
 Open access Journal Article DOI:10.1145/2560217.2560219

Automatic exploit generation — Source link

Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J. Schwartz ...+2 more authors

Institutions: Carnegie Mellon University

Published on: 01 Feb 2014 - Communications of The ACM (ACM)

Topics: Source code, Binary code, Software, Code (cryptography) and Exploit

Related papers:

 KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs

 Unleashing Mayhem on Binary Code

 Symbolic execution and program testing

 The power of social media analytics

 AEG: Automatic Exploit Generation

Share this paper:

View more about this paper here: https://typeset.io/papers/automatic-exploit-generation-
3or8u18hrg

https://typeset.io/
https://www.doi.org/10.1145/2560217.2560219
https://typeset.io/papers/automatic-exploit-generation-3or8u18hrg
https://typeset.io/authors/thanassis-avgerinos-4jcijgm2at
https://typeset.io/authors/sang-kil-cha-2apgf2c3q8
https://typeset.io/authors/alexandre-rebert-jyr01t30w6
https://typeset.io/authors/edward-j-schwartz-3hd7lmtsv4
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/journals/communications-of-the-acm-2yc9qsd3
https://typeset.io/topics/source-code-7v292uts
https://typeset.io/topics/binary-code-10iu6rxs
https://typeset.io/topics/software-2ejyxl2f
https://typeset.io/topics/code-cryptography-elowoncx
https://typeset.io/topics/exploit-3vohae3t
https://typeset.io/papers/klee-unassisted-and-automatic-generation-of-high-coverage-1z0qm4wht1
https://typeset.io/papers/unleashing-mayhem-on-binary-code-2imcodq7nt
https://typeset.io/papers/symbolic-execution-and-program-testing-319yo45alh
https://typeset.io/papers/the-power-of-social-media-analytics-1s1iun5n0n
https://typeset.io/papers/aeg-automatic-exploit-generation-9ryma6r3pj
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/automatic-exploit-generation-3or8u18hrg
https://twitter.com/intent/tweet?text=Automatic%20exploit%20generation&url=https://typeset.io/papers/automatic-exploit-generation-3or8u18hrg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/automatic-exploit-generation-3or8u18hrg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/automatic-exploit-generation-3or8u18hrg
https://typeset.io/papers/automatic-exploit-generation-3or8u18hrg

AEG: Automatic Exploit Generation

Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao and David Brumley

Carnegie Mellon University, Pittsburgh, PA

{thanassis, sangkilc, brentlim, dbrumley}@cmu.edu

Abstract

The automatic exploit generation challenge is given

a program, automatically find vulnerabilities and gener-

ate exploits for them. In this paper we present AEG, the

first end-to-end system for fully automatic exploit gener-

ation. We used AEG to analyze 14 open-source projects

and successfully generated 16 control flow hijacking ex-

ploits. Two of the generated exploits (expect-5.43 and

htget-0.93) are zero-day exploits against unknown vul-

nerabilities. Our contributions are: 1) we show how

exploit generation for control flow hijack attacks can be

modeled as a formal verification problem, 2) we pro-

pose preconditioned symbolic execution, a novel tech-

nique for targeting symbolic execution, 3) we present a

general approach for generating working exploits once

a bug is found, and 4) we build the first end-to-end sys-

tem that automatically finds vulnerabilities and gener-

ates exploits that produce a shell.

1 Introduction

Control flow exploits allow an attacker to execute ar-

bitrary code on a computer. Current state-of-the-art in

control flow exploit generation is for a human to think

very hard about whether a bug can be exploited. Until

now, automated exploit generation where bugs are auto-

matically found and exploits are generated has not been

shown practical against real programs.

In this paper, we develop novel techniques and

an end-to-end system for automatic exploit generation

(AEG) on real programs. In our setting, we are given

the potentially buggy program in source form. Our AEG

techniques find bugs, determine whether the bug is ex-

ploitable, and, if so, produce a working control flow hi-

jack exploit string. The exploit string can be directly

fed into the vulnerable application to get a shell. We

have analyzed 14 open-source projects and successfully

generated 16 control flow hijacking exploits, including

two zero-day exploits for previously unknown vulnera-

bilities.

Our automatic exploit generation techniques have

several immediate security implications. First, practical

AEG fundamentally changes the perceived capabilities

of attackers. For example, previously it has been be-

lieved that it is relatively difficult for untrained attackers

to find novel vulnerabilities and create zero-day exploits.

Our research shows this assumption is unfounded. Un-

derstanding the capabilities of attackers informs what

defenses are appropriate. Second, practical AEG has ap-

plications to defense. For example, automated signature

generation algorithms take as input a set of exploits, and

output an IDS signature (aka an input filter) that recog-

nizes subsequent exploits and exploit variants [3, 8, 9].

Automated exploit generation can be fed into signature

generation algorithms by defenders without requiring

real-life attacks.

Challenges. There are several challenges we address

to make AEG practical:

A. Source code analysis alone is inadequate and in-

sufficient. Source code analysis is insufficient to re-

port whether a potential bug is exploitable because er-

rors are found with respect to source code level abstrac-

tions. Control flow exploits, however, must reason about

binary and runtime-level details, such as stack frames,

memory addresses, variable placement and allocation,

and many other details unavailable at the source code

level. For instance, consider the following code excerpt:

char s r c [1 2] , d s t [1 0] ;

s t r n c p y (d s t , s r c , s i z e o f (s r c)) ;

In this example, we have a classic buffer overflow

where a larger buffer (12 bytes) is copied into a smaller

buffer (10 bytes). While such a statement is clearly

wrong 1 and would be reported as a bug at the source

1Technically, the C99 standard would say the program exhibits un-

defined behavior at this point.

code level, in practice this bug would likely not be ex-

ploitable. Modern compilers would page-align the de-

clared buffers, resulting in both data structures getting

16 bytes. Since the destination buffer would be 16 bytes,

the 12-byte copy would not be problematic and the bug

not exploitable.

While source code analysis is insufficient, binary-

level analysis is unscalable. Source code has abstrac-

tions, such as variables, buffers, functions, and user-

constructed types that make automated reasoning eas-

ier and more scalable. No such abstractions exist at the

binary-level; there only stack frames, registers, gotos

and a globally addressed memory region.

In our approach, we combine source-code level anal-

ysis to improve scalability in finding bugs and binary

and runtime information to exploit programs. To the best

of our knowledge, we are the first to combine analysis

from these two very different code abstraction levels.

B. Finding the exploitable paths among an infinite

number of possible paths. Our techniques for AEG

employ symbolic execution, a formal verification tech-

nique that explores program paths and checks if each

path is exploitable. Programs have loops, which in turn

means that they have a potentially infinite number of

paths. However, not all paths are equally likely to be

exploitable. Which paths should we check first?

Our main focus is to detect exploitable bugs. Our

results show (§ 8) that existing state-of-the-art solutions

proved insufficient to detect such security-critical bugs

in real-world programs.

To address the path selection challenge, we devel-

oped two novel contributions in AEG. First, we have

developed preconditioned symbolic execution, a novel

technique which targets paths that are more likely to be

exploitable. For example, one choice is to explore only

paths with the maximum input length, or paths related

to HTTP GET requests. While preconditioned symbolic

execution eliminates some paths, we still need to prior-

itize which paths we should explore first. To address

this challenge, we have developed a priority queue path

prioritization technique that uses heuristics to choose

likely more exploitable paths first. For example, we have

found that if a programmer makes a mistake—not neces-

sarily exploitable—along a path, then it makes sense to

prioritize further exploration of the path since it is more

likely to eventually lead to an exploitable condition.

C. An end-to-end system. We provide the first prac-

tical end-to-end system for AEG on real programs.

An end-to-end system requires not only addressing a

tremendous number of scientific questions, e.g., binary

program analysis and efficient formal verification, but

also a tremendous number of engineering issues. Our

AEG implementation is a single command line that an-

alyzes source code programs, generates symbolic exe-

cution formulas, solves them, performs binary analysis,

generates binary-level runtime constraints, and formats

the output as an actual exploit string that can be fed di-

rectly into the vulnerable program. A video demonstrat-

ing the end-to-end system is available online [1].

Scope. While, in this paper, we make exploits robust

against local environment changes, our goal is not to

make exploits robust against common security defenses,

such as address space randomization [25] and w⊕ x

memory pages (e.g., Windows DEP). In this work, we

always require source code. AEG on binary-only is left

as future work. We also do not claim AEG is a “solved”

problem; there is always opportunity to improve perfor-

mance, scalability, to work on a larger variety of exploit

classes, and to work in new application settings.

2 Overview of AEG

This section explains how AEG works by stepping

through the entire process of bug-finding and exploit

generation on a real world example. The target appli-

cation is the setuid root iwconfig utility from the

Wireless Tools package (version 26), a program

consisting of about 3400 lines of C source code.

Before AEG starts the analysis, there are two neces-

sary preprocessing steps: 1) We build the project with

the GNU C Compiler (GCC) to create the binary we

want to exploit, and 2) with the LLVM [17] compiler—

to produce bytecode that our bug-finding infrastructure

uses for analysis. After the build, we run our tool, AEG,

and get a control flow hijacking exploit in less than 1

second. Providing the exploit string to the iwconfig

binary, as the 1st argument, results in a root shell. We

have posted a demonstration video online [1].

