th , and they may 

be the same vector or not.  

The LSTM cell is normally used in the recurrent layer, because it largely 

alleviates gradient vanishing and exploding problems78 in the RNN training procedure. 

The topology of LSTM cell is given in Figure 1(b), which includes some control gates.70, 

78 

 At time step 𝑡, the LSTM cell receives three vectors, i.e. 
( )tx  (the input vector), 

( 1)th 
 (the short-term state vector) and the 

( 1)tc 
 (the long-term state vector). All three 

vectors pass three gates controlled by the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function that is represented as  . 
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(1) Gate 1: the input gate 
( )ti  is defined as  

                                                  ( ) ( ) ( 1)( ),T T

t xi t hi t ii W x W h b                                                   (19) 

which indicates that how much information of the current inputs 
( )tx  and the memory 

information 
( 1)th 

 provided by the previous step should be accepted in the current 

LSTM cell. Here and the same as below, the tensors 𝑊 and 𝑏 are the weight and bias 

parameters of the LSTM cell. We used different subscripts to label their corresponding 

gates. 

(2) Gate 2: the forget gate 
( )tf  is given as  

                                        ( ) ( ) ( 1)( ),T T

t xf t hf t ff W x W h b                                                       (20) 

which determines how much input information should be remained. 

(3) Gate 3: the output gate 
( )to  is defined as  

                                               ( ) ( ) ( 1)( ),T T

t xo t ho t oo W x W h b                                                        (21) 

which decides which information should be saved and passed to the output. 

At the same time, an intermediate vector 
( )tg  is generated via a 𝑡𝑎𝑛ℎ activation 

function as  

                                 ( ) ( ) ( 1)( ),T T

t xg t hg t gg tanh W x W h b                                                 (22) 

which provides the additional controls of the information transfer. Next, the long-term 

state vector at the current time step ( )tc  is determined by the output of the forget gate 
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( )tf , the long-term state vector from the previous step 
( 1)tc 

, the input gate 
( )ti  and the 

intermediate vector 
( )tg , i.e. 

                                                    
( ) ( ) ( 1) ( ) ( ).t t t t tc f c i g                                                            (23) 

Finally, the output of the LSTM cell is given as  

                                                   
( ) ( ) ( ) ( )( ),t t t ty h o tanh c                                                         (24) 

which is the product between the output gate 
( )to  and the 𝑡𝑎𝑛ℎ function of the long-

term state vector 
( )tc .  

The LSTM cell realizes the effective transmission of time series information by 

above multi-gating mechanisms. It is straightforward to simply stack several LSTM 

layers to define a multi-layer LSTM-RNN. In the current work, there were several 

stacked LSTM hidden layers and one dense layer. First, many small time-series 

fragment sets were passed into the LSTM-RNN model though the input layer. Second, 

the time-correlated information was analyzed and recorded by the LSTM hidden layers. 

Finally, the dense layer was employed to extract the information map and to give the 

result via the output layer.  
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Figure 1. (a) The simple RNN model; (b) The LSTM cell. 

 

2.4 Hyperparameter Optimization.  

In fact, all parameters in a NN model are divided into two categories. Some 

parameters that can be obtained directly by the model regression, such as the weight 

and bias of each neuron, are called regression parameters. The other group of 

parameters must be defined before the training process, instead of being obtained 

directly from the regression. In the current work, the number of NN hidden layers, the 

number of neurons in each layer and the length of the small-piece time-series dataset 

belong to this category. They are called as hyperparameters80-81 in the model 

construction. Therefore, how to select the best hyperparameter sets to achieve the high 

model accuracy is rather critical in the NN construction. 

In the hyperparameter optimization, the most straightforward method is the so-

called grid search approach, 114 i.e. taking all possible hyperparameter combinations to 

define different NN structures, performing the training tasks and finding an optimal NN 

structure based on the model performance. However, when the network topology 

becomes complicated, such grid search is not efficient due to high computational cost, 

as a huge number of hyperparameter combinations must be considered. Thus, the 
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automatic and efficient hyperparameter optimization approaches are highly useful. 

Here we used three hyperparameter optimization methods given as below. 

 

2.4.1 Random Search. 

In the RS approach,87-89, 115 a hyperparameter set is randomly sampled within 

the user-defined range of the searching space and the chosen one is used in the NN 

model training. This procedure is repeated until the loss function below certain 

threshold. 

   

2.4.2 Bayesian Optimization with Tree-Structured Parzen Estimator. 

The Bayesian optimization method is widely used in the hyperparameter 

optimization in the NN construction.85-87, 116-117 As an iterative algorithm, this approach 

determines the next hyperparameter set according to historical results.  

Let us assume that we wish to optimize a scalar objective function ( )f x , in 

which x  represents the hyperparameter in the current work. Our purpose is to find an 

optimal solution of x , which gives the minimum of the loss function of ( )f x . With 

different x  values, i.e. ( )ix , all possible solutions of ( )if x  should form a distribution. 

In the Bayesian optimization process, a surrogate model is defined, which represents 

the probability distribution of the objective function ( )f x . Several algorithms were 

proposed to define the surrogate model in the optimization of the objective function 

( )f x , which include Gaussian processes,86, 118 TPE86 and so on.   

In the current work, the TPE is employed. Since more mathematic information 

and implementation details were comprehensively discussed in previous works,86 we 

only outline the main idea of the BO-TPE approach here. Within the BO-TPE 

framework, the conditional probability model is built by applying Bayesian rules. 
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Starting from different hyperparameters ix , the training procedure generates ( )if x . 

