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Abstract—Histogram equalization, which aims at information
maximization, is widely used in different ways to perform con-
trast enhancement in images. In this paper, an automatic exact
histogram specification technique is proposed and used for global
and local contrast enhancement of images. The desired histogram
is obtained by first subjecting the image histogram to a modifica-
tion process and then by maximizing a measure that represents in-
crease in information and decrease in ambiguity. A new method of
measuring image contrast based upon local band-limited approach
and center-surround retinal receptive field model is also devised in
this paper. This method works at multiple scales (frequency bands)
and combines the contrast measures obtained at different scales
using ��-norm. In comparison to a few existing methods, the ef-
fectiveness of the proposed automatic exact histogram specifica-
tion technique in enhancing contrasts of images is demonstrated
through qualitative analysis and the proposed image contrast mea-
sure based quantitative analysis.

Index Terms—Ambiguity measures, beam theory, center-sur-
round retinal receptive field, contrast enhancement, exact
histogram specification, fuzzy sets, local band-limited contrast.

I. INTRODUCTION

C
ONTRAST enhancement is an important image pro-

cessing technique that makes various contents of images

easily distinguishable through suitable increase in contrast.

Histogram specification is a method where contrast enhance-

ment is obtained by suitably changing the image histogram

into a desired one. Exact histogram specification [1] guarantees

that the histogram of the image obtained after enhancement is

almost exactly the desired one. However, there does not exist

any obvious choice for the desired histogram [1]. Mostly, the

desired histogram has been considered as uniform (histogram

equalization). A few times the desired image histogram has

been considered as the one which makes the histogram of

perceived brightness uniform (histogram hyperbolization [2]).

In certain cases, the desired histogram has been considered as

unimodal/bimodal Gaussian or exponential depending upon the

underlying application.
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The exact histogram specification scheme of [1] is based upon

strict ordering among image pixels via calculation of local mean

values for contrast enhancement. Exact histogram equalization,

as in [1], guarantees that the histogram of the image obtained

after enhancement is uniform (ignoring the possibility of an

insignificant error). Therefore, the process of exact histogram

equalization is a process of information entropy maximization,

and it increases the contrast of an image by maximizing infor-

mation retrievable from the image.

In this paper, we propose an automatic exact histogram spec-

ification technique. The desired histogram is obtained by first

subjecting the image histogram to a modification process that

increases the overall discriminablity among samples in the his-

togram, and then maximizing a measure that represents increase

in information entropy [3] and decrease in average image am-

biguity [4]. The aforesaid approach is based upon the finding

that increase in information entropy and decrease in average

image ambiguity, which are indicators of contrast enhancement,

are contradictory. The proposed exact histogram specification

technique is used for global and local contrast enhancement of

grayscale images.

Global and local contrast enhancement performed using the

proposed automatic exact histogram specification technique is

compared to the usage of exact histogram equalization [1] and

to a few related state of the art existing techniques. Qualita-

tive and quantitative evaluation of contrast enhancement perfor-

mance is considered, and the effectiveness of the proposed exact

histogram specification technique is demonstrated.

In order to perform quantitative analysis, a new method

of measuring image contrast based upon local band-limited

approach [5] and center-surround retinal receptive field model

[6] is devised in this paper. The concept of quantifying local

contrast in complex images given in [5] and antagonistic

center-surround models such as the difference of Gaussian

(DoG) [7] are brought together in our approach of image

contrast measurement. Evidences from physiological studies

corresponding to contrast sensitivity in achromatic and color

vision [8]–[10], and sub- and supra-threshold contrast per-

ception [11], [12] are considered in the proposed approach.

Considering the existence of multiple frequency channels in

the visual system [13], the proposed method works at multiple

scales (frequency bands) and combines the contrast measures

obtained at different scales using -norm. Suitable functions

involving image contrast measured using the proposed ap-

proach are employed for evaluation of contrast enhancement.
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II. PROPOSED AUTOMATIC EXACT HISTOGRAM

SPECIFICATION METHOD

As mentioned in Section I, the process of exact histogram

equalization is a process of information entropy maximization.

In this section, we propose an automatic exact histogram speci-

fication technique that:

— increases the overall discriminablity among samples in

the histogram that correspond to pixels in the underlying

image;

— maximizes a measure that represents increase in informa-

tion entropy and decrease in average image ambiguity.

Authors in [14] have proposed segmentation via a density

modification technique, which increases the overall discrim-

inablity among samples in a feature space that correspond to

pixels in the underlying image, using a fuzzy set theory based

system devised with cue from beam theory of solid mechanics.

In the process of determining the desired histogram (histogram

to be specified) from the original histogram (histogram of the

underlying image before enhancement), we consider the con-

cept of increasing the overall discriminablity among samples

given in [14].

