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Abstract. We study the problem of automatically correcting the exposure of an

input image. Generic auto-exposure correction methods usually fail in individ-

ual over-/under-exposed regions. Interactive corrections may fix this issue, but

adjusting every photograph requires skill and time. This paper will automate the

interactive correction technique by estimating the image specific S-shaped non-

linear tone curve that best fits the input image. Our first contribution is a new

Zone-based region-level optimal exposure evaluation, which would consider both

the visibility of individual regions and relative contrast between regions. Then a

detail-preserving S-curve adjustment is applied based on the optimal exposure

to obtain the final output. We show that our approach enables better corrections

comparing with popular image editing tools and other automatic methods.

1 Introduction

Exposure is one of the most important factors of determining the quality of a photo-

graph. In over-exposed or under-exposed regions, details are lost, and colors are washed

out. Despite that sophisticated metering techniques have been equipped on the cameras,

taking well-exposed photos remains a challenge for normal users. There are several

reasons: 1) the camera’s metering (e.g., spot, center-weighted, average, or multi-zone

metering) is not perfect. If the metering points/areas are not targeting the subject or

there are multiple subjects, the metering may fail. Fig. 1(a) is a failure case caused by

the backlit; 2) the assumption that the mid-tone of the subject is gray is sometimes in-

valid due to the complex reflectance of the world (e.g., a snow-white rabbit is often

captured as an undesired grayish rabbit without exposure compensation); 3) in-camera

post-processing capability is limited, especially for the low-end cameras.

To address this issue, some automatic methods like auto-level stretch [1] and his-

togram equalization [1] have been proposed to correct the exposure. For example, auto-

level stretch linearly maps the brightness to the maximum tonal range (e.g., [0, 255]).

This method, however, only uses the statistics of the whole image, without considering

each image region individually. For the backlit case in Fig. 1, auto-level stretch does not

take effect (see Fig. 1 (b)) since the image histogram has reached the maximum tonal

range (top-left of Fig. 1(a)). Histogram equalization [1] (and its variations [2]) better

distributes the intensity values over the histogram. Unfortunately, it would produce un-

realistic effects in photographs (see Fig. 1(c)).

If user assistance is allowed, the interactive correction method is more effective. For

instance, most photo editing software allow the user to manually adjust a non-linear tone
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(a) input backlit portrait (b) Auto-Level, Photoshop (c) histogram equalization

(d) interactive correction and applied tone curve (e) our automatic correction and estimated tone curve 

Fig. 1. A typical under-exposed photo. On the top-left of (a), we show the luminance histogram

of the input image which has the maximum tonal range and peaks in shadows and highlights.

curve [3] (e.g., S-curve) to correct the dark/mid-tone/bright regions separately. Fig. 1(d)

is the assisted result by expert. But the best shape of the curve varies a lot from image

to image. Touching up every single image is impractical for typical consumers.

In this paper, we present an automatic exposure correction method that can estimate

the best image specific non-linear tone curve (the S-curve in our case) for a given image.

Unlike [4], we need no training data. Note that it is a non-trivial task since the variation

of input consumer photographs is so large. The key to the success of an automatic

correction is to know what the best exposure should be for every image region.

To address this fundamental issue, we borrow the concept of “Zone” from the well-

developed Zone System [5] in photography. The Zone system quantizes the whole ex-

posure range as eleven discrete zones. We formulate the exposure correction as a zone

estimation problem - we optimize a global objective function to estimate the desired

zone in each image region by simultaneously considering two goals: maximizing the

local details in each region, and preserving the relative contrast between regions.

After getting the estimated zone of every region, we propose a new non-linear curve-

based correction algorithm called detail-preserving S-curve adjustment, to push each

region to its desired zone, as much as possible. Compared with generic S-curve adjust-

ment [6][7][8], our detail-preserving S-curve adjustment can maintain local details and

avoid halo effects. Fig. 1(e) shows our estimated curve and final corrected result.