After a set of { , ( )}i ix f x are collected, the BO-TPE optimization divides these 

observation results into two parts, namely good results and poor results according to a 

pre-defined percentile threshold 
*y . For each part, its own individual density function 

[ ( ) ( )]l x or g x   is determined by the Parzen window as 

                                                       

*

*

( ),
( | )

( ),

l x if y y
p x y

g x if y y

   
 

  
，                                                  (25) 

where 𝑦 corresponds to the ( )f x . It means that the hyperparameter space is divided to 

two subspaces and their dividing line is determined by the threshold 
*y . This 

probability function serves as the surrogate model. Next a new point is sampled by 

maximizing the so-called acquisition function i.e. expected improvement (EI)119: 

                                                         *

1( )
( ) ( (1 ))

( )y

g x
EI x

l x
     ，                                            (26) 

with  

                                              *( )  and ( ) ( ) (1 ) ( ).p y y p x l x g x                                (27) 

The maximization of the acquisition function gives a new point of x  and the inclusion 

of this point in principle should increase the ratio between the good distribution and the 

poor distribution. Next, the iterative optimization is performed, in which the algorithm 

returns the new x 1( )ix   with the greatest EI value. Then, the above TPE model is 

modified after the calculation of the objective function 1( )if x  . After repeating the 

above step many times, the BO-TPE optimization method may find the optimal 

hyperparameter set.  

 

2.4.3 Simulated Annealing. 
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As a popular hyperparameter optimization algorithm, the SA82-84 creates a 

trajectory (i.e. 
0 1[ , , , ]kx x x   ) by the Metropolis MC strategy to minimize the  target loss 

function ( )f x . First, the initial state 0x  is chosen randomly in the pre-defined 

searching space. Second, at each step t , the random perturbation is applied to the 

current tx , and this generates a new state 
1tx 
. Next whether the 

1tx 
 is accepted or not 

is determined by the probability  

                                 
1

1

1

( ) ( )
exp( ) ( ) ( ) 0

,

1 ( ) ( ) 0

t t
t t

t t

f x f x
if f x f x

p T

if f x f x







    

 
    

                     (28) 

with the parameter 0T   called “temperature”. The mathematic insight of this 

probability function can be understood as below. When the new state 
1tx 

 shows the 

lower value of ( )f x , this state is accepted. If the new state shows the higher value of 

( )f x , there is some probability to accept it. By following the above procedure, the SA 

optimization may give an optimal state x .  

 

2.5 ML Prediction Uncertainty.  

The estimation of the uncertainty is un-avoidable in all ML models. The 

uncertainty of the ML model is caused by different reasons.120-121 

 Model Misspecification. The training and prediction data may follow the different 

distribution patterns. In this case, the ML model may not describe the feature space 

spanned by the prediction dataset well.  

 Model Uncertainty. Many NN models may be the available solutions for the same 

regression dataset. Thus, these models themselves form a distribution, giving the 
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model uncertainty. More precisely, the model uncertainty mainly includes two 

important key points in the NN models. The first is that different NN models may 

be given, i.e. the regression may result in several NNs with different structures. 

The second is that different parameter sets may be obtained for the NN models with 

the same structure.   

All of these uncertainties are normally entangled in realistic situations. Here the 

origins of these uncertainties themselves give us the key idea on how to estimate them. 

By invoking the MC treatment, we may generate many different training datasets via 

resampling from the whole training dataset, train many different NN models and even 

retrain the NN model several times to get different parameter sets. According to these 

concepts, two powerful approaches are normally employed to estimate the confidence 

interval of the ML models, which are bootstrap resampling and MC dropout approaches.  

 

2.6 Bootstrap Resampling. 

Starting from the training dataset, we may create different data distributions if 

some data points are removed. The bootstrap algorithm provides a MC description on 

the fact that different distributions may be formed from the known training dataset. In 

the bootstrap approach,73-76 many training datasets are generated and each of them has 

the same size as the original training dataset. Here, each generated dataset is constructed 

by random picking an element from the original training set, and thus the same element 

may appear several times in each new dataset. The idea of the bootstrap resampling 

procedure is explained in Figure 2. Given an original training dataset shown in Figure 

2(a), the bootstrap resampling approach may generate many new sets as shown in 

Figure 2(b). 
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In implementation, we first build a primary LSTM-RNN model from the 

preliminary training step. Then the topology and connectivity of the LSTM-RNN model 

is fixed. Starting from it, several independent LSTM-RNN models with the fixed 

topology is re-trained based on each resampled dataset and all parameters are re-fitted. 

Clearly, the bootstrap approach naturally includes different distribution patterns 

spanned by the training data, giving the MC description on the model misspecification. 

Since all LSTM-RNN models display different parameters, the bootstrap approach also 

takes the parameter uncertainty into account. When several LSTM-RNN structures are 

considered in the bootstrap, we can also access the ML model distribution partially.  

 

 

Figure 2. The bootstrap resampling process: performing the random data resampling from the 

original training dataset (a) to generate many new training datasets (b). Here each new training 

dataset has the same data size and contains duplicated elements. Each colour represents an 

individual data point in the original dataset. 

 

2.9 Monte-Carlo Dropout. 

The MC dropout suggested by Gal et. al101-102 is another widely-used approach 

to estimate the uncertainty of the NN model prediction. In fact, originally the standard 
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dropout trick was proposed to avoid over-fitting problems,78, 122 in which some neurons 

in a NN are randomly switches off. This can be viewed as a practical way to add the 

regulation in the NN regression.101-102  

In the MC dropout approach, the dropout operation is conducted many times 

and this generates many NN configurations. As shown in Figure 3, each dropout 

configuration is generated by randomly switching some neurons off (grey circles with 

cross) or not (blue circles). Finally, an ensemble of all dropout-configuration networks 

can be used to estimate both the NN model prediction and the confidence interval.     

Gal et. al101-102 once pointed out that the employment of the MC dropout in NNs 

can be viewed as the stochastic realization of the Bayesian estimation of the NN model 

uncertainty. More discussions on the rigorous mathematic view can be found in the 

references.101-102 Here, a set of NN models with different NN structures and different 

parameter sets can be built by the MC dropout. In this sense, both model distribution 

and parameter distribution can be well captured by the MC dropout.  