In [4], it is pointed out that average ambiguity in an image

reduces with increase in the distinguishablity of various parts

of the image and it is shown that the average image ambiguity

measure in [4] can be considered as an indicator of contrast

enhancement. Hence, in addition to increase in information

entropy, which is considered in the classical technique of

histogram equalization, we also consider decrease in average

image ambiguity in the proposed histogram specification

technique. Increase in information entropy and decrease in

average image ambiguity are found to be contradictory and,

hence, we devise a optimal tradeoff approach to achieve both

satisfactorily.

A. Determination of the Desired Histogram From the Original

Histogram

1) Increasing the Overall Discriminability Among Samples

in the Histogram: In the proposed approach of determining the

desired histogram from the original histogram, the first step is

a histogram modification process. We increase the overall dis-

criminablity among samples in the histogram that correspond

to pixels in the underlying image through the modification

process. The histogram modification process, which is based

upon an altered version of the density modification approach

given in [14], is described here. Without loss of generality, we

shall describe the process assuming a gray-level histogram of a

grayscale image.

Let be the gray-level histogram of the grayscale image

under consideration. We first normalize as follows:

(1)

where is the universal set of gray levels. The quantity

gives the probability of occurrence of gray value in the image

under consideration.

Fig. 1. Setup for the proposed histogram modification.

We shall now consider some concepts from beam theory of

solid mechanics. Consider a solid whose shape is given by .

Let the solid be placed over a beam of uniform (along the length)

height and width. Let us assume that the entire uniform beam

and the entire solid are made out of the same material. Con-

sider that the beam is rested upon two pivots at the two ends.

Let the two ends refer to the minimum

and maximum gray values. Let us con-

sider that a uniform (along the length) force , say due to

gravity, is always acting upon the uniform beam. Fig. 1 gives

the pictorial representation of the aforesaid setup. The total force

acting on the beam is and we consider as

, which represents one unit (force) with respect

to .

Once is obtained from using (1), we calculate the

bending moment due to the force at a gray value

(Fig. 1) using Euler–Bernoulli beam theory as follows:

(2)

In the previous equation, stands for the total (cumula-

tive) force between the gray values and , and it is given as

(3)

The symbol stands for the center of gravity between the

gray values and , and it is given as

(4)

In (2), is the reactive force at the pivot at and it is calcu-

lated as

where (5)

Now, consider the following function obtained by normalizing

the bending moment

(6)

It is shown in [14] that can be considered as a membership

function corresponding to a fuzzy set defined in and the value

of the membership function at a gray value represents a prop-

erty “farness of the gray value from the nearest among and
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.” Note that, the aforesaid terms “farness” and “nearest” are

inherently defined in . The gray value where takes a value

of unity, is the gray value that is equally far from both and

. A gray value smaller (larger) than that gray value is nearer

to compared to .

As the groups of samples in the histogram associated with

and are the most discriminable ones from each other,

the aforesaid property at a gray value gives the farness of the

samples in the histogram associated with that gray value from

the nearest among the mutually most discriminable groups of

samples in the histogram. Therefore, the property can be used

to modify the histogram such that the overall discriminability

among samples in the histogram is increased.

It is evident from (2) and (6) that is dependent upon the his-

togram . However, one might like to have the property ‘farness

of a gray value from the nearest among and ’ such that

it depends only upon the gray value and not on the his-

togram . Note that, if the value of is considered such that

, the membership function approximately

becomes independent of and depends only upon the under-

lying gray value.

Now, we know that the bending moment refers to a mem-

bership function , which represents a useful property “far-

ness of a gray value from the nearest among .” We shall

now modify the histogram using concepts from beam theory,

where the bending moment will be appropriately considered.

The curvature due to the bending moment at a gray value

is as follows:

(7)

where is the moment of inertia (opposing the bending) at ,

which is calculated as

(8)

where denotes the centroid of the solid and the beam taken

together at the gray value and it is given by .

We consider that the height of the beam (see Fig. 1) equals

, which represents one unit with respect to .

However, it is observed that some may correspond to solids

which when considered would result in curvatures that

are very large at a few gray values, making the curvatures at

other gray values insignificant. We find that such situations are

unfavorable for increasing the overall discriminability among

samples in the histogram, as many gray values would be ignored

during the modification process. Therefore, we consider the fol-

lowing measure instead of at a gray value

(9)

and then normalize as follows:

(10)

Once the value of for all has been obtained, we

perform the following operation:

(11)

where is a real value in the interval . We then nor-

malize as follows:

(12)

We consider the quantity as the probability of occurrence

of gray value in the image having the modified histogram. The

modified histogram, say is then determined from such that

the number of samples in the modified histogram equals that in

the original histogram, as follows:

(13)

The discrepancy is then

omitted by adding one sample to each of the largest bins

(number of occurrences) in .