Like most automatic approaches, our approach does not address the user preference

issue [9]. The “correct” exposure may be defined as the one that achieves the effect the

photographer intended. However, our user studies show that an automatic correction

still benefits most typical consumers - especially for their daily photos processing. We

also show our new exposure optimization provides significant visual quality improve-

ment over pervious work. Since our correction is simple and robust, it can be chosen as

a better alternate in photo editing tools and a built-in camera component.
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2 Related Work

Automatic exposure control is one of the most essential research issues for camera

manufacturers. The majority of developed techniques are hardware-based. Representa-

tive work include HP “Adaptive Lighting” technology [10] , Nikon “D-Lighting” tech-

nology [11]. These methods compress the luminance range of images by a known tone

mapping curve (e.g., Log curve) and further avoid local contrast distortion by “Retinex”

processing [12]. Specific hardware has been designed to perform per-pixel exposure

control [13] or scene-based (e.g., backlit, frontlit [14] or face [15]) exposure control.

Some automatic techniques (e.g. [16]) are proposed to estimate the optimal exposure

parameters (shutter speed and aperture) during taking photos.

There are numerous techniques about software-based exposure adjustment, including

most popular global correction (e.g., auto-level stretch, histogram equalization [1]) and

local exposure correction [17][18]. However, these methods only use some heuristic

histogram analysis to map per-pixel exposure to the desired one, without considering the

spatial information of pixels (or regions). An interesting work [19] tries to enhancement

image via frequency domain (i.e., block DCT). But some fixed tone curves are used for

each image and blocking artifacts occasionally occur in their results.

Some algorithms [8][20] only consider the exposure of the regions of interest (ROI)

and assume it is most important to the whole image correction. Different from ours,

they use a known and predefined tone curve but we will estimate the specific curve for

every image. Some tone mapping algorithms [21] can also be used to estimate the key of

scene and infer a tone curve to map its original exposure to the desired key. However, the

key estimation is based on the global histogram analysis and is sometimes inaccurate.

Exposure fusion [22] combines well-exposed regions together from an image sequence

with bracketed exposures. In contrast, we only use a single image as the input.

Since the exposure correction is kind of subjective, recent methods [23][4][9] en-

hance the input image using training samples from internet or personalized photos.

However, our exposure correction is not relied on the selection of training images and

only focuses on the input image itself. Another issue worth mentioning is that our ap-

proach does not aim to restore completely saturated pixels like [24].

3 Automatic Exposure Correction Pipeline

Our exposure correction pipeline is depicted in Fig. 2 and divided to two main steps:

exposure evaluation and S-curve adjustment. Both components are performed in the

luminance channel. To avoid bias due to different camera metering systems, or user’s

manual settings, we would linearly normalize the input tonal range to [0, 1] at first.

The heart of our system is an optimization-based, region-level exposure evaluation

(see Section 4). In the exposure evaluation, we apply a Zone-based exposure analysis

to estimate the desired zone (i.e., exposure) for each image region. We first segment the

input image into individual regions (i.e., super-pixels). In each region, we measure vis-

ible details, region size, and relative contrast between regions. Then we formulate the

optimal zone estimation as a global optimization which takes into account all these fac-

tors. We also use the high level information (e.g., face) to set the priority of the regions.



774 L. Yuan and J. Sun

Auto-level 

Stretch 
Iin 

 
Iout 

Region 

Segmentation 

High-level 

features  

Region 

Analysis 

Estimate Optimal 

Zone of Region 

Region-level Exposure Evaluation

Detail-preserving

S-curve Adjustment

Fig. 2. Our automatic exposure correction pipeline

After the exposure evaluation, we estimate a best non-linear curve (S-curve) mapping

for the entire image to push each region to its optimal zone. We further introduce a

detail-preserving S-curve adjustment (see Section 5) instead of naı̈ve S-curve mapping

to preserve local details and suppress halo effects in the final result.

4 Region-Level Exposure Evaluation

The aim of our exposure evaluation is to infer the image specific tone curve for the

consequent detail-preserving S-curve adjustment. To achieve this goal, we first need to

know what is the “best” exposure of each region and how to estimate them all together.