  

 

Figure 3. The structure diagram of standard neural network (a) and its modification with 

dropout (b). 

 

III. Computational details 
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(a) The input of the ML model.  

As the reduced density matrix includes the complex number, we represented 

their elements by a three-dimensional vector, i.e. 
11 12 12 12[ , Re{ }, Im{ }]X          . 

The short-time evolution of this vector X was interpreted by the LSTM-RNN model 

construction and the prediction of the ML model gives the evolution of this vector. As 

a complimentary study, we also try to build the ML model by using only the population 

difference term  . In this way, we may examine the role of the off-diagonal elements 

in the ML model construction and prediction.   

(b) Dataset Preparation.  

Let us consider the short-time propagation of the open quantum dynamics up to 

a time duration. The evolution of the density matrix is represented by a series of the 

time-dependent vector 1[ ( ), , ( )]nX t X t    with the discretized time step of 0.5 fs. 

Therefore, we have a time series and the total number of time step is n .  

Starting from 1[ ( ), , ( )]nX t X t   , we may build many time-series data subsets 

{ }iS  with the length L , as shown in Figure 4. Each subset includes L  successive time 

steps and the time duration of this small time-series set ( 0.5* L  fs) is relevant to the so-

called memory time used in some references.69   

All sequences { }iS  were divided into two groups with  the ratio of 3:1 according 

to the chronological order. The early-time sequences ( ( ){ }A

iS :  Group A in Figure 4) 

was taken to construct the LSTM-RNN model, and the later-time sequences ( ( ){ }B

iS : 

Group B in Figure 4) was employed to examine the ML model prediction accuracy.  

http://www.baidu.com/link?url=sMlYIa0ofL1j6uPgyJ34M9AZ2xBm1r6NkTe4Wryt-BVbNhizrq68IBz_UtfSMVENqL3W2iHoKX-RtaWox6wOq23fvOatGWt7Mqao7l2z4iDjnVBxV2XhofDMXGfKrS8b


23 

 

After all ( ){ }A

iS  were randomly shuffled with their individual chronological 

order unchanged, they were randomly divided into two sub-datasets [ ( 1){ }A

iS , ( 2){ }A

iS ] 

with a ratio of 7:3. The first sub-dataset ( 1){ }A

iS  defines the training set in the regression 

of the LSTM-RNN model. The second sub-dataset ( 2){ }A

iS  defines the internal 

validation set that is used for the early-stop training step. The later-time sequences 

( ){ }B

iS  defines the external validation set used for the selection of the suitable LSTM-

RNN model. 

 

 

Figure 4. A brief scheme of the time-series dataset slice.  

 

(c) ML model training and validation. 

The LSTM-RNN model was trained based on ( 1){ }A

iS , in which the mean square 

error (MSE) of the loss function is minimized by using the adaptive moment estimation 

(Adam) method. The early stop approach was taken to avoid the overfitting in the basis 

of ( 2){ }A

iS . 
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In the training step, we need to choose the optimal hyperparameters, including 

the NN layer number, the neuron number in each layer, the length L of the datasets { }iS . 

Three hyperparameter optimization approaches were taken, which include RS, BO-TPE 

and SA. The search space spanned by all hyperparameters is defined as follows. The 

possible number of NN layer is 2, 3 or 4. For the neuron number in each layer, the 

search is performed within the range of [10, 500] with the interval as 20. Since it is not 

clear on how to set the proper length of the memory time, we also treated it as the 

hyperparameter and the optimization search range is from 5 fs to ( / 4)L  fs. In this way, 

the hyperparameter searching space is defined.   

Three hyperparameters optimization methods were employed to conduct the 

hyperparameter optimization. In this process, the loss function of the NN model in the 

basis of the external validation set ( ){ }B

iS  was considered. In addition to these, the batch 

size and the epoch number in all LSTM-RNN training tasks are 50 and 300, respectively. 

In each hyperparameter optimization approach, we totally ran 20 independent 

optimization tasks starting from different initial conditions. In each optimization task, 

100 iterations were taken and the best hyperparameter set is chosen. At the end, we 

either selected a few of hyperparameter sets or the best one from all 20 jobs to conduct 

the further prediction. All the hyperparameter optimizations were conducted by using 

the Hyperopt123-124 program library and the optimization setups (such as the temperature 

in SA) simply follows default values in the Hyperopt program.   

(d)  Prediction Uncertainty. 

After the hyperparameter optimization, we obtained several optimal LSTM-

RNN models with different NN structures/parameters and their corresponding memory 
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time (length 𝐿 ). The next task is to predict the model uncertainty by using two 

approaches, bootstrap resampling and the MC dropout methods. 

We first considered the bootstrap resampling approach, in which the NN 

structure obtained at the previous step is fixed and only the parameters are adjusted by 

the regression based on each resampled dataset. Here, the training set and the internal 

validation set ( 1) ( 2)[{ },{ }]A A

i iS S  were mixed together and resampled to generate the new 

datasets to perform the bootstrap resampling analysis. After this re-construction, a new 

LSTM-RNN network with the same network structure was re-trained based on a 

resampled dataset. And the additional parameters including the epoch number and the 

batch size, are same as the those in the hyperparameter optimizations. We repeated this 

resampling-regression process many times. For a given LSTM-RNN structure, a group 

of 100 LSTM-RNNs were obtained in the bootstrap step at the end.  To address the 

model uncertainty caused by different network structures, we selected 10 proper 

LSTM-RNN structures from the 20 hyperparameter optimization tasks. This gives us 

totally 1000 (100×10) LSTM-RNN models and all of them were used in the prediction.  