Figure 1 shows the code snippet that is relevant to the

generated exploit. iwconfig has a classic strcpy

buffer overflow vulnerability in the get info function

(line 15), which AEG spots and exploits automatically in

less than 1 second. To do so, our system goes through

the following analysis steps:

1. AEG searches for bugs at the source code level

by exploring execution paths. Specifically, AEG

executes iwconfig using symbolic arguments

(argv) as the input sources. AEG considers a vari-

ety of input sources, such as files, arguments, etc.,

by default.

2. After following the path main → print info

→ get info, AEG reaches line 15, where it de-

tects an out-of-bounds memory error on variable

2

1 i n t main (i n t argc , char ∗∗ a rgv) {
2 i n t s k f d ; /∗ g e n e r i c raw s o c k e t de sc . ∗ /

3 i f (a r g c == 2)

4 p r i n t i n f o (skfd , a rgv [1] , NULL, 0) ;

5 . . .

6 s t a t i c i n t p r i n t i n f o (i n t skfd , char ∗ i fname , char ∗ a r g s [] , i n t c o u n t)

{
7 s t r u c t w i r e l e s s i n f o i n f o ;

8 i n t r c ;

9 r c = g e t i n f o (skfd , i fname , &i n f o) ;

10 . . .

11 s t a t i c i n t g e t i n f o (i n t skfd , char ∗ i fname , s t r u c t w i r e l e s s i n f o ∗ i n f o

) {
12 s t r u c t iwreq wrq ;

13 i f (i w g e t e x t (skfd , i fname , SIOCGIWNAME, &wrq) < 0) {
14 s t r u c t i f r e q i f r ;

15 s t r c p y (i f r . i f r n a m e , i fname) ; /∗ b u f f e r o v e r f l o w ∗ /

16 . . .

Figure 1: Code snippet from Wireless Tools’ iwconfig.

Stack

Return Address

Other local

variables

ifr.ifr_name

Heap

Figure 2: Memory Diagram

00000000 02 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00000010 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00000020 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00000030 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00000040 01 01 01 01 70 f3 ff bf 31 c0 50 68 2f 2f 73 68 |....p...1.Ph//sh|

00000050 68 2f 62 69 6e 89 e3 50 53 89 e1 31 d2 b0 0b cd |h/bin..PS..1....|

00000060 80 01 01 01 00 |.....|

Figure 3: A generated exploit of iwconfig from AEG.

ifr.ifr name. AEG solves the current path con-

straints and generates a concrete input that will trig-

ger the detected bug, e.g., the first argument has to

be over 32 bytes.

3. AEG performs dynamic analysis on the iwconfig

binary using the concrete input generated in step 2.

It extracts runtime information about the memory

layout, such as the address of the overflowed buffer

(ifr.ifr name) and the address of the return ad-

dress of the vulnerable function (get info).

4. AEG generates the constraints describing the ex-

ploit using the runtime information generated

from the previous step: 1) the vulnerable buffer

(ifr.ifr name) must contain our shellcode, and

2) the overwritten return address must contain the

address of the shellcode—available from runtime.

Next, AEG appends the generated constraints to the

path constraints and queries a constraint solver for

a satisfying answer.

5. The satisfying answer gives us the exploit string,

shown in Figure 3. Finally, AEG runs the program

with the generated exploit and verifies that it works,

i.e., spawns a shell. If the constraints were not solv-

able, AEG would resume searching the program for

the next potential vulnerability.

Challenges. The above walkthrough illustrates a num-

ber of challenges that AEG has to address:

• The State Space Explosion problem (Steps 1-2).

There are potentially an infinite number of paths

that AEG has to explore until an exploitable path

is detected. AEG utilizes preconditioned symbolic

execution (see § 5.2) to target exploitable paths.

• The Path Selection problem (Steps 1-2). Amongst

an infinite number of paths, AEG has to select

which paths should be explored first. To do so, AEG

uses path prioritization techniques (see § 5.3).

• The Environment Modelling problem (Steps 1-3).

Real-world applications interact intensively with

the underlying environment. To enable accurate

analysis on such programs AEG has to model the

environment IO behavior, including command-line

arguments, files and network packets (see § 5.4).

• The Mixed Analysis challenge (Steps 1-4). AEG

performs a mix of binary- and source-level analysis

in order to scale to larger programs than could be

handled with a binary-only approach. Combining

the analyses’ results of such fundamentally differ-

ent levels of abstraction presents a challenge on its

own (see § 6.2).

• The Exploit Verification problem (Step 5). Last,

3

Unsafe (Π bug)

Input Space

Exploits

Attacker Logic

(Π bug Λ Π exploit)

Precondition (Π prec)

Figure 4: The input space diagram shows the rela-

tionship between unsafe inputs and exploits. Pre-

conditioned symbolic execution narrows down the

search space to inputs that satisfy the precondition

(Πprec).

AEG has to verify that the generated exploit is a

working exploit for a given system (see § 6.3).

3 The AEG Challenge

At its core, the automatic exploit generation (AEG)

challenge is a problem of finding program inputs that

result in a desired exploited execution state. In this sec-

tion, we show how the AEG challenge can be phrased

as a formal verification problem, as well as propose a

new symbolic execution technique that allows AEG to

scale to larger programs than previous techniques. As

a result, this formulation: 1) enables formal verification

techniques to produce exploits, and 2) allows AEG to di-

rectly benefit from any advances in formal verification.

3.1 Problem Definition

In this paper we focus on generating a control flow

hijack exploit input that intuitively accomplishes two

things. First, the exploit should violate program safety,

e.g., cause the program to write to out-of-bound mem-

ory. Second, the exploit must redirect control flow to the

attacker’s logic, e.g., by executing injected shellcode,

performing a return-to-libc attack, and others.

At a high level, our approach uses program verifica-

tion techniques where we verify that the program is ex-

ploitable (as opposed to traditional verification that ver-

ifies the program is safe). The exploited state is char-

acterized by two Boolean predicates: a buggy execu-

tion path predicate Πbug and a control flow hijack ex-

ploit predicate Πexploit, specifying the control hijack and

the code injection attack. The Πbug predicate is satis-

fied when a program violates the semantics of program

safety. However, simply violating safety is typically

not enough. In addition, Πexploit captures the conditions

needed to hijack control of the program.

An exploit in our approach is an input ε that satisfies

the Boolean equation:

Πbug(ε) ∧ Πexploit(ε) = true (1)

Using this formulation, the mechanics of AEG is to

check at each step of the execution whether Equation 1

is satisfiable. Any satisfying answer is, by construction,

a control flow hijack exploit. We discuss these two pred-

icates in more detail below.

The Unsafe Path Predicate Πbug. Πbug represents the

path predicate of an execution that violates the safety

property φ . In our implementation, we use popular well-

known safety properties for C programs, such as check-

ing for out-of-bounds writes, unsafe format strings, etc.

The unsafe path predicate Πbug partitions the input space

into inputs that satisfy the predicate (unsafe), and inputs

that do not (safe). While path predicates are sufficient to

describe bugs at the source-code level, in AEG they are

necessary but insufficient to describe the very specific

actions we wish to take, e.g., execute shellcode.

The Exploit Predicate Πexploit. The exploit predicate

specifies the attacker’s logic that the attacker wants to do

after hijacking eip. For example, if the attacker only

wants to crash the program, the predicate can be as sim-

ple as “set eip to an invalid address after we gain con-

trol”. In our experiments, the attacker’s goal is to get a

shell. Therefore, Πexploit must specify that the shellcode

is well-formed in memory, and that eip will transfer

control to it. The conjunction of the exploit predicate

(Πexploit) will induce constraints on the final solution. If

the final constraints (from Equation 1) are not met, we

consider the bug as non-exploitable (§6.2).

3.2 Scaling with Preconditioned Symbolic Ex
ecution

Our formulation allows us to use formal verification

techniques to generate exploits. While this means for-

mal verification can be used for AEG, existing tech-

niques such as model checking, weakest preconditions,

and forward symbolic verification unfortunately only

scale to small programs. For example, KLEE is a state-

of-the-art forward symbolic execution engine [5], but in

practice is limited to small programs such as /bin/ls.

In our experiments, KLEE was able to find only 1 of the

bugs we exploited (§ 8).

We observe that one reason scalability is limited with

existing verification techniques is that they prove the ab-

sence of bugs by considering the entire program state

space. For example, when KLEE explores a program for

4

buffer overflows it considers all possible input lengths

up to some maximum size, i.e., inputs of length 0, in-

puts of length 1, and so on. We observe that we can

scale AEG by restricting the state space to only include

states that are likely exploitable, e.g., by considering

only inputs of a minimum length needed to overwrite

any buffer. We achieve this by performing low-cost anal-

ysis to determine the minimum length ahead of time,

which allows us to prune off the state space search dur-

ing the (more expensive) verification step.

We propose preconditioned symbolic execution as a

verification technique for pruning off portions of the

state space that are uninteresting. Preconditioned sym-

bolic execution is similar to forward symbolic execu-

tion [16, 23] in that it incrementally explores the state

space to find bugs. However, preconditioned symbolic

execution takes in an additional Πprec parameter. Pre-

conditioned symbolic execution only descends into pro-

gram branches that satisfy Πprec, with the net effect

that subsequent steps of unsatisfied branches are pruned

away. 2 In AEG, we use preconditioned symbolic ex-

ecution to restrict exploration to only likely-exploitable

regions of the state space. For example, for buffer over-

flows Πprec is specified via lightweight program analysis

that determines the minimum sized input to overflow any

buffer.