It is ascertained in [14] that considering the aforesaid quantity

as the modified histogram is appropriate as the overall dis-

criminablity among samples is increased by the explained his-

togram modification process.

2) Determination of the Parameter —Tradeoff Between In-

crease in Information Entropy and Decrease in Average Image

Ambiguity: Consider the expression of from (11). As men-

tioned earlier, is a real value in the interval . From

Section II-A.1, it can be easily deduced that only when

or . Therefore, it is evident from (11) that

and when is close enough to is

nonzero only at and . In such a case, all the

samples in the modified histogram would be at and

. Now as , it is evident from (11) that the values

of tends to be almost the same. In such a case, all the

samples in the modified histogram tend to be more or less

equally distributed (uniform) at all gray values. From the pre-

vious discussion, it is evident that the parameter is a very

significant one. We devise an approach here to determine the

parameter in an optimal sense. The modified histogram

that uses the optimal value of is the desired histogram in our

novel exact histogram specification technique.

As mentioned earlier, when tends to be uni-

form. It is well understood and also empirically observed that

information entropy [3] calculated from increases as

tends to be uniform [8]. Therefore, information entropy due to

increases as . From the theory of histogram equal-

ization [8] we know that information entropy maximization is

a potent way of contrast enhancement. However, it is also well

known that information entropy maximization may cause arti-

facts such as washed-out effect and clutter intensification in the

underlying image [15].

On the other hand, when , the number of samples

in tends to be nonzero only at and . Therefore,

as also evident from the earlier discussion, information entropy

due to decreases as the value of decreases. However, we



1214 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 5, MAY 2011

find that the average image ambiguity measure [4] based upon

grayness ambiguity [4] calculated from also decreases as

. It is known that minimization of average image am-

biguity or other measures of image ambiguity is a potent way of

contrast enhancement [4]. The effect of the aforesaid minimiza-

tion process in the underlying histogram is such that the sam-

ples in it get concentrated near two highly distinct gray values.

Therefore, although the overall contrast of the underlying image

would be intensified, the process may lead to loss of details.

From the previous explanation, we see that increase in infor-

mation entropy and decrease in average image ambiguity cal-

culated from are contradictory in the context of change

in the parameter . However, both increase in information en-

tropy and decrease in average image ambiguity are desirable

traits in contrast enhancement of images. Therefore, the require-

ment is to perform a tradeoff between increase in information

entropy and decrease in average image ambiguity in order to de-

termine the parameter . Such a tradeoff would constrain both

increase of information entropy and decrease of average image

ambiguity, which would diminish the aforesaid disadvantages

of both. We consider the maximization of the following mea-

sure to determine

(14)

In the previous equation, represents the Shannon’s informa-

tion entropy [3] normalized such that and is

calculated from . Average image ambiguity is represented

by , where . The computation of is based

upon grayness ambiguity calculated from , which has been

elaborately explained in [4].

As mentioned earlier, we intend to obtain the optimal value

of as

(15)

We consider that [see (13)] as the desired histogram in our

exact histogram specification technique, which is obtained con-

sidering in (11). We have carried out the process of

determination of desired histogram considering several original

histograms and we have made the following observations:

— both and increase with increase in ;

— rate of increase of both and decrease with increase

in ;

— with respect to increase in , initially, the rate of increase

of is more than that of ; Later, the rate of increase

of becomes less than that of ;

— and as functions of the parameter fit the expres-

sions and ,

respectively, where and and are ar-

bitrary constants.

From the expression of in (14) and the first three aforesaid

observations, it can be easily inferred that as a function of

would have a unique maximum. The same in-

ference can be mathematically deduced considering the fourth

observation. The value of at the solitary maximum is

and, hence, searching for in the entire interval is

not required.

Fig. 2. Graphical representation of the determination of the desired his-
togram from the original histogram. (a) Original Histogram. (b) Mem-
bership function �. (c) ���. (d) � when � � � . (e) � s with
� � ��������� ���� ��� �� ������� (left to right).

The nature of dependency of on the value of and the

behavior of as a function of , which are explained in

Section II-A.2, are shown graphically in Fig. 2. Note the unique

maximum of as a function of in Fig. 2(c), and the near

extreme cases of when is very near to and when

takes a very large value in Fig. 2(e). Observe in Fig. 2 that

as explained in Section II-A.1, the overall discriminability

among samples in has increased compared to the original

histogram as more samples in are nearer to any of the two

mutually most discriminable groups of samples, which are at

the minimum and maximum gray values. Notice [see Fig. 2(a)

and (d)] the signature of the original histogram in the

form of valleys and peaks. The property represented by the

membership function stated in Section II-A.1 is evident from

Fig. 2(b).