To clarify which hyperparameter optimization and uncertainty estimation 

approaches are selected, we try to use the below labels, such as (SA/BO/RS-H10)×

BT100, for illustration. In this given example, the first part (SA/BO/RS-H10) defines 

the hyperparameter optimization approach. Here, the SA, BO and RS represent the 

simulated annealing, the BO-TPE optimization and the random search method 

respectively. H10 means that 10 NN structures are chosen from many independent 

hyperparameter optimization tasks. And then, the term of BT100 means that each NN 

structure is re-trained based on 100 times of bootstrap resampling.  In the given case, 

we totally used 1000 (10×100) LSTM-RNN models. The average of the prediction 
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values computed by these LSTM-RNN models gives the future time-series data to 

characterize the long-time quantum evolution, while the standard deviation of all 

foresting values defines the model confidence interval.  

In the MC dropout approach, we first chose the best LSTM-RNN model (only 

one) after the hyperparameter optimization. Next, we enlarged the last LSTM layer of 

the network by doubling the number of the neurons, while all other layers remain 

unchanged. Following the idea of MC dropout, we randomly switched off 50% neurons 

in the last LSTM layer to obtain many new LSTM-RNNs. Starting from each randomly-

generated NN, the training task was performed, and finally many NN models were 

obtained to give the further dynamics evolution and to estimate the model uncertainty. 

The way to perform the dropout task only on the last layer was recommended in 

previous work125 due to its good performance.  

Similar to the bootstrap case, the labels, such as (SA/BO/RS-H1)×MC100, are 

employed in the below discussions. Here the first part (SA/BO/RS-H1) defines which 

hyperparameter optimization approach was taken and how many basic NN models were 

chosen here. Since the MC dropout step generates many NN models with different 

structures, the model distribution itself is naturally considered. Thus, we only chose the 

best NN model (labelled as H1) in the current example to conduct the MC dropout. At 

the end, we totally obtained an ensemble of the LSTM-RNN models with 100 different 

network structures.  

In principle, the MC dropout approach gives a more completed description on 

the model uncertainty than the bootstrap resampling approach, since more NN models 

with different topologies are generated in the former one. However, the bootstrap 

resampling approach gives a more suitable description on the model misspecification 
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by resampling the training data. Thus, it is also recommended to combine both for the 

more comprehensive estimation of the LSTM-RNN prediction uncertainty. For 

illustration, we used the labels (SA/BO/RS-H1)×BT50×MC50 to refer such models. In 

the given example, the best LSTM-RNN model was chosen in the hyperparameter 

optimization tasks. Next the new 50 training datasets were built by the bootstrap 

resampling. For each resampled training dataset, we conducted the MC dropout and 

obtained 50 different MC dropout NN network structures. Finally, for this given 

example, we obtained an ensemble of the LSTM-RNN models with 2500 (50×50) NNs. 

In this way, we combined both bootstrap and MC dropout approaches to give a 

comprehensive estimation of both model uncertainty and model misspecification.  

 

IV. Results 

In the current work, the preliminary LSTM-RNN models were constructed by 

using three hyperparameters optimization approaches including SA, BO-TPE and RS. 

After the selection of a few optimized LSTM-RNN structures, we built several LSTM-

RNNs by using the bootstrap resampling approach, the MC dropout method and their 

combination. Finally, all NNs were taken to perform the prediction and estimate the 

confidence interval of the prediction.   

The first task of this work is to examine the performance of hyperparameter 

optimization methods. In this step, we chose the symmetric site-exciton model (labelled 

as Model I) and built the appropriate LSTM-RNN models based on the quantum 

dynamics up to 350 fs.  
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4.1 Hyperparameter Optimization. 

4.1.1 Error Distribution in Hyperparameter Optimization.  

It is necessary to know which part of the hyperparameter space is travelled in 

the hyperparameter optimization processes to get the initial idea in the analysis of the 

performance of three optimization methods. For each of them, we considered 20 

independent optimization tasks with 100 steps and this covers 2000 points in the 

hyperparameter spaces. Next, we calculated the prediction errors of these models based 

on ( ){ }B

iS and Figure 5(a) shows the error distribution. The SA method tends to give 

more snapshots with the rather small error, while the BO-TPE and RS approaches 

experience more large-error points in the hyperparameter space. In fact, the different 

performances among three methods is larger than their first view impression given in 

Figure 5(a) due to the employment of the exponential scaling of the x-axis. Such 

comparison implies that the SA method may find the optimal NN models more easily 

than other two approaches. This idea is confirmed by examining the performance of the 

final optimal LSTM-RNN models. Since each optimization task gives a single LSTM-

RNN model at the end, we totally obtained 20 models whose topologies are given in 

Table S2 in SI. Here we sorted all models from 1 to 20 according to their prediction 

errors in the basis of the external validation dataset ( ){ }B

iS , as shown in Figure 5(b). It 

is clearly that the SA method still gives best results. The performances of other two 

methods are not far from each other, while the RS approach gives the slightly better 

LSTM-RNN models than the BO-TPE method. 
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Figure 5. (a) The distribution of prediction errors of all involved LSTM-RNN models in the 

hyperparameter optimization steps with three methods (each method covers 2000 snapshots); 

(b) The validation errors of the optimal LSTM-RNN models obtained from 20 independent 

hyperparameters optimization tasks. The validation error is defined in the basis of the external 

validation set ( ){ }B

iS . And the SA, BO, RS represent the simulated annealing method, Bayesian 

optimization method with tree-structured parzen estimator and the random search approach, 

respectively. 