Figure 4 depicts the differences visually. Typical ver-

ification explores the entire input state space, as rep-

resented by the overall box, with the goal of finding

inputs that are unsafe and satisfy Πbug. In AEG, we

are only concerned with the subset of unsafe states

that are exploitable, represented by the circle labeled

Πbug∧Πexploit. The intuition is that preconditioned sym-

bolic execution limits the space searched to a smaller

box.

Logically, we would be guaranteed to find all possi-

ble exploits when Πprec is less restrictive than the ex-

ploitability condition:

Πbug(x)∧Πexploit(x)⇒Πprec(x)

In practice, this restriction can be eased to narrow the

search space even further, at the expense of possibly

missing some exploits. We explore several possibilities

in § 5.2, and empirically evaluate their effectiveness in

§ 8.

2Note preconditioned forward symbolic execution is different than

weakest preconditions. Weakest preconditions statically calculate the

weakest precondition to achieve a desired post-condition. Here we

dynamically check a not-necessarily weakest precondition for pruning.

4 Our Approach

In this section, we give an overview of the compo-

nents of AEG, our system for automatic exploit gen-

eration. Figure 5 shows the overall flow of generat-

ing an exploit in AEG. Our approach to the AEG chal-

lenge consists of six components: PRE-PROCESS, SRC-

ANALYSIS, BUG-FIND, DBA 3, EXPLOIT-GEN, and

VERIFY.

PRE-PROCESS: src→ (Bgcc, Bllvm).

AEG is a two-input single-output system: the user

provides the target binary and the LLVM bytecode

of the same program, and—if AEG succeeds—we

get back a working exploit for the given binary.

Before the program analysis part begins, there is

a necessary manual preprocessing step: the source

program (src) is compiled down to 1) a binary Bgcc,

for which AEG will try to generate a working ex-

ploit and 2) a LLVM bytecode file Bllvm, which will

be used by our bug finding infrastructure.

SRC-ANALYSIS: Bllvm→ max.

AEG analyzes the source code to generate the max-

imum size of symbolic data max that should be

provided to the program. AEG determines max by

searching for the largest statically allocated buffers

of the target program. AEG uses the heuristic that

max should be at least 10% larger than the largest

buffer size.

BUG-FIND (Bllvm, φ , max)→ (Πbug,V).
BUG-FIND takes in LLVM bytecode Bllvm and a

safety property φ , and outputs a tuple 〈Πbug,V 〉
for each detected vulnerability. Πbug contains the

path predicate, i.e., the conjunction of all path con-

straints up to the violation of the safety property φ .

V contains source-level information about the de-

tected vulnerability, such as the name of the object

being overwritten, and the vulnerable function. To

generate the path constraints, AEG uses a symbolic

executor. The symbolic executor reports a bug to

AEG whenever there is a violation of the φ prop-

erty. AEG utilizes several novel bug-finding tech-

niques to detect exploitable bugs (see § 5).

DBA: (Bgcc, (Πbug,V))→ R.

DBA performs dynamic binary analysis on the tar-

get binary Bgcc with a concrete buggy input and ex-

tracts runtime information R. The concrete input

is generated by solving the path constraints Πbug.

While executing the vulnerable function (specified

in V at the source-code level), DBA examines the

binary to extract low-level runtime information (R),

3Dynamic Binary Analysis

5

 AEG

Source

Code

1, Pre-

Process

3. Bug-Find

4. DBA

5. Exploit-Gen
Exploit

ε
6. Verify,V

Πbug Λ Πexploit

Symbolic

Executor

runtime info

Πbug

Bgcc

Bllvm Πbug

2. Src-

Analysis max

Φ

Figure 5: AEG design.

such as the vulnerable buffer’s address on the stack,

the address of the vulnerable function’s return ad-

dress, and the stack memory contents just before

the vulnerability is triggered. DBA has to ensure

that all the data gathered during this stage are accu-

rate, since AEG relies on them to generate working

exploits (see § 6.1).

EXPLOIT-GEN: (Πbug,R)→ Πbug∧Πexploit.

EXPLOIT-GEN receives a tuple with the path predi-

cate of the bug (Πbug) and runtime information (R),

and constructs a formula for a control flow hijack

exploit. The output formula includes constraints

ensuring that: 1) a possible program counter points

to a user-determined location, and 2) the location

contains shellcode (specifying the attacker’s logic

Πexploit). The resulting exploit formula is the con-

junction of the two predicates (see § 6.2).

VERIFY: (Bgcc, Πbug∧Πexploit)→ {ε , ⊥}.
VERIFY takes in the target binary executable Bgcc

and an exploit formula Πbug ∧Πexploit, and returns

an exploit ε only if there is a satisfying answer.

Otherwise, it returns ⊥. In our implementation,

AEG performs an additional step in VERIFY: runs

the binary Bgcc with ε as an input, and checks if

the adversarial goal is satisfied or not, i.e., if the

program spawns a shell (see § 6.3).

Algorithm 1 shows our high-level algorithm for solving

the AEG challenge.

5 BUG-FIND: Program Analysis for Ex-

ploit Generation

BUG-FIND takes as input the target program in

LLVM bytecode form, checks for bugs, and for each bug

found attempts the remaining exploit generation steps

until it succeeds. BUG-FIND finds bugs with symbolic

program execution, which explores the program state

space one path at a time. However, there are an infi-

Algorithm 1: Our AEG exploit generation algo-

rithm

input : src: the program’s source code

output: {ε , ⊥}: a working exploit or ⊥

1 (Bgcc, Bllvm) = Pre-Process(src);

2 max = Src-Analysis(Bllvm);

3 while (Πbug,V) = Bug-Find(Bllvm, φ , max) do

4 R = DBA(Bgcc, (Πbug,V)) ;

5 Πbug∧Πexploit = Exploit-Gen(Πbug, R) ;

6 ε = Verify(Bgcc, Πbug∧Πexploit);

7 if ε 6= ⊥ then

8 return ε;

9 return ⊥;

nite number of paths to potentially explore. AEG ad-

dresses this problem with two novel algorithms. First,

we present a novel technique called preconditioned sym-

bolic execution that constrains the paths considered to

those that would most likely include exploitable bugs.

Second, we propose novel path prioritization heuristics

for choosing which paths to explore first with precondi-

tioned symbolic execution.

5.1 Traditional Symbolic Execution for Bug
Finding

At a high level, symbolic execution is conceptually

similar to normal concrete execution except that we pro-

vide a fresh symbolic variable instead of providing a

concrete value for inputs. As the program executes, each

step of symbolic execution builds up an expression by

substituting symbolic inputs for terms of the program.

At program branches, the interpreter conceptually “forks

off” two interpreters, adding the true branch guard to the

conditions for the true branch interpreter, and similarly

for the false branch. The conditions imposed as the in-

terpreter executes are called the path predicate to exe-

6

cute the given path. After forking, the interpreter checks

if the path predicate is satisfiable by querying a decision

procedure. If not, the path is not realizable by any input,

so the interpreter exits. If the path predicate can be sat-

isfied, the interpreter continues executing and exploring

the program state space. A more precise semantics can

be found in Schwartz et al. [23].

Symbolic execution is used to find bugs by adding

safety checks using φ . For example, whenever we ac-

cess a buffer using a pointer, the interpreter needs to en-

sure the pointer is within the bounds of the buffer. The

bounds-check returns either true, meaning the safety

property holds, or false, meaning there is a violation,

thus a bug. Whenever a safety violation is detected,

symbolic execution stops and the current buggy path

predicate (Πbug) is reported.

5.2 Preconditioned Symbolic Execution

The main challenge with symbolic execution (and

other verification techniques) is managing the state

space explosion problem. Since symbolic execution

forks off a new interpreter at every branch, the total

number of interpreters is exponential in the number of

branches.

We propose preconditioned symbolic execution as a

novel method to target symbolic execution towards a

certain subset of the input state space (shown in Fig-

ure 4). The state space subset is determined by the

precondition predicate (Πprec); inputs that do not sat-

isfy Πprec will not be explored. The intuition for pre-

conditioned symbolic execution is that we can narrow

down the state space we are exploring by specifying ex-

ploitability conditions as a precondition, e.g., all sym-

bolic inputs should have the maximum size to trigger

buffer overflow bugs. The main benefit from precondi-

tioned symbolic execution is simple: by limiting the size

of the input state space before symbolic execution be-

gins, we can prune program paths and therefore explore

the target program more efficiently.

Note that preconditions cannot be selected at random.

If a precondition is too specific, we will detect no ex-

ploits (since exploitability will probably not imply the

precondition); if it is too general, we will have to ex-

plore almost the entire state space. Thus, preconditions

have to describe common characteristics among exploits

(to capture as many as possible) and at the same time it

should eliminate a significant portion of non-exploitable

inputs.

Preconditioned symbolic execution enforces the pre-

condition by adding the precondition constraints to the

path predicate during initialization. Adding constraints

may seem strange since there are more checks to per-

1 i n t p r o c e s s i n p u t (char i n p u t [4 2])

2 char buf [2 0] ;

3 whi le (i n p u t [i] != ’\0 ’)

4 buf [i ++] = i n p u t [i] ;

Figure 6: Tight symbolic loops. A common pattern

for most buffer overflows.

form at branch points during symbolic execution. How-

ever, the shrinking of the state space—imposed by the

precondition constraints—outweighs the decision pro-

cedure overhead at branching points. When the pre-

condition for a branch is unsatisfiable, we do no further

checks and do not fork off an interpreter at all for the

branch. We note that while we focus only on exploitable

paths, the overall technique is more generally applica-

ble.