4.1 Zone Region

To measure the exposure, we borrow the concept of “Zone” from Ansel Adams’ Zone

System [5], which is shown in Fig. 3(d). In Zone System, the entire luminance range [0,

1] is equally divided into 11 zones, ranging from O to X denoted by Roman numbers,

with O representing black, V middle gray, and X pure white; these values are known as

zones. In each zone, the mean intensity value is referred as its corresponding exposure.

This concept was also used in recent HDR tone mapping applications [21][25] and

realistic image composition [26].

We represent the image by a number of zone regions. We first decompose the image

into a set of regions by graph-based segmentation [27]. Each region falls into one of the

zones. Then, we merge the neighboring regions with the same zone value. To extract

high-level information (e.g., face/sky) for high priority of adjustment, we need to detect

facial regions [28] and sky regions [29]. All connected regions belonging to face/sky

regions are also merged. We call the final merged region as “zone region”. Fig. 3(a-c)

shows the procedure of the zone region extraction.

4.2 Optimal Zones Estimation

The optimal zone estimation can be formulated as a global optimization problem by

considering two aspects: maximizing the visual details and preserving the original rel-

ative contrast between neighboring zone regions.

Measure of Visible Details. The amount of visible details in under-/over-exposed re-

gions can be measured by the difference of the detected edges in these images which

are generated by applying different gamma-curves on the input image I (the process is
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(a) input image (b) segmented regions [10] (c) initial zones of grouped regions
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Fig. 3. Zone region extraction. In (c), different colors denote different zone regions, in which the

Roman numbers denote corresponding zone values.

(a)  input luminance channel (b) visible shadow edges (c) visible highlight edges (d) all visible edgessΩ hΩ allΩ

Fig. 4. Measure of visible details. In (b-d), white lines are detected edges by Canny operator.

Ri Rj

ijd

Fig. 5. Relative contrast dij is the histogram distance between two neighboring regions Ri, Rj

denoted as Igamma = Iγ). It is based on an observation: in an under-exposed region,

we can detect more/less visible edges after the gamma correction when the gamma γ is

smaller/larger, and the edge number difference between two gamma-corrected images

(one with small gamma, the other with large gamma) indicates the amount of recover-

able details. The similar process can be applied to the over-exposed region as well.

In our implementation, we use two default gamma values γ = 2.2 and γ−1 = 0.455.

We first detect edges on three images I, Iγ , Iγ
−1

by the same Canny operator [1] to

obtain three edge sets: Ω1, Ωγ , Ωγ−1 . The visible details in the shadow region (zone

value < V) and the highlight region (zone value > V) are measured by: Ωs = Ωγ−1 −
Ωγ−1

⋂

Ωγ and Ωh = Ωγ −Ωγ−1

⋂

Ωγ , shown in Fig. 4 (b)(c).

Note that the absolute differences Ωs and Ωh cannot be directly used since they

vary from image to image. To obtain a comparable measure, we compute the relative

visibility of details:

νs = |Ωs|
/∣

∣Ωall
∣

∣, νh =
∣

∣Ωh
∣

∣

/∣

∣Ωall
∣

∣ (1)
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where | · | indicates the edge number in a set, and Ωall = Ω1

⋃

Ωγ

⋃

Ωγ−1 is the union

of all three sets, shown in Fig. 4 (d).

Measure of Relative Contrast. We measure the relative contrast between zone regions

using their intensity histogram distance. This distance is defined as the minimum shift-

ing distance of two histograms to maximize their intersection (shown in Fig. 5). We use

the term “relative contrast” for this distance. For example, when their histograms are

too close, we say their relative contrast is small.