 

4.1.2 The Distribution of Memory Time. 

The reasonable prediction of the dynamical evolution of the open quantum 

systems at the long-time scale is based on whether the dynamical map built from the 

historical short-time dynamics can capture the dynamical correlation or not. When the 

historical dynamics length is given, we need to prepare many small time-series data 

(Figure 4) to define the input for the LSTM-RNN network. This short-time duration is 

called “memory time” in the previous works.69 Since we do not know how to choose 

its proper value, it is a hyperparameter. In this work, its optimal value is also 

automatically determined by the hypeparameter optimization approaches. As each 

optimization method gives 20 values, we simply collected all and showed their 

distribution in Figure 6. It is clearly that the highest peak in the current distribution is 

located at ~ 53 fs and the whole peak range is ~ 35-71 fs. We wish to emphasize that 
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the current hyperparameter optimization approaches not only give us the optimal 

LSTM-RNN structures, but also provide the proper memory time automatically. This 

largely improves the applicability of the LSTM-RNN models in the simulation of the 

quantum dissipative dynamics.  

 

 

Figure 6. The distribution of memory time obtained by all three hyperparameter optimization 

methods.  

 

4.2 Combinations of Hyperparameter Optimization and Uncertainty Estimation.  

4.2.1 The LSTM-RNN Prediction with Bootstrap. 

We examined the LSTM-RNN prediction of the quantum dynamics and 

analyzed the model confidence interval with the bootstrap approach. The (SA/BO/RS-

H10)×BT100 LSTM-RNN models were employed to perform the dynamics simulation 

and the results are given in Figure 7. At the first glance, the long-time quantum 

dynamics is well predicted no matter which hyperparameter optimization approach is 

taken. For better view, the prediction deviation and the confidence interval are 

displayed as the functions of time being in Figure 8. The prediction error is defined by 

the difference between the LSTM-RNN model prediction values and the exact values 

obtained by the tensor-train dynamics simulation, while the confidence interval given 
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in the bootstrap resampling procedure characterizes the prediction uncertainty. All 

hyperparameter optimization approaches give the similar prediction errors for the 

dynamics data and all deviations are very small. As expected, the deviations become 

larger in the later-stage dynamics, while they are still acceptable. Overall, the bootstrap-

based LSTM-RNN models give the reasonable prediction of the quantum evolution. In 

convergence tests, we also considered (SA/BO/RS-H5)×BT100 and (SA/BO/RS-H1)

×BT100 LSTM-RNN models and the results are given in Figure S1-S4 in SI, 

respectively. It is indicated that the (SA/BO/RS-H10)×BT100 prediction results is 

convergent.  

We notice that the SA and BO-TPE approaches seem to show the better 

performance than the RS method after the inclusion of the bootstrap. For instance, the 

RS optimization method seems to give the larger uncertainty in the prediction of the 

long-time dynamics (Figure 8). The different performance of the SA and RS approaches 

may be attributed to the fact that the former one generally results in the better LSTM-

RNN models as shown in Figure 5(b). Here the BO-TPE method seems to give the 

better performance than the RS method (Figure 8), although the optimal LSTM-RNN 

models given by BO-TPE method themselves do not display the smaller prediction 

errors (Figure 5(b)). The analysis of the underline reasons may require the additional 

works in the future. In the current work, it is enough to access their performance only 

from numerical results.  
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Figure 7. The quantum dynamics simulated by the (SA-H10)×BT100 (a), (BO-H10)×BT100 

(b), and (RS-H10)×BT100 (c) LSTM-RNN models vs. the tensor-train quantum propagation in 

Model I. The green lines denote the training and validation samples (<350 fs) used in the 

LSTM-RNN model construction. The black triangles display the tensor-train simulation results. 

The blue lines correspond to the LSTM-RNN prediction of the future dynamics and the grey 

region shows the prediction uncertainty. 
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Figure 8. The prediction error and confidence interval of the (SA-H10)×BT100 (a), (BO-H10)

×BT100 (b), and (RS-H10)×BT100 (c) LSTM-RNN simulation of the quantum dynamics of 

Model I. The blue dotted lines denote the time duration (< 350 fs), in which the training and 

validation samples were employed in the LSTM-RNN model construction. 

 

4.2.2 The LSTM-RNN Prediction with MC Dropout.  

When the MC dropout method was taken to estimate the model uncertainty, all 

LSTM-RNN fitting and prediction results, along with the quantum dynamics data, are 

displayed in Figure 9. Three hyperparameter optimization methods show rather 

different performances. The SA approach behaves quite well, while the large 

confidence interval exists in the RS approach. All details of the prediction error and 

uncertainty are given in Figure 10, in which the RS results are not included due to its 

poor performance (see Figure S5 in SI). According to Figure 9 and 10, the selection of 

three hyperparameter optimization methods follows the order as: SA > BO-TPE > RS. 

The underline reason of the excellent performance of the SA approach was discussed 
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in the previous section, i.e. its optimization pathway always tends to give new points 

with lower prediction error.   

In the MC dropout approach, a large number of the NN models with different 

structures were generated. This may explain that the prediction uncertainty becomes 

larger in the MC dropout approach. 

 

 

Figure 9. The quantum dynamics simulated by the (SA-H1)×MC100 (a), (BO-H1)×MC100 (b), 

and (RS-H1)×MC100 (c) LSTM-RNN models vs. the tensor-train quantum propagation in 

Model I. The green lines denote the training and validation samples (<350 fs) used in the 

LSTM-RNN model construction. The black triangles display the tensor-train simulation results. 

The blue lines correspond to the LSTM-RNN prediction of the future dynamics and the grey 

region shows the prediction uncertainty. 
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Figure 10. The prediction error and confidence interval of the (SA-H1)×MC100 (a) and (BO-

H1)×MC100 (b)  LSTM-RNN simulation of the quantum dynamics of Model I. The blue dotted 

lines denote the time duration (< 350 fs), in which the training and validation samples were 

employed in the LSTM-RNN model construction. 