The advantages of preconditioned symbolic execu-

tion are best demonstrated via example. Consider the

program shown in Figure 6. Suppose that the input

buffer contains 42 symbolic bytes. Lines 4-5 represent

a tight symbolic loop—equivalent to a strcpy—that

will eventually spawn 42 different interpreters with tra-

ditional symbolic execution, each one having a differ-

ent path predicate. The 1st interpreter will not execute

the loop and will assume that (input[0] = 0), the 2nd

interpreter will execute the loop once and assume that

(input[0] 6= 0)∧ (input[1] = 0), and so on. Thus, each

path predicate will describe a different condition about

the string length of the symbolic input buffer. 4

Preconditioned symbolic execution avoids examining

the loop iterations that will not lead to a buffer overflow

by imposing a length precondition:

L = ∀i<n
i=0(input[i] 6= 0)∧ (input[n] = 0)

This predicate is appended to the path predicate (Π)

before we start the symbolic execution of the program,

thus eliminating paths that do not satisfy the precondi-

tion. In our previous example (Figure 6), the executor

performs the followings checks every time we reach the

loop branch point:

false branch: Π∧L⇒ input[i] = 0, pruned ∀i < n

true branch: Π∧L⇒ input[i] 6= 0, satisfiable ∀i < n

Both checks are very fast to perform, since the validity

(or invalidity) of the branch condition can be immedi-

ately determined by the precondition constraints L (in

4The length precondition for strings is generated based on a null

character, because all strings are null-terminated.

7

fact, in this specific example there is no need for a solver

query, since validity or invalidity can be determined by

a simple iteration through our assumption set Π∧ L).

Thus, by applying the length precondition we only need

a single interpreter to explore the entire loop. In the rest

of the section, we show how we can generate different

types of preconditions to reduce the search space.

5.2.1 Preconditions

In AEG, we have developed and implemented 4 different

preconditions for efficient exploit generation:

None There is no precondition and the state space is

explored as normal.

Known Length The precondition is that inputs are of

known maximum length, as in the previous exam-

ple. We use static analysis to automatically deter-

mine this precondition.

Known Prefix The precondition is that the symbolic in-

puts have a known prefix.

Concolic Execution Concolic execution [24] can be

viewed as a specific form of preconditioned sym-

bolic execution where the precondition is specified

by a single program path as realized by an exam-

ple input. For example, we may already have an

input that crashes the program, and we use it as a

precondition to determine if the executed path is

exploitable.

The above preconditions assume varying amounts of

static analysis or user input. In the following, we further

discuss these preconditions, and also describe the reduc-

tion in the state space that preconditioned symbolic ex-

ecution offers. A summary of the preconditions’ effect

on branching is shown in Figure 7.

None. Preconditioned symbolic execution is equiva-

lent to standard symbolic execution. The input precon-

dition is true (the entire state space). Input Space: For

S symbolic input bytes, the size of the input space is

256S. The example in Figure 7 contains N +M sym-

bolic branches and a symbolic loop with S maximum

iterations, thus in the worst case (without pruning), we

need 2N ·S ·2M interpreters to explore the state space.

Known Length. The precondition is that all inputs

should be of maximum length. For example, if the in-

put data is of type string, we add the precondition that

each byte of input up to the maximum input length

is not NULL, i.e., (strlen(input) = len) or equiva-

lently in logic (input[0] 6= 0)∧ (input[1] 6= 0)∧ . . . ∧
(input[len−1] 6= 0)∧(input[len] = 0). Input space: The

input space of a string of length len will be 255len. Note

that for len = S, this means a 0.4% decrease of the in-

put space for each byte. Savings: The length precondi-

tion does not affect the N +M symbolic branches of the

example in Figure 7. However, the symbolic strcpy

will be converted into a straight-line concrete copy —

since we know the length and pruning is enabled, we

need not consider copying strings of all possible lengths.

Thus, we need 2N+M interpreters to explore the entire

state space. Overall, the length precondition decreases

the input space slightly, but can concretize strcpy-

like loops—a common pattern for detecting buffer over-

flows.

Known Prefix. The precondition constrains a prefix

on input bytes, e.g., an HTTP GET request always starts

with “GET”, or that a specific header field needs to be

within a certain range of values, e.g., the protocol field

in the IP header. We use a prefix precondition to tar-

get our search towards inputs that start with that specific

prefix. For example, suppose that we wish to explore

only PNG images on an image-processing utility. The

PNG standard specifies that all images must start with a

standard 8-byte header PNG H, thus simply by spec-

ifying a prefix precondition (input[0] = PNG H[0])∧
. . . ∧(input[7] = PNG H[7]), we can focus our search to

PNG images alone. Note that prefix preconditions need

not only consist of exact equalities; they can also spec-

ify a range or an enumeration of values for the symbolic

bytes.

Input space: For S symbolic bytes and an exact prefix

of length P (P < N < S), the size of the input space will

be 256S−P. Savings: For the example shown in Figure 7,

the prefix precondition effectively concretizes the first P

branches as well as the first P iterations of the symbolic

strcpy, thus reducing the number of required inter-

preters to S · 2N+M−P. A prefix precondition can have a

radical effect on the state space, but is no panacea. For

example, by considering only valid prefixes we are po-

tentially missing exploits caused by malformed headers.

Concolic Execution. The dual of specifying no pre-

condition is specifying the precondition that all in-

put bytes have a specific value. Specifying all in-

put bytes have a specific value is equivalent to con-

colic execution [24]. Mathematically, we specify ∀i :
∧

(input[i] = concrete input[i]).
Input Space: There is a single concrete input. Savings:

A single interpreter is needed to explore the program,

and because of state pruning, we are concretely execut-

ing the execution path for the given input. Thus, es-

pecially for concolic execution, it is much more useful

to disable state pruning and drop the precondition con-

straints whenever we fork a new interpreter. Note that,

in this case, AEG behaves as a concolic fuzzer, where

8

N
symbolic
branches

i f (input[0] < 42) ...

...

i f (input[N-1] < 42) ...

symbolic
loop

strcpy(dest, input);

M
symbolic
branches

i f (input[N] < 42) ...

i f (input[N+1] < 42) ...

...

i f (input[N+M-1] < 42) ...

(a) An example that illustrates the advantages of precondi-

tioned symbolic execution.

Precondition Input Space # of Interpreters

None 256S 2N ·S ·2M

Known Length 255S 2N ·2M

Known Prefix 256S−P 2N−P(S−P)2M

Concolic 1 1

(b) The size of the input space and the number of interpreters re-

quired to explore the state space of the example program at the left,

for each of the 4 preconditions supported by AEG. We use S to de-

note the number of symbolic input bytes and P for the length of the

known prefix (P < N < S).

Figure 7: An example of preconditioned symbolic execution.

the concrete constraints describe the initial seed. Even

though concolic execution seems to be the most con-

strained of all methods, it can be very useful in practice.

For instance, an attacker may already have a proof-of-

concept (PoC—an input that crashes the program) but

cannot create a working exploit. AEG can take that PoC

as a seed and generate an exploit—as long as the pro-

gram is exploitable with any of the AEG-supported ex-

ploitation techniques.

5.3 Path Prioritization: Search Heuristics

Preconditioned symbolic execution limits the search

space. However, within the search space, there is still

the question of path prioritization: which paths should

be explored first? AEG addresses this problem with path-

ranking heuristics. All pending paths are inserted into a

priority queue based on their ranking, and the next path

to explore is always drawn out of the priority queue.

In this section, we present two new path prioritization

heuristics we have developed: buggy-path-first and loop

exhaustion.

Buggy-Path-First. Exploitable bugs are often pre-

ceded by small but unexploitable mistakes. For exam-

ple, in our experiments we found errors where a pro-

gram first has an off-by-one error in the amount of mem-

ory allocated for a strcpy. While the off-by-one er-

ror could not directly be exploited, it demonstrated that

the programmer did not have a good grasp of buffer

bounds. Eventually, the length misunderstanding was

used in another statement further down the path that

was exploitable. The observation that one bug on a

path means subsequent statements are also likely to be

buggy (and hopefully exploitable) led us to the buggy-

path-first heuristic. Instead of simply reporting the first

bug and stopping like other tools such as KLEE [5], the

buggy-path-first heuristic prioritizes buggy paths higher

and continues exploration.

Loop Exhaustion. Loops whose exit condition de-

pends on symbolic input may spawn a tremendous

amount of interpreters—even when using precondi-

tioned symbolic execution techniques such as specify-

ing a maximum length. Most symbolic execution ap-

proaches mitigate this program by de-prioritizing subse-

quent loop executions or only considering loops a small

finite number of times, e.g., up to 3 iterations. While

traditional loop-handling strategies are excellent when

the main goal is maximizing code coverage, they often

miss exploitable states. For example, the perennial ex-

ploitable bug is a strcpy buffer overflow, where the

strcpy is essentially a while loop that executes as long

as the source buffer is not NULL. Typical buffer sizes

are quite large, e.g., 512 bytes, which means we must

execute the loops at least that many times to create an

exploit. Traditional approaches that limit loops simply

miss these bugs.