Zones Estimation as an Optimization. With the two measures defined, we formulate

the best zone estimation as a graph-based labeling problem. Each zone region is re-

garded as a node and any two neighboring zone regions are connected by a link. The

optimal labels Z = {z∗i } of nodes are the final desired zones. We define the Markov

Random Field (MRF) energy function E(Z) of the graph as:

Z∗ = argmin
Z

E(Z) = argmin
Z

(
∑

i
Ei + λ

∑

i,j
Eij),

where Ei is the data term of an individual region i, and Eij is the pairwise term be-

tween two adjacent regions i and j. In our work, the data term and pairwise term are

respectively specified by the form: Ei = −log(P (i)) and Eij = −log(P (i, j)).
The likelihood P (i) of a region i is measured by its visibility of details νi, the region

size Ci (normalized by the whole image size), and the important region size θi (nor-

malized by the whole image size). The important region is directly computed from the

probability map of facial/sky detector. We take into account all the three factors:

P (i) =

{

νsi × Ci × θi × ρ (ẑi − zi) , (zi < V)
νhi × Ci × θi × ρ (zi − ẑi) , (zi > V)

, (2)

where zi is the original zone, ẑi is the new zone and ρ(t) = 1/ (1 + exp(−t)) is a

sigmoid function. The likelihood would encourage shadow/highlight regions to move

to higher/lower zones. For mid-zones (zone V), it takes no effect.

The coherence P (i, j) is defined by the change of relative contrast between two

neighboring regions, from the original relative contrast dij (before the optimization) to

the new relative contrast d̂ij (after the optimization), which is denoted by

P (i, j) = Cj × G(d̂ij − dij), (3)

where G(·) is a zero-mean gaussian function with variance 0.15 and the weight Cj is

used so that relatively smaller regions contribute less. The coherence would penalize

the dramatic change of relative contrast.

To obtain the global optimum, we use a brute-force searching method to travel all

combinations of zone candidates for all regions because the total number of zone re-

gions is not very high after region merging. To automatically estimate the weight λ, we

first calculate the sum of data terms and the sum of pairwise terms across all combi-

nations of zone candidates. Then we set λ to the ratio of two summations. We found it

works very well in our experiments and does not require any tuning.
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Fig. 6. (a) S-curve, φs, φh control the magnitude of S-curve adjustment in the shadow range and

the highlight range respectively. (b) the curves of f∆(x) weighted by different amount φ.

5 Detail-Preserving S-Curve Adjustment

After getting the optimal zone for every region, we might have mapped the zone value

(i.e., exposure) of each region to its desired zone individually. However, this local map-

ping has the risk to produce exposure distortion in relatively small regions because

these regions often contain insufficient information to estimate their optimal zones. To

address this issue, we use a non-linear tone curve to globally map the brightness of ev-

ery pixel to its desired exposure. We further preserve local contrast by fusion between

the global curve mapping and an adaptive local detail enhancement.

S-Curve Adjustment. Most photographers often use an S-shaped non-linear curve (S-

curve) to manually adjust the exposure in shadow/mid-tone/highlight areas. Fig. 6 (a)

shows a typical (inverse) S-curve. This kind of S-curve can be simply parameterized by

two parameters: shadow amount φs and highlight amount φh, which is denoted by:

f(x) = x+ φs × f∆(x)− φh × f∆(1 − x), (4)

where x and f(x) are the input and output pixel intensities. f∆(x) is the incremental

function and empirically defined as: f∆(x) = κ1x exp (−κ2x
κ3), where κ2 and κ3

control the modified tone range of the shadows or highlights. We use the default param-

eters (κ1 = 5, κ2 = 14, κ3 = 1.6) of f∆(x) to make the modified tonal range fall in

[0, 0.5]. The effect of shadow/highlight amounts (φs, φh) is shown in Fig. 6 (b).

Inference of Correction Amounts. We infer the amounts (φs, φh) from the estimated

optimal zone in every region. For the shadow regions, we want to set the amount φs so

that the original zone value of each shadow region can be moved to its optimal zone

value, as much as possible. The amount φh can be estimated in a similar way.