B. Implementation of Exact Histogram Specification

Once the desired histogram is determined using the proposed

approach, we implement exact histogram specification as de-

scribed in [1]. Note that the proposed approach of desired his-

togram determination is a fully automatic one and, hence, we

have presented a novel automatic exact histogram specification

technique, which can be used on global, local and partial (sub)

histograms to perform global, mean brightness preserving, dy-

namic and local contrast enhancement of images.

III. RETINAL VISUAL SYSTEM BASED IMAGE CONTRAST

MEASUREMENT AND QUANTITATIVE EVALUATION OF

CONTRAST ENHANCEMENT

Quantitative evaluation of contrast enhancement is not

trivial, as there do not exist any universally accepted measure

of contrast or ideally enhanced images as references. Measures

of dispersion (local and global) such as variance, standard

deviation and entropy have been used to evaluate contrast

enhancement. Contrasts calculated according to Weber’s and

Michelson’s definition [5], [8] have also been employed for

the same. Contrast enhancement has been evaluated using

measures based upon local gradient magnitude such as the

Tenengrad value [15], and also using average distance between

pixels on the gray scale [15]. These aforesaid measures hardly

represent the actual image contrast viewed by the eye.

Quantitative evaluation of contrast enhancement should be

based upon appropriate measurement of contrast at all image

pixels. Any reasonable measure of contrast should be at least

crudely tuned according to the retinal visual system and such a
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measure would then probably be more credible and universally

acceptable. In this section, we present a novel approach of quan-

titative evaluation of contrast enhancement using a new method

of image contrast measurement based upon several available

studies on the retinal visual system.

A. Image Contrast Measurement

1) Contrast Due to Achromatic Signal: We base our method

of contrast measurement on Peli’s [5] local band-limited ap-

proach. As considered in [5], we assume that contrast at a

grayscale image pixel should be expressed as the dimensionless

ratio of the local change and the local average. Analysis on the

applicability of Weber’s and Michelson’s contrast definition

to complex images has been carried out in [5] and the related

drawbacks were addressed leading to a definition of local

band-limited contrast for complex images. The local band-lim-

ited contrast is defined in [5] as

(16)

where

(17)

(18)

In (18), is the grayscale image under consideration, is a

bandpass filter, is a low-pass filter such that it passes all en-

ergy below the passband of and represents the convolution

operator.

Let us now briefly consider the phenomenon of perception

in the retina of an eye. Photoreceptor cells, which are capable

of phototransduction, are present in the retina and two main

types of photoreceptors are referred to as cones and rods [6].

The signals generated by phototransduction in the retina pass

through such pathways that both excitatory and inhibitory fields

are generated [6]. It is widely accepted that the excitatory and

the inhibitory fields organize in the retina such that center-sur-

round retinal (ganglion) receptive fields are formed, where the

center and the surround fields are antagonistic [see Fig. 3(a)].

The center-surround organization is called on-center when the

center is excitatory and the surround is inhibitory and

it is called offcenter in the other case. Now, it is shown in [7]

that the difference of Gaussian (DoG) can be used to model

center-surround retinal receptive field appropriately in the case

of achromatic signal. The application of DoG based center-sur-

round model on a grayscale image, which represents an achro-

matic signal, is represented as

(19)

where

(20)

(21)

In (19)–(21), is the output of the DoG based center-surround

operator, and represent the signals from the center and the

surround, respectively, and and represent the two Gaussian

functions of the form that make up

Fig. 3. Pictorial representation of some vision related phenomena of the retina
during perception of an achromatic signal. (a) Center-surround retinal recep-
tive field. (b) Multiple bandpass channels. (c) Sub- and supra-threshold contrast
(taken from [11])].

the DoG operator . Note that the standard deviation

of is smaller than that of .

We shall now bring together the concept of band-limited local

contrast in complex images [5] and the concept of DoG based

center-surround retinal receptive field model [7]. Observe that

the DoG operator is a bandpass filter and both the

Gaussian functions and are low-pass filters. Another in-

teresting observation is that is a low-pass filter that passes all

energy below the passband of the DoG operator . There-

fore, we can readily use the output of the bandpass filter

(DoG operator) and the output of the low-pass filter

in the local band-limited contrast definition given in (16) as

follows:

(22)

The quantity gives a local band-limited contrast mea-

sure at the image pixel . In the calculation of , we

consider that the standard deviations of and are related as

, where is an arbitrary real value greater than

unity.