 

4.2.3 The LSTM-RNN Prediction by Combining Bootstrap and MC Dropout. 

Clearly, the bootstrap and MC dropout methods try to address different 

prediction uncertainties. In order to get the full estimation of the whole uncertainty, we 

tried to apply both methods simultaneously. Similar approach was employed in 

previous work.121 In the current implementation (SA/BO/RS-H1)×BT50×MC50, the 

combination of the bootstrap and MC dropout methods totally gives 2500 LSTM-RNNs 

(1 LSTM-NN model from the hyperparameter optimization, 50 bootstrap resampling 

operations and 50 MC dropout operations). All results are summarized in Figure 11 and 

12. To make sure that the convergence is reached, we randomly selected 1000 LSTM-

RNN models from them and ran the prediction, see Figure S6 and Figure S7 in SI.  

http://www.baidu.com/link?url=AFZHvaOZR6Pfp63ssdnCRi6DAwunWudWnhmwBmlQTfowXFpZn9J0Qi3ifG3P8beELnzEqo8oKiuAZLN3APV_xfgfB8kpYoZbs6lLw3q8A3bLdG2mkm-wVOeQy18YJJqx
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Here, the SA method is still the best choice, in which the reliable and stable 

prediction of the quantum evolution is achieved. For the BO-TPE method, the sudden 

increasing of the prediction uncertainty is observed in the later-stage of the quantum 

propagation, implying the existence of the instable prediction for the long-time 

dynamics. For the RS + bootstrap + MC dropout approach, both the prediction error 

and uncertainty become smaller with respect to the RS + MC dropout approach, 

possibly due to the error cancelation. Overall, the SA + bootstrap + MC dropout 

combination seems to be a recommended choice in practices. In this way, the SA 

approach builds the preliminary proper LSTM-RNN model, and then both bootstrap 

and MC dropout methods are employed to estimate the model uncertainty and 

misspecification at the same time.   

However, the combination of the bootstrap and MC dropout methods needs very 

large computational cost, as many NN models are built. Therefore, to reduce the 

computational efforts in implementation, we recommend to use the bootstrap approach 

solely for a rough estimation of the prediction uncertainty. Although the bootstrap 

cannot fully address the distribution formed by many NN models with different 

connectivity, it can be realized quickly. At the same time, we may use several NN 

models with different structures in the bootstrap step to partially consider the model 

uncertainty. For this purpose, we may follow the below procedure. First let us use the 

bootstrap to get a preliminary and rapid understanding of the model stability. When 

such uncertainty is small, it indicates that the optimal NN model is obtained. It is 

worthwhile to combine both bootstrap resampling and MC dropout approaches to give 

a full estimation of the model uncertainty. Otherwise, the NN model prediction becomes 

not stable and we should not trust its modelling results any more. This protocol may 

save considerable computational time in the estimation of the NN model uncertainty.  
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Figure 11. The quantum dynamics simulated by the (SA-H1)×BT50×MC50 (a), (BO-H1)×

BT150×MC50 (b), and (RS-H1)×BT50×MC50 (c) LSTM-RNN models vs. the tensor-train 

quantum propagation in Model I. The green lines denote the training and validation samples 

(<350 fs) used in the LSTM-RNN model construction. The black triangles display the tensor-

train simulation results. The blue lines correspond to the LSTM-RNN prediction of the future 

dynamics and the grey region shows the prediction uncertainty. 
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Figure 12. The prediction error and confidence interval of the (SA-H1)×BT50×MC50 (a), (BO-

H1)×BT50×MC50 (b) and (RS-H1)×BT50×MC50 LSTM-RNN simulation of the quantum 

dynamics of Model I. The blue dotted lines denote the time duration (< 350 fs), in which the 

training and validation samples were employed in the LSTM-RNN model construction. 

 

4.3 The Prediction based on Different Time-Series Training Data. 

4.3.1 The Prediction based on Shorter Time-Series Training Data. 

In this part, we examined the performance of the LSTM-RNN models when the 

shorter dynamics evolution data (~200 fs) was used in the model construction. We only 

applied the SA + bootstrap approach to obtain the quick view of the prediction quality. 

Compared with the results obtained by the LSTM-RNN models constructed 

based on the 350 fs time-length quantum propagation data, the current prediction 

accuracy and reliability become lower (Figure 13). This indicates that the performance 

of the LSTM-RNN models is highly dependent on the length of the time-series data in 

the training dataset. In principle, this time duration must be long enough to capture the 
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dynamical features in the quantum evolution. However, this brings additional 

difficulties in the realization of the current theoretical approaches, since we do not have 

the clear idea on how long the short-time dynamics data should be taken in the model 

construction. Here we tried to propose two practical approaches to solve this problem. 

The first approach is suitable for the situation when our purpose is to simulate 

the quantum dynamics up to a pre-defined time duration, for instance 1 ps. In realization, 

we can simply build the NN models based on several sets of time-series training data 

with different historical lengths, such as 100 fs, 200 fs, 300 fs and so on, and then use 

them to simulate the long-time dynamics to 1 ps. When the time length is larger than a 

threshold, the prediction results remain unchanged and the convergence is achieved. 

This provides a practical way to determine the suitable time duration for the whole 

training data length. 

The second approach works, if only a short-time dynamics data is given. In this 

case, the prediction uncertainty gives a preliminary judgement on the model reliability, 

although they are not fully equivalent. In practices, we build an ensemble of NN models 

to estimate the prediction uncertainty. When the confidence interval becomes larger 

than the pre-defined threshold with time being, the NN models become not trustable 

anymore and we should stop to use it for the quantum propagation. This provides an 

alternative way to know the reliability of the long-time propagation with the built 

LSTM-RNN models. 
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Figure 13. Prediction error (a) and confidence interval (b) with different short-time dynamics 

data. Here the (SA-H10)×BT100 bootstrap-based LSTM-RNN model is used in the simulation 

of the quantum dynamics of Model I. The brown and black vertical dotted lines indicate the 

time durations of 200 fs and 350 fs, respectively

 

4.3.2 The Prediction only based on the Electronic Populations. 

The time-dependent electronic populations themselves provide the very primary 

understanding of the quantum dynamics of reduced systems. We wish to check the 

performance of the LSTM-RNN models, when only the population difference term was 

taken in the model construction. To obtain the rough idea, the SA + bootstrap approach 

was used and the results are given in Figure 14. Although the overall prediction looks 

fine, the prediction uncertainty becomes extremely high and prediction is not stable. 