Suppose the original exposure and new exposure of a shadow region i are respec-

tively ei and êi. (The relationship between the exposure and its corresponding zone

value is shown on Fig. 3(d)). The original exposure is calculated by the intensity mean:

ei =
∑

I/ci, where I is original intensity and ci is the region size. After the S-curve

adjustment (by Eqn. 4), the new exposure êi =
∑

f(I)/ci =
∑

(I + φs × f∆(I))/ci.
Thus, the shadow amount φs of this region should be: φs = (êi − ei)× ci ×

∑

f∆(I).
To consider all regions, we take the weighted average of the estimated shadow amounts

of all regions. We use the percentage of region size as the weight.
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(a) input image I (b) naive S-curve mapping  f(I) (c) detail-preserving S-curve   Î

Fig. 7. Comparison between direct S-curve mapping and detail-preserving S-curve adjustment

(a) input image (b) using Gaussian filter (c) using guided filter

Fig. 8. Comparisons of halo effects reduction between Gaussian filter and guided filter [30]

Detail-Preserving S-Curve Adjustment. If we directly apply the S-curve mapping (in

Eqn. 4) to the input image, we may lose local details. Fig. 7(b) shows such a case,

where the result looks too flat although dark areas are lightened. This undesired effect

is due to: moving the intensities from shadows and highlights to the middle will com-

press the mid-tones. Since the S-curve is usually monotonic, the contrast between two

neighboring pixels in the mid-tones could be reduced.

To address this issue, we propose a detail-preserving S-curve adjustment. Given an

input image I , we adaptively fuse its S-curve result f(I) with a local detail image

∆I . Note that ∆I is the difference between the input image I and its low-pass filtered

version IF : ∆I = I − IF . Here, we compute IF by a fast edge-preserving low-pass

filter, the so-called guided filter [30] to suppress halo effects. In Fig. 8, we show the

result against a Gaussian filter. In our implementation, the radius is set to 4% of the

short side of the image I . The final output image Î is a weighted linear combination:

Î = f(I) + [2× f(I)(1 − f(I))]×∆I, (5)

where the second term on the right side adaptively compensates for the reduction of lo-

cal details. The weight f(I)(1 − f(I)) reaches its maximum (when f(I) = 0.5) in the

mid-tone range where there is notable loss in local details. In other words, we add more

details back to the mid-tone than the shadow or highlight range. Specially in smooth

regions, the output is mainly determined by the S-curve results. Such an adaptive ad-

justment mechanism can help us produce more natural-looking results (Fig. 7(c))

For a color image, we need to compensate the possible reduction of color saturation

caused by the luminance adjustment, especially on shadows. To avoid this issue, we

transform it to YIQ color space and then scale the corresponding I, Q chroma values by

the adjustment of Y luminance values.
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Efficient Implementation. For efficient computation, we enforce two extra constraints

to largely reduce our search space of possible zone values: 1) Our adjustment uses the

global S-curve which would map the same input pixel values to the same output. Thus

we can consider the change of zone should be the same for the regions with the same

original zone values; 2) Since our employed S-curve won’t change values across the

middle gray (0.5), we can consider that the change of every zone is not allowed across

zone V. In addition, our exposure is evaluated on the down-scaled image with their long

edge no more than 400 pixels. So our segmentation and face/sky detection can be very

efficient. For an 16-megapixel RGB image, the whole evaluation and correction time is

0.3 second on Core2 Duo CPU 3.16GHz with single-thread, no SSE acceleration.

6 Experiments

6.1 Usability Study

Dataset: We perform our evaluation using a database of 4,000 images taken by our

friends (including amateur and professional photographers) with direct camera output.

These images varies on scenes, locations, lighting conditions and camera models (e.g.,

DSLR, compact, mobile cameras). We ask five subjects to divide all images into three

groups according to different extents of exposure problem. Three groups are “severely

badly-exposed, definitely need correction” (Group A), “slightly badly-exposed photos,

may require a little correction” (Group B), and “well-exposed, no more correction”

(Group C). Finally, we obtain three different datasets respectively: “Group A” (975

images), “Group B” (1,356 images) and “Group C” (1,669 images) according to the

majority agreement of five subjects. Fig. 9 (a) shows several examples.

Procedure: We will compare with automatic exposure corrections in several popular

photo editing tools to manifest our method would become a better candidate. All of

results are achieved by default parameters. We invite other 12 volunteers (7 males and

5 females) with balanced expertise in photography and camera use to perform pairwise

comparison between our result and one of three other images: 1) input image, 2) re-

sult by Windows Live Photo Gallery’s Auto-adjust, exposure only (http://download.live.

com/photogallery), 3) result by Google Picasa’s Auto-contrast (http://picasa.google.

com/). For each pairwise comparison, the subject has three options: better, or worse,

or no preference. Subjects are allowed to view each image pair back and forth for the

comparison. To avoid the subjective bias, the group of images, the order of pairs, and

the image order within each pair are randomized and unknown to each subject. This

usability study is conducted in the same settings (room, light, and monitor).