Now, evidence of presence of multiple spatial frequency se-

lective channels in the retina has been found [13]. The measure

is obtained from a single spatial frequency channel/

band. We consider the value of and in order to mimic the

presence of multiple frequency channels in the retina, we con-

sider multiple values of . Multiple standard deviation values

of give multiple spatial bandpass filters having dif-

ferent passbands and, hence, we get multiple values

which we represent as . We consider 24 values of

as follows:

(23)

where is the frequency at which the passband of the

underlying bandpass filter peaks (center/peak frequency). Note

that, corresponds to the maximum possible spa-

tial frequency cycles per pixel width and the unit of is

pixel width. The passbands (frequency channels) of 1-D equiv-

alents of the 24 bandpass filters (normalized such that the value

at peak frequency is unity) corresponding to the 24 values of

are shown in Fig. 3(b). Note that the application of the DoG

operator on a grayscale image considering multiple stan-

dard deviation values of in order to measure contrast essen-

tially means that the contrast is measured at multiple scales. In

order to get a single contrast value at a pixel , we need to
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combine the contrast measures obtained at mul-

tiple scales.

In order to perform the aforesaid combination, we consider

findings from the study of sub- and supra-threshold contrast per-

ception reported in [11]. While subthreshold contrast percep-

tion corresponds to contrast sensitivity at contrast levels near

to the minimum contrast required for detection of a pattern,

supra-threshold contrast perception corresponds to contrast sen-

sitivity at much higher contrast levels. In subthreshold contrast

perception, it has been found that contrast sensitivity is lower

when the underlying pattern has low and high spatial frequen-

cies compared to when the pattern has spatial frequencies in be-

tween low and high. Whereas, in supra-threshold contrast per-

ception, contrast sensitivity characteristics show very little vari-

ation across spatial frequencies [11]. The illustration in Fig. 3(c)

reproduced from [11] demonstrates the aforesaid phenomena.

We find that -norm can be used to perform the combination of

all the s in such a way that the aforesaid phenomena

about sub- and supra-threshold contrast perception are mim-

icked. We combine the measures as follows:

(24)

where and

(25)

In (25), the normalization by ensures that the underlying

passband’s magnitude value at peak frequency is unity [see

Fig. 3(b)]. The measure gives the contrast measure

of the grayscale image , which represents an achromatic

signal, at a pixel . When ( norm) is considered

in (24), the subthreshold contrast perception is best mimicked

and when (maximum norm) is considered in (24), the

supra-threshold contrast perception is best mimicked. Fig. 4(a)

shows an image having sinusoidal pattern with varying magni-

tude (across rows) and spatial frequency (across columns), and

the contrast measure obtained at all pixels using different

values of , and Fig. 4(b) shows their corresponding 1-D pro-

files across columns. Observe the cases of and in

Fig. 4(b), where contrast sensitivity is higher when the spatial

frequency is in between low and high, and the cases of

and , where contrast sensitivity hardly varies across

spatial frequencies. Hence, it is evident in Fig. 4 that with

increase in the value of , the contrast sensitivity characteristics

gradually changes from that of subthreshold contrast perception

to supra-threshold contrast perception. Contrast levels in an

image may vary from the minimum contrast level required for

detection of a pattern to much higher contrast levels. Therefore,

the choice of in (24) is not an obvious one and any analysis

based upon should at least involve the extreme cases

and .

2) Contrast Due to Chromatic Signals: As mentioned in

Section III-A.1, signals generated by phototransduction in the

retina create excitatory and inhibitory fields, which organize

such that center-surround retinal receptive fields are formed

Fig. 4. Contrast measures obtained in an image, which has sinusoidal pattern
with spatial frequency decreasing from left to right, considering different values
of �� � ��� �� �� �� �� [top-middle to bottom-right]. (a) Image with sinusoidal
pattern and its different contrast measures (normalized to the range [0, 1]) at all
pixels. (b) 1-D gray value and contrast profiles across columns.

with antagonistic center and surround. In the case of chro-

matic signals, the center-surround retinal receptive fields are

formed in color-opponent organization [6]. The color-oppo-

nent organization of center-surround retinal receptive field is

characterized by the red, green, blue and yellow components

of color. A center-surround retinal receptive field in color-op-

ponent organization would be any one of the following four; a

red component center with an antagonistic green component

surround, a green component center with an antagonistic red

component surround, a blue component center with an an-

tagonistic yellow component surround, a yellow component

center with an antagonistic blue component surround. During

perception of chromatic signals, all the aforesaid four types of

center-surround retinal receptive fields are formed in the retina.

We now need an operator that mimics the center-surround

retinal receptive field in color-opponent organization for ap-

plication on color components of color images to calculate

contrast. We consider CIE color components (CIE

standard illuminant D65), where represents lightness

(achromatic component), represents the red-green opponent

color component (red-positive, green-negative) and repre-

sents yellow-blue opponent color component (yellow-positive,

blue-negative) [8]. The operator mimicking the center-surround

retinal receptive field in color-opponent organization would be

applied on the and components of color images.