We propose and use a loop exhaustion search strat-

egy. The loop-exhaustion strategy gives higher priority

to an interpreter exploring the maximum number of loop

iterations, hoping that computations involving more it-

erations are more promising to produce bugs like buffer

overflows. Thus, whenever execution hits a symbolic

loop, we try to exhaust the loop—execute it as many

times as possible. Exhausting a symbolic loop has two

immediate side effects: 1) on each loop iteration a new

interpreter is spawned, effectively causing an explosion

in the state space, and 2) execution might get “stuck”

9

in a deep loop. To avoid getting stuck, we impose two

additional heuristics during loop exhaustion: 1) we use

preconditioned symbolic execution along with pruning

to reduce the number of interpreters or 2) we give higher

priority to only one interpreter that tries to fully exhaust

the loop, while all other interpreters exploring the same

loop have the lowest possible priority.

5.4 Environment Modelling: Vulnerability De
tection in the Real World

AEG models most of the system environments that an

attacker can possibly use as an input source. Therefore,

AEG can detect most security relevant bugs in real pro-

grams. Our support for environment modeling includes

file systems, network sockets, standard input, program

arguments, and environment variables. Additionally,

AEG handles most common system and library function

calls.

Symbolic Files. AEG employs an approach similar to

KLEE’s [5] for symbolic files: modeling the fundamen-

tal system call functions, such as open, read, and write.

AEG simplifies KLEE’s file system models to speedup

the analysis, since our main focus is not on code cover-

age, but on efficient exploitable bug detection. For ex-

ample, AEG ignores symbolic file properties such as per-

missions, in order to avoid producing additional paths.

Symbolic Sockets. To be able to produce remote ex-

ploits, AEG provides network support in order to ana-

lyze networking code. A symbolic socket descriptor is

handled similarly to a symbolic file descriptor, and sym-

bolic network packets and their payloads are handled

similarly to symbolic files and their contents. AEG cur-

rently handles all network-related functions, including

socket, bind, accept, send, etc.

Environment Variables. Several vulnerabilities are

triggered because of specific environment variables.

Thus, AEG supports a complete summary of get env,

representing all possible results (concrete values, fully

symbolic and failures).

Library Function Calls and System Calls. AEG pro-

vides support for about 70 system calls. AEG supports

all the basic network system calls, thread-related system

calls, such as fork, and also all common formatting

functions, including printf and syslog. Threads are

handled in the standard way, i.e., we spawn a new sym-

bolic interpreter for each process/thread creation func-

tion invocation. In addition, AEG reports a possibly ex-

ploitable bug whenever a (fully or partially) symbolic

argument is passed to a formatting function. For in-

stance, AEG will detect a format string vulnerability for

“fprintf(stdout, user input)”.

6 DBA, EXPLOIT-GEN and VERIFY: The

Exploit Generation

At a high level, the three components of AEG (DBA,

EXPLOIT-GEN and VERIFY) work together to convert

the unsafe predicate (Πbug) output by BUG-FIND into

a working exploit ε .

6.1 DBA: Dynamic Binary Analysis

DBA is a dynamic binary analysis (instrumentation)

step. It takes in three inputs: 1) the target executable

(Bgcc) that we want to exploit; 2) the path constraints

that lead up to the bug (Πbug); and 3) the names of vul-

nerable functions and buffers, such as the buffer suscep-

tible to overflow in a stack overflow attack or the buffer

that holds the malicious format string in a format string

attack. It then outputs a set of runtime information: 1)

the address to overwrite (in our implementation, this is

the address of the return address of a function, but we

can easily extend this to include function pointers or en-

tries in the GOT), 2) the starting address that we write to,

and 3) the additional constraints that describe the stack

memory contents just before the bug is triggered.

Once AEG finds a bug, it replays the same buggy ex-

ecution path using a concrete input. The concrete input

is generated by solving the path constraints Πbug. Dur-

ing DBA, AEG performs instrumentation on the given

executable binary Bgcc. When it detects the vulnerable

function call, it stops execution and examines the stack.

In particular, AEG obtains the address of the return ad-

dress of the vulnerable function (&retaddr), the address

of the vulnerable buffer where the overwrite starts (bu-

faddr) and the stack memory contents between them (µ).

In the case of format string vulnerabilities, the vulner-

able function is a variadic formatting function that takes

user input as the format argument. Thus, the address

of the return address (&retaddr) becomes the return ad-

dress of the vulnerable formatting function. For exam-

ple, if there is a vulnerable printf function in a pro-

gram, AEG overwrites the return address of the printf

function itself, exploiting the format string vulnerability.

This way, an attacker can hijack control of the program

right after the vulnerable function returns. It is straight-

forward to adapt additional format string attacks such as

GOT hijacking, in AEG.

Stack Restoration. AEG examines the stack contents

during DBA in order to generate an exploit predicate

(Πbug ∧Πexploit) that does not corrupt the local stack

variables in EXPLOIT-GEN (§ 6.2). For example, if

there is a dereference from the stack before the vulner-

10

1 char ∗ p t r = m a l l oc (1 0 0) ;

2 char buf [1 0 0] ;

3 s t r c p y (buf , i n p u t) ; / / o v e r f l o w

4 s t r c p y (p t r , buf) ; / / p t r d e r e f e r e n c e

5 re turn ;

Figure 8: When stack contents are garbled by stack

overflow, a program can fail before the return in-

struction.

able function returns, simply overwriting the stack will

not always produce a valid exploit. Suppose an attacker

tries to exploit the program shown in Figure 8 using the

strcpy buffer overflow vulnerability. In this case, ptr

is located between the return address and the buf buffer.

Note that ptr is dereferenced after the stack overflow

attack. Since ptr is also on the stack, the contents of

ptr are garbled by the stack overflow, and might cause

the program to crash before the return instruction. Thus,

a sophisticated attack must consider the above case by

overwriting a valid memory pointer to the stack. AEG

properly handles this situation by examining the entire

stack space during DBA, and passing the information

(µ) to EXPLOIT-GEN.

6.2 ExploitGen

EXPLOIT-GEN takes in two inputs to produce an ex-

ploit: the unsafe program state containing the path con-

straints (Πbug) and low-level runtime information R, i.e.,

the vulnerable buffer’s address (bufaddr), the address

of the vulnerable function’s return address (&retaddr),

and the runtime stack memory contents (µ). Using

that information, EXPLOIT-GEN generates exploit for-

mulas (Πbug ∧Πexploit) for four types of exploits: 1)

stack-overflow return-to-stack, 2) stack-overflow return-

to-libc, 3) format-string return-to-stack, 4) format-string

return-to-libc. In this paper, we present the full algo-

rithm only for 1. The full algorithms for the rest of our

exploitation techniques can be found on our website [2].

In order to generate exploits, AEG performs two ma-

jor steps. First, AEG determines the class of attack

to perform and formulates Πexploit for control hijack.

For example, in a stack-overflow return-to-stack attack,

Πexploit must have the constraint that the address of the

return address (&retaddr) should be overwritten to con-

tain the address of the shellcode—as provided by DBA.

Further, the exploit predicate Πexploit must also contain

constraints that shellcode must be written on the target

buffer. The generated predicate is used in conjunction

with Πbug to produce the final constraints (the exploit

formula Πbug ∧ Πexploit) that can be solved to produce

Algorithm 2: Stack-Overflow Return-to-Stack Ex-

ploit Predicate Generation Algorithm

input : (bufaddr, &retaddr, µ) = R

output: Πexploit

1 for i = 1 to len(µ) do

2 exp str[i]← µ[i] ; // stack restoration

3 offset← &retaddr - bufaddr;

4 jmp target← offset + 8 ; // old ebp + retaddr = 8

5 exp str[offset]← jmp target ; // eip hijack

6 for i = 1 to len(shellcode) do

7 exp str[offset + i]← shellcode[i];

8 return (Mem[bu f addr] == exp str[1]) ∧ . . . ∧
(Mem[bu f addr+ len(µ)−1] == exp str[len(µ)]) ;

// Πexploit

an exploit. Algorithm 2 shows how the exploit predicate

(Πexploit) is generated for stack-overflow return-to-stack

attacks.

6.2.1 Exploits

AEG produces two types of exploits: return-to-stack [21]

and return-to-libc [10], both of which are the most pop-

ular classic control hijack attack techniques. AEG cur-

rently cannot handle state-of-the-art protection schemes,

but we discuss possible directions in § 9. Additionally,

our return-to-libc attack is different from the classic one

in that we do not need to know the address of a “/bin/sh”

string in the binary. This technique allows bypassing

stack randomization (but not libc randomization).

Return-to-stack Exploit. The return-to-stack exploit

overwrites the return address of a function so that the

program counter points back to the injected input, e.g.,

user-provided shellcode. To generate the exploit, AEG

finds the address of the vulnerable buffer (bufaddr) into

which an input string can be copied, and the address

where the return address of a vulnerable function is lo-

cated at. Using the two addresses, AEG calculates the

jump target address where the shellcode is located. Al-

gorithm 2 describes how to generate an exploit predicate

for a stack overflow vulnerability in the case of a return-

to-stack exploit where the shellcode is placed after the

return address.

Return-to-libc Exploit. In the classic return-to-libc

attack, an attacker usually changes the return address

to point to the execve function in libc. However, to

spawn a shell, the attacker must know the address of a

“/bin/sh” string in the binary, which is not common in

most programs. In our return-to-libc attack, we create

a symbolic link to /bin/sh and for the link name we

use an arbitrary string which resides in libc. For exam-

11

ple, a 5 byte string pattern e8..00....16
5 is very common

in libc, because it represents a call instruction on x86.