Usability Study Results: The main user study results are summarized in Fig. 9 (b).

Each color bar is the averaged percentage of the favored image over all 12 subjects (I-

shape error bar denotes the standard deviation). From results on “All Groups” (without

distinguishing the photos from different groups), we can see that the participants over-

whelmingly select our result over the input (70.2% vs. 5.9%), Photo Gallery (60.5% vs.

29.6%), and Picasa (58.3% vs. 12.5%).
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Fig. 9. Usability studies. (a) Examples from three groups: A (severely badly-exposed), B (slightly

badly-exposed), C (well-exposed). (b) pairwise comparison of ours against the input, Photo

Gallery, and Picasa, in all groups and three different groups respectively. Each color bar denotes

the average percentage of favored image (with I-shape standard deviation bars).

input images Photo Gallery results Picasa results our results

(a) 
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Fig. 10. Examples randomly chosen from Group A. We can notice more details on foreground

faces (a), foreground audiences (b) and street scene (c). (Better View in Electronic Version).

(a)

input images our results

(b)

(c)

(d)

input images our results

Fig. 11. Two examples randomly chosen from Group B (a-b) and two from Group C (c-d)
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“Group A” results show that our approach works significantly better for severely

badly-exposed photos. The participants show a strong bias in preference towards our

correction when compared to input images (92.3% vs. 2.7%) and other automatic tools

(87% vs. 8.5% against Photo Gallery, 84% vs. 6.4% against Picasa). The results from

“Group B” indicate that slightly badly-exposed photos can benefit more from our cor-

rection than other methods as well. In “Group C”, our approach also performs very well

- for near 92% photos, our method does not make the result worse. It is quite nontrivial

and very important for practical use, especially for batch-processing photos.

Fig. 9 (b) also graphically show two phenomenons on “Group C” compared with

“Group A”: 1) the margin between our result favored and no preference is smaller, and

2) all standard derivations are larger. They both indicate that the exposure correction

itself is somewhat subjective especially for “not bad” photos. Subjects show different

tastes for good photos correction, which has been discussed in [9][4], but most of these

subjects consistently agree with our correction for relatively bad photos.

After the user study, we also ask all participants to articulate the criteria for their

feedbacks. We conclude the main criteria: 1) the over-/under-exposed regions of interest

should be well corrected; 2) well-exposed regions should not be over-corrected; and 3)

the colors in corrected images should look natural. Other feedbacks include “the color

of a few individual regions sometimes looks slightly unrealistic”, “in some cases, the

corrected results bring in some noise”, and “I want some parameters tuning so that I

can control the results.”. Overall, most participants like our correction and want to use

it for their daily photos processing.

Visual Quality Comparisons: Fig. 10 shows three examples from “Groups A”. These

photos show several common badly-exposed scenarios, such as outdoor backlit, dim-

light indoor environment, which are very challenging for existing tools. As we can

see, their corrections take no effect, but our method brings more visible details into

badly-exposed areas while preserving the original appearance in well-exposed areas.

Fig. 11(a)(b) show two examples from “Groups B”, whose exposures look somewhat

problematic. Our results look much more appealing, especially on important areas, e.g.,

over-exposed sky (Fig. 11(a)) and under-exposed face (Fig. 11(b)). Fig. 11(c)(d) show

two well-exposed examples from “Groups C”. Our corrections seem to be imperceptible

because the dark silhouette regions (Fig. 11(c)) have few detectable visible details and

the black clothes (Fig. 11(d)) have lower priority than well-exposed faces, which would

contribute little to the change of zone in our optimization.