The DoG operator model of center-surround receptive field

would not be appropriate in this case. From the findings reported

in [9] and [10], we infer that the operator to be applied on

and components of color images should represent a low-pass

filter and not a bandpass filter like the DoG operator. Therefore,

we suggest that instead of the DoG operator , the operator

be considered. Hence, we have

(26)

where is now the output of the operator , which is

applied on the and color components of the underlying

color image and is a opponent color component. Note that as

mentioned in Section III-A.1, both the Gaussian functions

and are low-pass filters and, hence, the operator is

also a low-pass filter. We shall now see how the operator

mimics the center-surround retinal receptive field in color-

opponent organization. Consider the operation (notation

dropped for simplicity) in red-green opponent color
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Fig. 5. Pictorial representation of some vision related phenomena of the retina
during perception of chromatic signals � and � . (a) Center-surround retinal
receptive fields in color opponent organization. (b) Multiple low-pass channels.

component, where we have and

and, hence, we get

(27)

where , and represent red component center,

green component center, red component surround and green

component surround, respectively. From (28), it is evident that

we get a red component center with an antagonistic green com-

ponent surround and a green component center with an antag-

onistic red component surround. Similarly, considering the op-

eration in yellow-blue opponent color component,

where we have and and, hence,

we get

(28)

where , and represent yellow component center,

blue component center, yellow component surround and blue

component surround, respectively. From (28), it is evident that

we get a yellow component center with an antagonistic blue

component surround, a blue component center with an antag-

onistic yellow component surround. The four center-surround

retinal receptive field mimicked by applying on

the and opponent color components is given in Fig. 5(a).

We calculate the local band-limited contrast in the opponent

color components of a color image as

(29)

where represents local average calculated considering

a window, where . The quantity

approximately represents output from a bandpass filter

with passband almost same as that of the low-pass filter

except at zero frequency, where the passband magnitude is

zero. The quantity gives the contrast measure at a pixel

.

Similar to Section III-A.1, we consider here the multiple

values of given in (23) in order to mimic the presence of

multiple frequency channels in the retina. We consider the same

values of as used in Section III-A.1, because it is reported

in [10] that the retinal responses to chromatic and achromatic

signals are of the same order. Multiple standard deviation

values of give multiple spatial low-pass filters having

different passbands and, hence, we get multiple values

which we represent as . The passbands (frequency

channels) of 1-D equivalents of the 24 low-pass filters (normal-

ized such that the maximum passband magnitude value is unity)

corresponding to the 24 values of are shown in Fig. 5(b).

Fig. 6. Contrast measures obtained in an image representing an opponent color
component, which has sinusoidal pattern with spatial frequency decreasing from
left to right, considering different values of �� � ��� �� �� �� �� [top-middle to
bottom-right]. (a) Image with sinusoidal pattern and its different contrast mea-
sures (normalized to the range [0, 1]) at all pixels. (b) 1-D color component
value and contrast profiles across columns.

Similar to Section III-A.1, we need to combine the contrast

measures in order to get a single contrast value

at a pixel and we perform the combination considering

findings from the study of sub- and supra-threshold contrast

perception in the case of chromatic signals reported in [12].

In the case of chromatic signals, it has been found that during

subthreshold contrast perception, contrast sensitivity is lower

when the underlying pattern has high spatial frequencies com-

pared to when the pattern has low spatial frequencies and con-

trast sensitivity characteristics show very little variation across

spatial frequencies during supra-threshold contrast perception

[12]. It is very interesting to find that similar to the case of achro-

matic signal, -norm can be used in the case of chromatic sig-

nals in order to perform the combination of all the s

in such a way that the aforesaid phenomena about sub- and

supra-threshold contrast perception are mimicked. We combine

the measures as follows:

(30)

where and represents one of the two opponent color

components and . In the previous equa-

tion, the scaling by 0.5 ensures that the maximum magnitude

value of the passband of the underlying low-pass filter is unity

[see Fig. 5(b)]. The measure gives the contrast mea-

sure in the opponent color component of the underlying color

image at a pixel . When ( norm) is considered

in (24), the subthreshold contrast perception is best mimicked

and when (maximum norm) is considered in (24), the

supra-threshold contrast perception is best mimicked. Fig. 6(a)

shows an image, which represents an opponent color component

of a color image, having sinusoidal pattern with varying magni-

tude (across rows) and spatial frequency (across columns), and

the contrast measure obtained at all pixels using different

values of , and Fig. 6(b) shows their corresponding 1-D pro-

files across columns.