Thus, AEG finds a certain string pattern in libc, and gen-

erates a symbolic link to /bin/sh in the same direc-

tory as the target program. The address of the string is

passed as the first argument of execve (the file to exe-

cute), and the address of a null string 0000000016 is used

for the second and third arguments. The attack is valid

only for local attack scenarios, but is more reliable since

it bypasses stack address randomization.

Note that the above exploitation techniques (return-

to-stack and return-to-libc) determine how to spawn a

shell for a control hijack attack, but not how to hijack

the control flow. Thus, the above techniques can be ap-

plied by different types of control hijack attacks, e.g.,

format string attacks and stack overflows. For instance,

a format string attack can use either of the above tech-

niques to spawn a shell. AEG currently handles all pos-

sible combinations of the above attack-exploit patterns.

6.2.2 Exploitation Techniques

Various Shellcode. The return-to-stack exploit re-

quires shellcode to be injected on the stack. To support

different types of exploits, AEG has a shellcode database

with two shellcode classes: standard shellcodes for lo-

cal exploits, and binding and reverse binding shellcodes

for remote exploits. In addition, this attack restores

the stack contents by using the runtime information µ

(§ 6.1).

Types of Exploits. AEG currently supports four types

of exploits: stack-overflow return-to-stack, stack-

overflow return-to-libc, format-string return-to-stack,

and format-string return-to-libc exploit. The algorithms

to generate the exp str for each of the above exploits are

simple extensions of Algorithm 2. The interested reader

may refer to our website [2] for the full algorithms.

Shellcode Format & Positioning. In code-injection

attack scenarios, there are two parameters that we must

always consider: 1) the format, e.g., size and allowed

characters and 2) the positioning of the injected shell-

code. Both are important because advanced attacks have

complex requirements on the injected payload, e.g., that

the exploit string fits within a limited number of bytes

or that it only contains alphanumeric characters. To

find positioning, AEG applies a brute-force approach:

tries every possible user-controlled memory location to

place the shellcode. For example, AEG can place the

shellcode either below or above the overwritten return

address. To address the special formatting challenge,

5A dot (.) represents a 4-bit string in hexadecimal notation.

AEG has a shellcode database containing about 20 dif-

ferent shellcodes, including standard and alphanumeric.

Again, AEG tries all possible shellcodes in order to in-

crease reliability. Since AEG has a VERIFY step, all the

generated control hijacks are verified to become actual

exploits.

6.2.3 Reliability of Exploits

Exploits are delicate, especially those that perform con-

trol flow hijacking. Even a small change, e.g., the way

a program executes either via ./a.out or via ../../../a.out,

will result in a different memory layout of the process.

This problem persists even when ASLR is turned off.

For the same reason, most of the proof-of-concept ex-

ploits in popular advisories do not work in practice with-

out some (minor or major) modification. In this sub-

section, we discuss the techniques employed by AEG

to generate reliable exploits for a given system config-

uration: a) offsetting the difference in environment vari-

ables, and b) using NOP-sleds.

Offsetting the Difference in Environment Variables.

Environment variables are different for different termi-

nals, program arguments of different length, etc. When

a program is first loaded, environment variables will be

copied onto the program’s stack. Since the stack grows

towards lower memory addresses, the more environment

variables there are, the lower the addresses of the ac-

tual program data on the stack are going to be. Envi-

ronment variables such as OLDPWD and (underscore)

change even across same system, since the way the pro-

gram is invoked matters. Furthermore, the arguments

(argv) are also copied onto the stack. Thus, the length

of the command line arguments affects the memory lay-

out. Thus, AEG calculates the addresses of local vari-

ables on the stack based upon the difference in the size

of the environment variables between the binary analysis

and the normal run. This technique is commonly used if

we have to craft the exploit on a machine and execute

the exploit on another machine.

NOP-Sled. AEG optionally uses NOP-sleds. For sim-

plicity, Algorithm 2 does not take the NOP-sled option

into account. In general, a large NOP-sled can make an

exploit more reliable, especially against ASLR protec-

tion. On the other hand, the NOP-sled increases the size

of the payload, potentially making the exploit more dif-

ficult or impossible. In AEG’s case, the NOP-sled option

can be either turned on or off by a command line option.

6.3 Verify

VERIFY takes in two inputs: 1) the exploit constraints

Πbug∧Πexploit, and 2) the target binary. It outputs either

12

a concrete working exploit, i.e., an exploit that spawns

a shell, or ⊥, if AEG fails to generate the exploit. VER-

IFY first solves the exploit constraints to get a concrete

exploit. If the exploit is a local attack, it runs the exe-

cutable with the exploit as the input and checks if a shell

has been spawned. If the exploit is a remote attack, AEG

spawns three processes. The first process runs the exe-

cutable. The second process runs nc to send the exploit

to the executable. The third process checks that a remote

shell has been spawned at port 31337.

Note that, in Figure 5, we have shown a straight-

line flow from PRE-PROCESS to VERIFY for simplic-

ity. However, in the actual system, VERIFY provides

feedback to EXPLOIT-GEN if the constraints cannot be

solved. This is a cue for EXPLOIT-GEN to select a dif-

ferent shellcode.

7 Implementation

AEG is written in a mixture of C++ and Python

and consists of 4 major components: symbolic execu-

tor (BUG-FIND), dynamic binary evaluator (DBA), ex-

ploit generator (EXPLOIT-GEN), and constraint solver

(VERIFY). We chose KLEE [5] as our backend sym-

bolic executor, and added about 5000 lines of code to

implement our techniques and heuristics as well as to

add in support for other input sources (such as sockets

and symbolic environment variables). Our dynamic bi-

nary evaluator was written in Python, using a wrapper

for the GNU debugger [22]. We used STP for constraint

solving [12].

8 Evaluation

The following sections present our experimental

work on the AEG challenge. We first describe the

environment in which we conducted our experiments.

Then, we show the effectiveness of AEG by present-

ing 16 exploits generated by AEG for 14 real-world ap-

plications. Next, we highlight the importance of our

search heuristics—including preconditioned symbolic

execution—in identifying exploitable bugs. In addition,

we present several examples illustrating the exploitation

techniques already implemented in AEG. Last, we eval-

uate the reliability of the generated exploits. For a com-

plete explanation of each generated exploit and more ex-

perimental results, we refer the reader to our website [2].

8.1 Experimental Setup

We evaluated our algorithms and AEG on a machine

with a 2.4 GHz Intel(R) Core 2 Duo CPU and 4GB of

RAM with 4MB L2 Cache. All experiments were per-

formed under Debian Linux 2.6.26-2. We used LLVM-

GCC 2.7 to compile programs to run in our source-based

AEG and GCC 4.2.4 to build binary executables. All

programs presented in the paper are unmodified open-

source applications that people use and can be down-

loaded from the Internet. Time measurements are per-

formed with the Unix time command. The buggy-path-

first and loop exhaustion search heuristics elaborated in

§ 5.3 were turned on by default for all the experiments.

8.2 Exploits by AEG

Table 1 shows the list of vulnerabilities that AEG suc-

cessfully exploits. We found these 14 programs from

a variety of popular advisories: Common Vulnerabili-

ties and Exposures (CVE), Open Source Vulnerability

Database (OSVDB), and Exploit-DB (EDB) and down-

loaded them to test on AEG. Not only did AEG reproduce

the exploits provided in the CVEs, it found and gener-

ated working exploits for 2 additional vulnerabilities —

1 for expect-5.43 and 1 for htget-0.93.

We order the table by the kind of path exploration

technique used to find the bug, ordered from the least to

most amount of information given to the algorithm it-

self. 4 exploits required no precondition at all and paths

were explored using only our path prioritization tech-

niques (§ 5.3). We note that although we build on top of

KLEE [5], in our experiments KLEE only detected the

iwconfig exploitable bug.

6 of the exploits were generated only after inferring

the possible maximum lengths of symbolic inputs using

our static analysis (the Length rows). Without the max-

imum input length AEG failed most often because sym-

bolic execution would end up considering all possible

input lengths up to some maximum buffer size, which

was usually very large (e.g., 512 bytes). Since length is

automatically inferred, these 6 combined with the pre-

vious 4 mean that 10 total exploits were produced auto-

matically with no additional user information.

5 exploits required that the user specify a prefix on

the input space to explore. For example, xmail’s vulner-

able program path is only triggered with valid a email

address. Therefore, we needed to specify to AEG that

the input included an “@” sign to trigger the vulnerable

path.

Corehttp is the only vulnerability that required con-

colic execution. The input we provided was "A"x

(repeats 880 times) + \r\n\r\n. Without

specifying the complete GET request, symbolic execu-

tion got stuck on exploring where to place white-spaces

and EOL (end-of-line) characters.

Generation Time. Column 5 in Table 1 shows the to-

tal time to generate working exploits. The quickest we

generated an exploit was 0.5s for iwconfig (with a length

13

Program Ver. Exploit Type
Vulnerable

Input src

Gen. Time

(sec.)

Executable

Lines of Code
Advisory ID.