6.2 Comparisons with Other Academic Methods

In consequent comparisons, our results are generated by the same parameters used in

useability study. In Fig. 12(b)(c), we compare with two traditional histogram equal-

ization algorithm [1][2] (by Matlab function histeq, adapthisteq). We can notice lo-

cal contrast reduction and undesired halo effects in their correction results shown in

Fig. 12(b)(c). However, our result shown in Fig. 12(e) looks more natural. We also com-

pare our method with a well-known tone-mapping operator [21] (shown in Fig. 12(d)).

Since their automatically estimated scene key is not accurate and tends to be higher than

the actual key in this case, their result looks a little over-exposed.
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(a) input images (b) histogram equalization(HE) (c) adaptive HE (d) tone reproduction (e) our results

Fig. 12. Comparisons with histogram equalizations [1], adaptive histogram equalization [2] and

tone reproduction [21]. The yellow/red arrows show unwanted halo effect/contrast reduction.
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(a) input image (b) reference result (key = 0.35) (c) K. Dale et. al. [8] (d) our result and estimated curve

Fig. 13. Comparison with internet-based restoration [23]. Images (a-c) are taken from their paper.

The reference result (b) is applied a fixed key. The yellow/red arrows show under-/over-exposed.

input exposure bracketed sequence sequence exposure fused result our corrected result only from (b)

(a)

(b)

(c)

Fig. 14. Comparison with Exposure Fusion [22] on input image sequence (taken from their pa-

per). Our algorithm only uses the single frame (b) as the input.

synthesized image sequenceinput image exposure fused result our corrected result

(a)

(b)

Fig. 15. Comparison with Exposure Fusion [22] on a single input image. We only use the input

image (depicted in Green box) while Exposure Fusion uses the synthesized image sequence with

different exposures from the input image. The red arrow shows unwanted artifacts.
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(a) input image (b) V. Bychkovsky et. al. [5] (c) our result (d) Retoucher E

Fig. 16. Comparisons with learning-based tonal adjustment [4]. Images (a,b,d) are taken from [4].

input image our result

input cropped patch our croppred patch

close-up views

Fig. 17. Our failure case on noise amplification

In Fig. 13, we directly use the image and result from internet-based image restora-

tion [23] for comparison. In this case, we can see our result has more visual details in

local under-exposed areas than their provided result. Besides, their approach exagger-

ates over-exposed sky areas while our method can preserve their original appearance.

Exposure Fusion [22] is a fairly new concept that fuses all well-exposed regions

together from a series of bracketed exposures. The good exposure is measured by some

features: contrast, saturation and closeness to middle gray. Fig. 14 shows an example

from their paper. We can see our result is visually approaching theirs, but our input is

only a single frame from their input sequence. To perceive how well their algorithm

works on a single input image, we make a modification of their method for comparison:

(1) applying a series of global brightness adjustment (e.g., multiplying luminance with

1/4, 1/2, 1, 2, 4) in Fig. 15(a); (2) applying a set of different gamma curves (e.g., gamma

values -3, -1.5, 1, 1.5, 3) in Fig. 15(b). Their results look either less vivid, or have lower

global contrast than ours.

We show the comparison with learning-based adjustment [4] and assisted correction

by expert in Fig. 16. As we can see, our result has more luminance details than their

result on under-exposed areas and even much closer to the assisted result (from “Re-

toucher E” mentioned in [4]). Here, please ignore the difference in colors and focus on

the luminance modification since the assisted adjustment includes both exposure cor-

rection and white balance. Without the need of training images, our approach obtain

appealing results as well.

Fig. 17 (d) shows the limitation of our method. Since the correction does not con-

sider the noise issue in our exposure evaluation, noise would become noticeable after

we lighten dark areas. The issue may be addressed by suppressing the excessive noise

amplification or applying denoising for these regions as preprocessing. We will further

explore this issue in the future work.
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7 Conclusions

We have presented an automatic method for the exposure correction of consumer pho-

tographs. The heart of this method is an optimization-based exposure evaluation and

a detail-preserving curve adjustment algorithm. By simultaneously considering visible

details in each region and relative contrast between regions, we are able to obtain ap-

propriate exposure at the region level and produce natural-looking results.
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