Therefore, it is not recommended to only include the diagonal elements of the reduced 

density matrix in the LSTM-RNN model construction. This conclusion is highly 

consistent with the physical insight: the off-diagonal elements of the density matrix, 

which characterize the quantum coherence, should play a very important role in the 

quantum dynamics evolution of reduced systems. 
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Figure 14. (a) The quantum dynamics modelled by the (SA-H10)×BT100 bootstrap-based 

LSTM-RNNs vs. the tensor-train quantum dynamics of Model I. The green lines denote the 

training and validation samples used in the LSTM-RNN construction as shown as 350 fs. The 

blue lines correspond to the LSTM-RNN prediction of the future dynamics. The black triangles 

display the tensor-train simulation results. And the grey region represents the confidence 

interval of the forecasting results. The prediction error and uncertainty are shown as (b) and (c) 

respectively.  

 

4.4 The Prediction the Quantum Evolution of Other Site-Exciton Models. 

Following the (SA-H1)×BT50×MC50 procedure, we simulated the quantum 

evolution of other site-exciton models, which includes both symmetric and asymmetric 

models with different system-bath coupling strengths. They were labelled as Model II, 

Model III and Model IV respectively with the different system-bath coupling 

parameters given in Table S1 in SI. All dynamics results are shown in Figure 15 and 

more details are given in Figure S8 in SI. Overall, the LSTM-RNN models can give the 

reasonable description of the long-term quantum evolution for these models, while the 

simulation accuracy is still system dependent. For the symmetric site-exciton models, 

we always obtained the very reliable results: the prediction result is very accurate and 

the NN model uncertainty is very low. For the asymmetric site-exciton models, we still 
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can obtain the correct evolution dynamics while the confidence interval becomes visible. 

The prediction results by the LSTM-RNN models are not very stable now. This 

indicates that the current LSTM-RNN approach may work better in the symmetric site-

exciton models rather than in the asymmetric site-exciton models. In fact, the previous 

work by Wu et. al. 28  also found the similar features. They argued that the prediction 

accuracy in the dynamics evolution of the asymmetric system-plus-bath model may be 

significantly improved by using the transfer learning approaches. This gives us a good 

inspiration to improve our method in the future. 

 

 

Figure 15. The quantum dynamics modelled by the (SA-H1)×BT50×MC50 LSTM-NN models 

vs. the tensor-train quantum propagations in Model II (a); Model III (b) and Model IV (c). The 

green lines denote the training and validation samples used in the LSTM-RNN construction. 

The black triangles display the tensor-train simulation results. The blue lines correspond to the 

LSTM-RNN prediction of the future dynamics and the grey region shows the prediction 

uncertainty. 
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V. Conclusion 

In this work, we tried to employ the LSTM-RNN models to simulate the 

dynamics evolution of the open quantum systems. The LSTM-RNN models were built 

based on the short-time historical dynamics evolution data. If such models can well 

capture the dynamical correlation, we may use the obtained LSTM-RNN model to 

simulate the long-term quantum dynamics effectively. 

We tried to employ three automatic approaches to perform the hyperparameter 

optimization in the model construction, which are SA, BO-TPE and RS. After the 

hyperparameter optimization, the optimal NN structures and other corresponding 

hyperparameters are given. Among these approaches, the behaviour of the SA method 

is always excellent and thus this is recommended in the future works.    

Two approaches were considered to estimate the model prediction uncertainty, 

which are the bootstrap resampling and MC dropout approaches. In this sense, we 

provided not only the simulation results of the quantum evolution itself but also the 

prediction uncertainty. The bootstrap can well describe the model misspecification, i.e. 

the training and prediction data do not follow the same distribution. It can also partially 

provide the model uncertainty caused by the distribution of the fitting parameters. By 

using several NN structures, the bootstrap method can also take the NN model 

distribution into account. The MC dropout method can address two types of model 

uncertainties very well, what are relevant to the NN model distribution and the fitting 

parameter distribution. The combination of both two approaches can provide the full 

assessment of the confidence interval of the prediction. However, such combination 

may require a rather large computational cost. Thus, it is also recommended to use only 
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the bootstrap resampling approach due to its simplicity and fastness, if only the 

preliminary estimation on the reliability of the model prediction is needed. 

The dynamics simulation by the LSTM-RNN model is also highly dependent 

on how long the historical data is given in the model construction. Only when this early-

time duration is long enough to capture the essential dynamical features, the reliable 

LSTM-RNN models may be constructed to predict the further long-time dynamics 

correctly. In the LSTM-RNN model construction, we also realized that it is important 

to include the off-diagonal elements of the reduced density matrix as well, possibly due 

to their important roles in the description of the quantum coherence critical to the 

dynamics evolution of open quantum systems.   

Overall, we recommended to combine the SA hyperparameter optimization to 

build the optimal LSTM-RNN models and the bootstrap + MC dropout approach to 

perform the prediction uncertainty analysis. This combined approach allows us to build 

the proper LSTM-RNN models efficiently from the early-stage short-time dynamics 

and to use them in the simulation of the late-stage long-time quantum evolution 

effectively. Beside it, we also get the primary idea on the reliability of the quantum 

dynamics given by the LSTM-RNN models based on the prediction uncertainty. This 

indicates that the current approach is a feasible approach in the future studies of the 

quantum evolution of complex systems. In addition, this work discusses several useful 

ML technical tricks, including hyperparameter optimization methods and uncertainty 

estimation approaches, as well as their performances. Therefore, we expect that the 

current work should be very helpful to the future researches that wish to apply the ML 

models to study other physical and chemical problems. 
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S1. Site-Exciton Models.  