None

aeon 0.2a Local Stack Env. Var. 3.8 3392 CVE-2005-1019

iwconfig V.26 Local Stack Arguments 1.5 11314 CVE-2003-0947

glftpd 1.24 Local Stack Arguments 2.3 6893 OSVDB-ID#16373

ncompress 4.2.4 Local Stack Arguments 12.3 3198 CVE-2001-1413

Length

htget (processURL) 0.93 Local Stack Arguments 57.2 3832 CVE-2004-0852

htget (HOME) 0.93 Local Stack Env. Var 1.2 3832 Zero-day

expect (DOTDIR) 5.43 Local Stack Env. Var 187.6 458404 Zero-day

expect (HOME) 5.43 Local Stack Env. Var 186.7 458404 OSVDB-ID#60979

socat 1.4 Local Format Arguments 3.2 35799 CVE-2004-1484

tipxd 1.1.1 Local Format Arguments 1.5 7244 OSVDB-ID#12346

Prefix

aspell 0.50.5 Local Stack Local File 15.2 550 CVE-2004-0548

exim 4.41 Local Stack Arguments 33.8 241856 EDB-ID#796

xserver 0.1a Remote Stack Sockets 31.9 1077 CVE-2007-3957

rsync 2.5.7 Local Stack Env. Var 19.7 67744 CVE-2004-2093

xmail 1.21 Local Stack Local File 1276.0 1766 CVE-2005-2943

Concolic corehttp 0.5.3 Remote Stack Sockets 83.6 4873 CVE-2007-4060

Average Generation Time & Executable Lines of Code 114.6 56784

Table 1: List of open-source programs successfully exploited by AEG. Generation time was measured with the

GNU Linux time command. Executable lines of code was measured by counting LLVM instructions.

precondition), which required exploring a single path.

The longest was xmail at 1276s (a little over 21 min-

utes), and required exploring the most paths. On average

exploit generation took 114.6s for our test suite. Thus,

when AEG works, it tends to be very fast.

Variety of Environment Modeling. Recall from

§ 5.4, AEG handles a large variety of input sources in-

cluding files, network packets, etc. In order to present

the effectiveness of AEG in environment modeling, we

grouped the examples by exploit type (Table 1 column

4), which is either local stack (for a local stack over-

flow), local format (for a local format string attack) or

remote stack (for a remote stack overflow) and input

source (column 5), which shows the source where we

provide the exploit string. Possible sources of user input

are environment variables, network sockets, files, com-

mand line arguments and stdin.

The two zero-day exploits, expect and htget, are both

environment variable exploits. While most attack sce-

narios for environment variable vulnerabilities such as

these are not terribly exciting, the main point is that AEG

found new vulnerabilities and exploited them automati-

cally.

8.3 Preconditioned Symbolic Execution and
Path Prioritization Heuristics

8.3.1 Preconditioned Symbolic Execution

We also performed experiments to show how well pre-

conditioned symbolic execution performs on specific

vulnerabilities when different preconditions are used.

Figure 9 shows the result. We set the maximum analy-

sis time to 10,000 seconds, after which we terminate the

program. The preconditioned techniques that failed to

detect an exploitable bug within the time limit are shown

as a bar of maximum length in Figure 9.

Our experiments show that increasing the amount of

information supplied to the symbolic executor via the

precondition significantly improves bug detection times

14

 0.1

 1

 10

 100

 1000

 10000

a
e
o
n

a
s
p
e
ll

c
o
re

h
tt
p

d
u
p
e
s
c
a
n

e
x
im

e
x
p
e
c
t(

b
o
th

)

e
x
p
e
c
t

(D
O

T
D

IR
)

e
x
p
e
c
t

(H
O

M
E

)

h
tg

e
t(

H
O

M
E

)

h
tg

e
t

(p
ro

c
e
s
s
U

R
L
)

iw
c
o
n
fi
g

n
c
o
m

p
re

s
s

rs
y
n
c

s
e
n
d
m

a
il

s
o
c
a
t

ti
p
x
d

x
s
e
rv

e
r

D
e
te

c
ti
o
n
 T

im
e
 i
n
 L

o
g
-S

c
a
le

 (
s
e
c
.)

None Length Prefix Concolic

Figure 9: Comparison of preconditioned symbolic execution techniques.

and thus the effectiveness of AEG. For example, by pro-

viding a length precondition we almost tripled the num-

ber of exploitable bugs that AEG could detect within the

time limit. However, the amount of information supplied

did not tremendously change how quickly an exploit is

generated, when it succeeds at all.

8.3.2 Buggy-Path-First: Consecutive Bug Detection

Recall from § 5.3 the path prioritization heuristic to

check buggy paths first. tipxd and htget are exam-

ple applications where this prioritization heuristic pays

off. In both cases there is a non-exploitable bug fol-

lowed by an exploitable bug in the same path. Fig-

ure 10 shows a snippet from tipxd, where there is

an initial non-exploitable bug on line 1 (it should be

“malloc(strlen(optarg) + 1)” for the NULL

byte). AEG recognizes that the bug is non-exploitable

and prioritizes that path higher for continued explo-

ration.

Later on the path, AEG detects a format string vul-

nerability on line 10. Since the config filename is

set from the command line argument optarg in line 5,

we can pass an arbitrary format string to the syslog

function in line 10 via the variable log entry. AEG

recognizes the format string vulnerability and generates

a format string attack by crafting a suitable command

line argument.

8.4 Mixed Binary and Source Analysis

In § 1, we argue that source code analysis alone

is insufficient for exploit generation because low-

level runtime details like stack layout matter. The

aspell, htget, corehttp, xserver are ex-

1 i n t ProcessURL (char ∗TheURL , char ∗
Hostname , char ∗Fi lename , char ∗
A c tu a l F i l e na m e , unsigned ∗ P o r t) {

2 char BufferURL [MAXLEN] ;

3 char NormalURL [MAXLEN] ;

4 s t r c p y (BufferURL , TheURL) ;

5 . . .

6 s t r n c p y (Hostname , NormalURL , I) ;

Figure 11: Code snippet of htget

amples of this axiom.

For example, Figure 11 shows a code snippet from

htget. The stack frame when invoking this func-

tion has the function arguments at the top of the stack,

then the return address and saved ebp, followed by

the local buffers BufferURL and NormalURL. The

strcpy on line 4 is exploitable where TheURL can

be much longer than BufferURL. However, we must

be careful in the exploit to only overwrite up to the re-

turn address, e.g., if we overwrite the return address

and Hostname, the program will simply crash when

Hostname is dereferenced (before returning) on line 6.

Since our technique performs dynamic analysis, we

can reason about runtime details such as the exact stack

layout, exactly how many bytes the compiler allocated

to a buffer, etc, very precisely. For the above programs

this precision is essential, e.g., in htget the predicate

asserts that we overwrite up to the return address but no

further. If there is not enough space to place the payload

before the return address, AEG can still generate an ex-

15

1 i f (! (s y s i n f o . c o n f i g f i l e n a m e = m a l lo c (s t r l e n (o p t a r g)))) {
2 f p r i n t f (s t d e r r , ” Could n o t a l l o c a t e memory f o r f i l e n a m e s t o r a g e \n ”) ;

3 e x i t (1) ;

4 }
5 s t r c p y ((char ∗) s y s i n f o . c o n f i g f i l e n a m e , o p t a r g) ;

6 t i p x d l o g (LOG INFO , ” Conf ig f i l e i s %s\n ” , s y s i n f o . c o n f i g f i l e n a m e) ;

7 . . .

8 void t i p x d l o g (i n t p r i o r i t y , char ∗ fo rmat , . . .) {
9 v s n p r i n t f (l o g e n t r y , LOG ENTRY SIZE−1, fo rmat , ap) ;

10 s y s l o g (p r i o r i t y , l o g e n t r y) ;

Figure 10: Code snippet of tipxd.

ploit by applying stack restoration (presented in § 6.1),

where the local variables and function arguments are

overwritten, but we impose constraints that their values

should remain unchanged. To do so, AEG again relies on

our dynamic analysis component to retrieve the runtime

values of the local variables and arguments.

8.5 Exploit Variants

Whenever an exploitable bug is found, AEG gener-

ates an exploit formula (Πbug∧Πexploit) and produces an

exploit by finding a satisfying answer. However, this

does not mean that there is a single satisfying answer

(exploit). In fact, we expected that there is huge number

of inputs that satisfy the formula. To verify our expecta-

tions, we performed an additional experiment where we

configured AEG to generate exploit variants—different

exploits produced by the same exploit formula. Table 2

shows the number of exploit variants generated by AEG

within an hour for 5 sample programs.

8.6 Additional Success

AEG also had an anecdotal success. Our research

group entered smpCTF 2010 [27], a time-limited inter-

national competition where teams compete against each

other by solving security challenges. One of the chal-

lenges was to exploit a given binary. Our team ran the

Hex-rays decompiler to produce source, which was then

fed into AEG (with a few tweaks to fix some incorrect

decompilation from the Hex-rays tool). AEG returned

an exploit in under 60 seconds.

9 Discussion and Future Work

Advanced Exploits. In our experiments we focused

on stack buffer overflows and format string vulnerabili-

ties. In order to extend AEG to handle heap-based over-

flows we would likely need to extend the control flow

reasoning to also consider heap management structures.

Integer overflows are more complicated however, as typ-

Program # of exploits

iwconfig 3265

ncompress 576

aeon 612

htget 939

glftpd 2201

Table 2: Number of exploit variants generated by

AEG within an hour.

ically an integer overflow is not problematic by itself.

Security-critical problems usually appear when the over-

flowed integer is used to index or allocate memory. We

leave adding support for these types of vulnerabilities as

future work.

Other Exploit Classes. While our definition in-

cludes the most popular bugs exploited today, e.g., input

validation bugs, such as information disclosure, buffer

overflows, heap overflows, and so on, it does not capture

all security-critical vulnerabilities. For example, our

formulation leaves out-of-scope timing attacks against

crypto, which are not readily characterized as safety

problems. We leave extending AEG to these types of

vulnerabilities as future work.