Notice the same wavy envelope in all the one dimensional

profiles of the contrast measure obtained using different

values of . The wavy envelope is due to the usage of the quan-

tity in (29) in order to make the underlying passband’s

magnitude zero at zero frequency and, hence, we can ignore the
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wavy envelope while analyzing Fig. 6(b). Observe the cases of

and in Fig. 6(b), where contrast sensitivity is lower

when the spatial frequency is high, and the cases of and

, where contrast sensitivity hardly varies across spatial

frequencies. Hence, it is evident in Fig. 6 that with increase in

the value of , the contrast sensitivity characteristics gradually

changes from that of subthreshold color contrast perception to

supra-threshold color contrast perception. Color contrast levels

in a color image may vary from the minimum contrast level

required for detection of a pattern to much higher levels and,

hence, the choice of is not obvious like in Section III-A.1.

Once the contrasts in (achromatic signal), and (chro-

matic signals) components corresponding to an image are cal-

culated, the contrast measure of the image at a pixel is

obtained as follows:

(31)

where is the contrast in (lightness) component,

and are the contrasts in the opponent color components

and . Note that we consider the same value of while using

norm in the calculation of contrasts due to the achromatic and

chromatic signals corresponding to an image. It is worthwhile

to mention here that a few crude attempts of contrast measure-

ment in grayscale and color images based only upon the DoG

modeling of the retinal receptive field have been made in [16]

and [17].

B. Quantitative Evaluation of Contrast Enhancement

As mentioned in Section I, contrast enhancement makes var-

ious contents of images easily distinguishable through suitable

increase in contrast. In this paper, we shall measure increase of

contrast at an image pixel due to the application of a contrast

enhancement technique as follows:

(32)

where represents the underlying image, represents the con-

trast enhanced image and represents the average contrast in

. The term is considered in (32) to ensure that pathological

cases such as and do not occur, as-

suming that is always nonzero.

Although increase in image contrast makes its contents more

distinguishable, the pleasingness of the image might suffer in

the process [18], [19]. Hence, suitability of contrast enhance-

ment through increase in contrast lies in not decreasing the

pleasingness of the image. In fact, nonreference image quality

measures such as the most eye-pleasing sharpness [19] have

been used to check the suitability of image enhancement. From

[19] we infer that if the contrast in both the homogeneous and

the heterogeneous areas of the image under consideration is

increased by similar amounts (in terms of ) then the pleasing-

ness of the image does not decrease. On the other hand, if the

contrast in either the homogeneous or the heterogeneous areas

is increased much more than the other then the pleasingness of

the image will deteriorate. Although it is not mentioned in [19],

it is obvious that the contrast in the homogeneous areas could

be increased only by amounts (in terms of ) such that clutters

do not appear.

We calculate the increase of contrast in heterogeneous and

homogeneous areas respectively as

(33)

(34)

where

(35)

and . In (35),

and, hence, .

The quantity gives the belongingness (membership) of

the pixel to heterogeneous areas and gives

the belongingness to homogeneous areas. Note that, we take

, as in such a case, a pixel, where is exactly at

the middle (0.5) of the two extremes 0 and 1, belongs almost

equally to heterogeneous and homogeneous areas.

In this paper, we shall perform quantitative evaluation of con-

trast enhancement considering that higher value of signifies

better contrast enhancement provided that and it is

visually confirmed that clutter has not appeared.

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental results in order to

demonstrate the effectiveness of the proposed automatic exact

histogram specification technique in comparison to a few ex-

isting methods both qualitatively and quantitatively. Qualitative

analysis is performed by visual comparison and as presented

in Section III-B, quantitative analysis is carried out using the

proposed method of measuring image contrast. We consider

the use of the proposed exact histogram specification technique

for global and local contrast enhancement of grayscale images.

These enhancement techniques could be easily extended to

color images by using the approach in [20].

We shall now consider global and local contrast enhance-

ment of images separately and compare the use of the proposed

exact histogram specification technique with the different ex-

isting methods considered under each category.

A. Global Contrast Enhancement

Global contrast enhancement is aimed at increasing the

overall contrast of an image. Here, we apply the proposed

exact histogram specification (proposed EHS) technique on

global histograms of images in order to perform global contrast

enhancement. The performance of the proposed technique is

compared to that of exact histogram equalization (EHE) [1]

and gray-level grouping (GLG) [15], which are also applied on

global histograms.

Consider the grayscale image given in Fig. 7(a). The global

histogram considered here is the gray-level histogram of the

image. The images in Fig. 7(b)–(d) are obtained by performing

global contrast enhancement using the proposed EHS, EHE and

GLG techniques, respectively. As can be seen the overall con-

trast is higher in the image in Fig. 7(b), whereas, the brightness

seems to be higher in the image in Fig. 7(d). Fig. 7(e)–(g), re-

spectively show the average and (average taken over

all the pixels in the image) obtained when the three techniques
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Fig. 7. Global contrast enhancement of grayscale images using the proposed
EHS, EHE and GLG techniques. (a) Image. (b) Proposed EHS. (c) EHE.
(d) GLG. (e) � values. (f) � values. (g) � values.

are applied on the image in Fig. 7(a) and the different values of

are considered. It is evident that the average is higher when

the proposed EHS is used and we have average average

in all the three cases.