In current work, we employed four site-exciton models (Model I - IV) and their 

parameters are given in Table S1. For all of them, we took the frequency domain as 0-

1200 cm-1 and ∆𝜔=12 cm-1 to build a set of discreted bath modes. 

 

Table S1. Different site-exciton models with their parameters.  

 𝑉11 − 𝑉12 (eV) 

𝑉11 − 𝑉12 (eV) 

𝑉12 (eV) 𝜔𝑐 (cm-1) 𝜆 (cm-1) 

Model I 0 0.0124 200 64 

Model II 0 0.0124 200 256 

Model III 0.0186 0.0124 200 64 

Model IV 0.0186 0.0124 200 225 
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S2. LSTM-RNN Model Structures obtained by Hyperparameter Optimizations. 

Table S2. The neuron number of LSTM layers in the optimized LSTM-RNN model 

structures obtained from the hyperparameter optimization. For the dense layer, we used 

three neurons since three elements were predicted. 
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S3. The Convergence Tests of the LSTM-RNN Prediction with Bootstrap. 

The main manuscript gives the results simulated by the (SA/BO/RS-H10)×

BT100 LSTM-RNN models. Here two additional models are considered to check 

convergence, which are the (SA/BO/RS-H5)×BT100 and (SA/BO/RS-H1)×BT100 

LSTM-RNN models. All results are given in Figure S1-S4. By comparison, the 

selection of 10 models from the hyperparameter optimization is enough to achieve 

convergence.  
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Figure S1. The quantum dynamics simulated by the (SA-H5)×BT100 (a), (BO-H5)×BT100 (b), 

and (RS-H5)×BT100 (c) LSTM-RNN models vs. the tensor-train quantum propagation in 

Model I. The green lines denote the training and validation samples (<350 fs) used in the 

LSTM-RNN model construction. The black triangles display the tensor-train simulation results. 

The blue lines correspond to the LSTM-RNN prediction of the future dynamics and the grey 

region shows the prediction uncertainty. 

 



65 

 

 

Figure S2. The quantum dynamics simulated by the (SA-H1)×BT100 (a), (BO-H1)×BT100 (b), 

and (RS-H1)×BT100 (c) LSTM-RNN models vs. the tensor-train quantum propagation in 

Model I. The green lines denote the training and validation samples (< 350 fs) used in the 

LSTM-RNN model construction. The black triangles display the tensor-train simulation results. 

The blue lines correspond to the LSTM-RNN prediction of the future dynamics and the grey 

region shows the prediction uncertainty. 
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Figure S3. The prediction error in the different bootstrap-based LSTM-RNN simulation of the 

quantum dynamics including (SA-H1/H5/H10)×BT100 (a), (BO-H1/H5/H10)×BT100 (b), and 

(RS-H1/H5/H10)×BT100 (c). The blue dotted lines denote the training and validation samples 

(<350 fs) used in the LSTM-RNN construction. 
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Figure S4. The confidence interval in the different bootstrap-based LSTM-RNN simulation of 

the quantum dynamics including (SA-H1/H5/H10)×BT100 (a), (BO-H1/H5/H10)×BT100 (b), 

and  (RS-H1/H5/H10)×BT100 (c). The blue dotted lines denote the training and validation 

samples (<350 fs) used in the LSTM-RNN construction. 
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S4. The RS + MC Dropout LSTM-NN Prediction.  

When we combined the random search hyperparameter optimization and the 

MC dropout approach, both prediction error and uncertainty become very large, as 

shown in Figure S5.  

 

 

Figure S5. The prediction error (a) and confidence interval (b) of the (RS-H1)×MC100 LSTM-

RNN simulation of the quantum dynamics of Model I. The blue dotted lines denote the training 

and validation samples (<350 fs) used in the LSTM-RNN construction. 
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S5. The Convergence Tests of the LSTM-RNN Prediction by Combining Bootstrap 

and MC Dropout. 

We combined the bootstrap resampling and MC dropout approaches to estimate 

the prediction confidence interval. In the main manuscript, the (SA/BO/RS-H1)×BT50

×BT50 LSTM-RNN models were used, and totally 2500 networks were considered. 

Here we only select 1000 LSTM-RNN models randomly from them and conduct the 

prediction. All results are given in Figure S6 and Figure S7. Comparing two cases, the 

employment of 2500 networks should be enough to achieve the convergence.  

 

 

Figure S6. The quantum dynamics modelled by the (SA-H1)×BT10×MC10 LSTM-RNN 

models vs. the tensor-train quantum propagation in Model I. The green lines denote the training 

and validation samples (<350 fs) used in the LSTM-RNN construction. The black triangles 

display the tensor train simulation results. The blue lines correspond to the LSTM-RNN 

prediction of the future dynamics and the grey region shows the prediction uncertainty. 
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Figure S7. The prediction error (a) and confidence interval (b) of LSTM-RNN quantum 

dynamics propagation by using the combination of bootstrap and MC dropout with 1000 

models. The blue dotted lines denote the training and validation samples (<350 fs) used in the 

LSTM-RNN construction. 
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S6. The Prediction Error and Confidence Interval of the Other Models. 

 

Figure S8. The prediction error and confidence interval in the (SA-H1)×BT50×MC50 LSTM-

RNN simulation which combines with bootstrap and MC dropout of the quantum dynamics in 

(a) Model II; (b) Model III; (c) Model IV. The blue dotted lines denote the training and 

validation samples (<350 fs (a), <450 fs (b), <300 fs (c)) used in the LSTM-RNN construction. 

 