Symbolic Input Size. Our current approach per-

forms simple static analysis and determines that sym-

bolic input variables should be 10% larger in size than

the largest statically allocated buffer. While this is an

improvement over KLEE (KLEE required a user spec-

ify the size), and was sufficient for our examples, it is

somewhat simplistic. More sophisticated analysis would

provide greater precision for exactly what may be ex-

ploitable, e.g., by considering stack layout, and may be

necessary for more advanced exploits, e.g., heap over-

flows where buffers are dynamically allocated.

16

Portable Exploits. In our approach, AEG produces

an exploit for a given environment, i.e., OS, compiler,

etc. For example, if AEG generates an exploit for a GNU

compiled binary, the same exploit might not work for a

binary compiled with the Intel compiler. This is to be ex-

pected since exploits are dependent upon run-time lay-

out that may change from compiler to compiler. How-

ever, given an exploit that works when compiled with A,

we can run AEG on the binary produced from compiler

B to check if we can create a new exploit. Also, our cur-

rent prototype only handles Linux-compatible exploits.

Crafting platform-independent and portable exploits is

addressed in other work [7] and falls outside the scope

of this paper.

10 Related Work

Automatic Exploit Generation. Brumley et al. [4]

introduced the automatic patch-based exploit generation

(APEG) challenge. They also introduced the notion that

exploits can be described as a predicate on the program

state space, which we use and refine in this work. There

are two significant differences between AEG and APEG.

First, APEG requires access to a buggy program and a

patch, while AEG only requires access to a potentially

buggy program. Second, APEG defines an exploit as

an input violating a new safety check introduced by a

patch, e.g., only generating unsafe inputs in Figure 4.

While Brumley et al. speculate generating root shells

may be possible, they do not demonstrate it. We extend

their notion of “exploit” to include specific actions, and

demonstrate that we can produce specific actions such

as launch a shell. Previously, Heelan et al. [13] auto-

matically generated a control flow hijack when the bug

is known, given a crashing input (similar to concolic ex-

ecution), and a trampoline register is known.

Bug-finding techniques. In blackbox fuzzing, we

give random inputs to a program until it fails or

crashes [19]. Blackbox fuzzing is easy and cheap to

use, but it is hard to use in a complex program. Sym-

bolic execution has been used extensively in several ap-

plication domains, including vulnerability discovery and

test case generation [5, 6], input filter generation [3, 8],

and others. Symbolic execution is so popular because

of its simplicity: it behaves just like regular execution

but it also allows data (commonly input) to be symbolic.

By performing computations on symbolic data instead

of their concrete values, symbolic execution allows us

to reason about multiple inputs with a single execution.

Taint analysis is a type of information flow analysis for

determining whether untrusted user input can flow into

trusted sinks. There are both static [15, 18, 26] and dy-

namic [20, 28] taint analysis tools. For a more extensive

explanation of symbolic execution and taint analysis, we

refer to a recent survey [23].

Symbolic Execution There is a rich variety of work in

symbolic execution and formal methods that can be ap-

plied to our AEG setting. For example, Engler et al. [11]

mentioned the idea of exactly-constrained symbolic ex-

ecution, where equality constraints are imposed on sym-

bolic data for concretization, and Jager et al. introduce

directionless weakest preconditions that can produce the

formulas needed for exploit generation potentially more

efficiently [14]. Our problem definition enables any

form of formal verification to be used, thus we believe

working on formal verification is a good place to start

when improving AEG.

11 Conclusion

In this paper, we introduced the first fully automatic

end-to-end approach for exploit generation. We imple-

mented our approach in AEG and analyzed 14 open-

source projects. We successfully generated 16 control-

flow hijack exploits, two of which were against previ-

ously unknown vulnerabilities. In order to make AEG

practical, we developed a novel preconditioned sym-

bolic execution technique and path prioritization algo-

rithms for finding and identifying exploitable bugs.

12 Acknowledgements

We would like to thank all the people that worked

in the AEG project and especially JongHyup Lee, David

Kohlbrenner and Lokesh Agarwal. We would also like

to thank our anonymous reviewers for their useful com-

ments and suggestions. This material is based upon

work supported by the National Science Foundation un-

der Grant No. 0953751. Any opinions, findings, and

conclusions or recommendations expressed herein are

those of the authors and do not necessarily reflect the

views of the National Science Foundation. This work is

also partially supported by grants from Northrop Grum-

man as part of the Cybersecurity Research Consortium,

from Lockheed Martin, and from DARPA Grant No.

N10AP20021.

References

[1] AEG. automatic exploit generation demo. http://

www.youtube.com/watch?v=M_nuEDT-xaw,

Aug. 2010.

[2] D. Brumley. http://security.ece.cmu.edu.

[3] D. Brumley, J. Newsome, D. Song, H. Wang, and

S. Jha. Theory and techniques for automatic generation

of vulnerability-based signatures. IEEE Transactions on

17

http://www.youtube.com/watch?v=M_nuEDT-xaw
http://www.youtube.com/watch?v=M_nuEDT-xaw
http://security.ece.cmu.edu

Dependable and Secure Computing, 5(4):224–241, Oct.

2008.

[4] D. Brumley, P. Poosankam, D. Song, and J. Zheng.

Automatic patch-based exploit generation is possible:

Techniques and implications. In Proceedings of the

IEEE Symposium on Security and Privacy, May 2008.

[5] C. Cadar, D. Dunbar, and D. Engler. Klee: Unas-

sisted and automatic generation of high-coverage tests

for complex systems programs. In Proceedings of the

USENIX Symposium on Operating System Design and

Implementation, 2008.

[6] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. En-

gler. EXE: A system for automatically generating inputs

of death using symbolic execution. In Proceedings of the

ACM Conference on Computer and Communications Se-

curity, Oct. 2006.

[7] S. K. Cha, B. Pak, D. Brumley, and R. J. Lipton.

Platform-independent programs. In Proceedings of the

ACM Conference on Computer and Communications Se-

curity, 2010.

[8] M. Costa, M. Castro, L. Zhou, L. Zhang, and

M. Peinado. Bouncer: Securing software by blocking

bad input. In Proceedings of the ACM Symposium on

Operating System Principles, Oct. 2007.

[9] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang, and P. Barham. Vigilante: End-to-

end containment of internet worms. In Proceedings of

the ACM Symposium on Operating System Principles,

2005.

[10] S. Designer. “return-to-libc” attack. Bugtraq, Aug. 1997.

[11] D. Engler and D. Dunbar. Under-constrained execution:

making automatic code destruction easy and scalable. In

International Symposium on Software Testing and Anal-

ysis, pages 1–4, 2007.

[12] V. Ganesh and D. L. Dill. A decision procedure for bit-

vectors and arrays. In Proceedings on the Conference on

Computer Aided Verification, volume 4590 of Lecture

Notes in Computer Science, pages 524–536, July 2007.

[13] S. Heelan. Automatic Generation of Control Flow Hi-

jacking Exploits for Software Vulnerabilities. Technical

Report MSc Thesis, Oxford University, 2002.

[14] I. Jager and D. Brumley. Efficient directionless weakest

preconditions. Technical Report CMU-CyLab-10-002,

Carnegie Mellon University, CyLab, Feb. 2010.

[15] R. Johnson and D. Wagner. Finding user/kernel pointer

bugs with type inference. In Proceedings of the USENIX

Security Symposium, 2004.

[16] J. King. Symbolic execution and program testing. Com-

munications of the ACM, 19:386–394, 1976.

[17] C. Lattner. LLVM: A compilation framework for life-

long program analysis and transformation. In Proceed-

ings of the Symposium on Code Generation and Opti-

mization, 2004.

[18] V. B. Livshits and M. S. Lam. Finding security vulnera-

bilities in java applications with static analysis. In Pro-

ceedings of the USENIX Security Symposium, 2005.

[19] B. Miller, L. Fredriksen, and B. So. An empirical study

of the reliability of UNIX utilities. Communications of

the Association for Computing Machinery, 33(12):32–

44, 1990.

[20] J. Newsome and D. Song. Dynamic taint analysis for au-

tomatic detection, analysis, and signature generation of

exploits on commodity software. In Proceedings of the

Network and Distributed System Security Symposium,

Feb. 2005.

[21] A. One. Smashing the stack for fun and profit. Phrack,

7(49), 1996. File 14/16.

[22] PyGDB. Python wrapper for gdb. http://code.

google.com/p/pygdb/.

[23] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you

ever wanted to know about dynamic taint analysis and

forward symbolic execution (but might have been afraid

to ask). In Proceedings of the IEEE Symposium on Se-

curity and Privacy, pages 317–331, May 2010.

[24] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic

unit testing engine for C. In Proceedings of the ACM

Symposium on the Foundations of Software Engineering,

2005.

[25] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,

N. Modadugu, and D. Boneh. On the effective-

ness of address-space randomization. In Proceedings of

the ACM Conference on Computer and Communications

Security, pages 298–307, 2004.

[26] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detect-

ing format-string vulnerabilities with type qualifiers. In

Proceedings of the USENIX Security Symposium, 2001.

[27] smpCTF. smpctf 2010. http://ctf2010.

smpctf.com/.

[28] G. E. Suh, J. Lee, and S. Devadas. Secure program exe-

cution via dynamic information flow tracking. In Pro-

ceedings of the International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems, 2004.

18

http://code.google.com/p/pygdb/
http://code.google.com/p/pygdb/
http://ctf2010.smpctf.com/
http://ctf2010.smpctf.com/