B. Local Contrast Enhancement

Local contrast enhancement is aimed at increasing contrast in

local neighborhoods in images in order to reveal minute details.

We consider the contrast limited adaptive (local) enhancement

approach pioneered in [21], in order to carry out local contrast

enhancement using the EHE and the proposed EHS techniques,

which are applied to histograms calculated within local neigh-

borhoods in images. The contrast limited approach is consid-

ered as it helps in avoiding over enhancement, which is usual in

local histogram based enhancement techniques. The control of

enhancement is achieved by limiting the slope of the mapping

function corresponding to histogram equalization/specification

operation [21]. Note that, unlike histogram equalization/speci-

fication, an underlying mapping function is not used in the case

of EHE and the proposed EHS [1]. However, once the EHE or

the proposed EHS has been performed the underlying mapping

function can be calculated. We first do so, where we linearly

spread the underlying points (values of the argument of the func-

tion) wherever required to ensure that the slope calculated is not

at any point. We then limit the slope of the mapping function

(as described in [21]) with the maximum allowed slope being

, where and are the average

and maximum slope over all the points. The modified mapping

function is then used to redo the EHE and the proposed EHS to

get the contrast limited adaptive EHE (CLAEHE) and the pro-

posed contrast limited adaptive EHS (proposed CLAEHS), re-

spectively. The performance of the proposed CLAEHS is com-

pared to that of CLAEHE, local standard deviation distribu-

tion modeling based unsharp masking (MUM) proposed in [22]

and human visual properties based algorithm RACE given in

[23], as all of them are adaptive (local) contrast enhancement

techniques.

Consider the grayscale image given in Fig. 8(a). The images

in Fig. 8(b)–(e) are obtained by performing local contrast en-

hancement using the proposed CLAEHS, CLAEHE, MUM, and

RACE techniques, respectively. As can be seen, details such as

that in the top-right of the image has been revealed better in

Fig. 8. Local contrast enhancement of a grayscale image using the pro-
posed CLAEHS, CLAEHE, MUM, and RACE techniques. (a) Image.
(b) Prop. CLAEHS. (c) CLAEHE. (d) MUM. (e) RACE. (f) �. (g) � .
(h) �� � � �. (i) �� � � �. (j) �� �

� �.

the image in Fig. 8(b). As the aim of local contrast enhance-

ment is to increase contrast in local neighborhoods, we do not

consider average , and values for analysis as they

only represent overall contrast increase. Instead, we consider the

contour maps in Fig. 8(g)–(j) showing

and , re-

spectively, where the subscript represents the associated tech-

nique and . We see that is higher at most of the pixels

when the proposed CLAEHS is used. The image in Fig. 8(f)

shows the membership that gives

the belongingness of pixels to heterogeneous areas. Considering

this image, we find that in local neighborhoods, is slightly

higher at pixels in either heterogeneous or homogeneous area

compared to pixels in the other when the proposed CLAEHS,

CLAEHE, and RACE are used, which is not significantly evi-

dent when MUM is used. Hence, the image in Fig. 8(d) appears

more pleasing.

V. CONCLUSION

An automatic exact histogram specification technique has

been proposed in this paper and it has been used for global and

local contrast enhancement of images. The desired histogram

has been obtained by first subjecting the image histogram to a

modification process that increases the overall discriminablity

among samples in the histogram and then by maximizing a

measure that represents increase in information and decrease

in ambiguity, which are contradictory indicators of contrast

enhancement. Based upon qualitative and quantitative analyses,

the proposed automatic exact histogram specification technique

has been found effective in enhancing contrasts of images in

comparison to a few existing methods.

In order to perform the quantitative analysis, a new method

of measuring image contrast based on local band-limited ap-

proach and antagonistic center-surround retinal receptive field

model has been devised in this paper. Various evidences from

physiological studies corresponding to contrast perception

along with the existence of multiple frequency channels in the

visual system have been considered. In accordance to them,

the proposed method has been allowed to work at multiple

scales (frequency bands) and combination of the contrast

measures obtained at the different scales has been performed



1220 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 5, MAY 2011

using -norm. Suitable functions involving image contrast

measured using the proposed approach have been employed for

the evaluation of contrast enhancement. Although the proposed

approach of contrast measurement has been used for evaluation

of contrast enhancement, the approach is general, and hence, it

can be used for other image processing tasks.
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