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We propose an algorithm for vessel extraction in retinal images. �e 	rst step consists of applying anisotropic di
usion 	ltering
in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale
line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image
maps requires di
erent steps. First, a number of points are preselected using the eigenvalues of the Hessianmatrix.�ese points are
expected to be near to a vessel axis. �en, for each preselected point, the response map is computed from gradient information of
the image at the current scale. Finally, the multiscale image map is derived a�er combining the individual image maps at di
erent
scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. �e main dataset is
the STARE project’s dataset and the second one is the DRIVE dataset.�e experimental results, applied on the STARE dataset, show
a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average
reaches 91.55%.

1. Introduction

For decades, retinal images are widely used by ophthalmolo-
gists for the detection and follow-up of several pathological
states [1–5]. Fundus photographs, also called retinal pho-
tography, are captured using special devices called “Charged
Coupled Devices” (CCD), which are cameras that show the
interior surface of the eye [6–10]. �ese images directly pro-
vide information about the normal and abnormal features in
the retina. �e normal features include the optic disk, fovea,
and vascular network. �ere are di
erent kinds of abnor-
mal features caused by diabetic retinopathy (DR) such as
microaneurysm, hard exudate, so� exudate, hemorrhage, and
neovascularization. An example of retinal images obtained by
fundus photography is given in Figure 1, where two retinal
images are shown. �e 	rst one does not show any DR sign

(Figure 1(a)) and the second one demonstrates advanced-
DR signs indicated by color arrows (Figure 1(b)). However,
the manual detection of blood vessels is very di�cult since
the blood vessels in these images are complex and have
low level contrast [11]. Also, not all the images show signs
of diabetic retinopathy. Hence, a manual measurement of
the information about blood vessels, such as length, width,
tortuosity, and branching pattern, becomes tedious. As a
result, it increases the time of diagnosis and decreases the
e�ciency of ophthalmologists.�erefore, automaticmethods
for extracting and measuring the vessels in retinal images are
needed to save the workload of the ophthalmologists and to
assist in characterizing the detected lesions and identifying
the false positives [12].

Several works have been proposed for detecting the
2D complex vessel network, such as single scale matched
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(a) Normal retina (b) Abnormal retina

Figure 1: Retinal images [32].

	lter [13–15], multiscale matched 	lter [16], adaptive local
thresholding [17], single-scale Gabor 	lters [18], and mul-
tiscale Gabor 	lters [19]. Cinsdikici and Aydin [20] put
forward a blood vessel segmentation based on a novel hybrid
model of the matched 	lter and the colony algorithm, which
extracts vessels perfectly but the pathological areas can a
ect
the result. In [21–23] authors adapted another approach
which applied mathematical morphological operators. �e
suggested method in [21] proved to be a valuable tool for
the segmentation of the vascular network in retinal images,
where it allowed obtaining a 	nal image with the segmented
vessels by iteratively combining the centerline image with the
set of images that resulted from the vessel segments’ recon-
struction phase using the morphological operator. However,
the inconvenience of this method is when a vessel centerline
ismissing, so the corresponding segmented vessel is normally
not included in the 	nal segmentation result. In [22], the
authors proved that it was possible to select vessels using
shape properties and connectivity, as well as di
erential
properties like curvature.�e robustness of the algorithm has
been evaluated and tested on eye fundus images and on other
images. Gang et al. [24] showed that the Gaussian curve is
suitable for modeling the intensity pro	le of the cross section
of the retinal vessels in color fundus images. Based on this
elaboration, they proposed the amplitude-modi	ed second-
order Gaussian 	lter for retinal vessel detection, which
optimized thematched 	lter and improved the successfulness
of the detection. Staal et al. [25] explained a method for
an automated segmentation of vessels in two-dimensional
color images. �e system was based on extracting image
ridges that coincide approximately with vessel centerlines,
where the evaluation was done using the accuracy of hard
classi	cations and the values of so� ones. In [26], the authors
presented a hybrid method for an e�cient segmentation of
multiple oriented blood vessels in colour retinal images. �e
robustness and accuracy of the method demonstrated that it
might be useful in a wide range of retinal images even with
the presence of lesions in the abnormal images. Dua et al.
[27] presented a method for detecting blood vessels, which
employs a hierarchical decomposition based on a quad tree
decomposition. �e algorithm was faster than the existing
approaches. In the recent years, alternative approaches for an
automated vessel segmentation have used the Hessian-based

multiscale detection of curvilinear structures, which has been
e
ective in discerning both large and small vessels [28–31].

In this paper, we propose a multiscale response to detect
linear structures in 2D images. We will use the formulation,
which was suggested in [36, 37]. �e presented detection
algorithm is divided into two steps. First, we present a �ux-
based anisotropic di
usion method and apply it to denoise
images corrupted by an additive Gaussian noise. In order to
extract only the pixels belonging to a vessel region, we use
a Gaussian model of the vessels for interpreting the eigen-
values and the eigenvectors of the Hessian matrix. �en, we
compute the multiscale response from responses computed
at a discrete set of scales. �e method has been evaluated
using the images of two publicly available databases, the
DRIVE database [34] and the STARE database [33]. Prior
to analysing fundus images, we have used the green channel
alone, since it gives the highest contrast between the vessel
and the background.

2. Methodology

2.1. Preprocessing Technique. In the ocular fundus image,
edges and local details between heterogeneous regions are
the most interesting part for clinicians. �erefore, it is very
important to preserve and enhance edges and local 	ne
structures and simultaneously reduce the noise. To reduce
the image noise, several approaches have been proposed
using techniques such as linear and nonlinear 	ltering. In
linear spatial 	ltering, such as Gaussian 	ltering, the content
of a pixel is given by the value of the weighted average
of its immediate neighbors. �is 	ltering not only reduces
the amplitude of noise �uctuations but also degrades sharp
details such as lines or edges, so the resulting images appear
blurred and di
used [24, 38]. �is undesirable e
ect can
be reduced or avoided by designing nonlinear 	lters. �e
most common technique is median 	ltering. With it the
value of an output pixel is determined by the median of the
neighborhood pixels.�is 	ltering retains edges but results in
a loss of resolution by suppressing 	ne details [39]. In order
to perform this task, Perona and Malik (PM) [18] developed
an anisotropic di
usionmethod, amultiscale smoothing, and
the edge detection scheme, which were a powerful concept
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in image processing. �e anisotropic di
usion was inspired
from the heat di
usion equation by introducing a di
usion
function, �, which depended upon the norm of the gradient
of the image:

���� = div(�(|∇�|) ⋅ ∇�), (1)

where ∇ and �(
, �) denote gradient operation and image
intensity, respectively, div is the divergence operator, and| ⋅ | denotes the magnitude. �e variable 
 represents the
spatial coordinate, while the variable � is used to enumerate
iteration steps in the discrete implementation. Perona and
Malik suggested the following di
usion functions:

�(|∇�|) = 1
1 + (|∇�|/�)2 ,

�(|∇�|) = exp[−(|∇�|� )2],
(2)

where � is a parameter of the norm gradient. In this method
of anisotropic di
usion, the norm gradient is used to detect
edges or frontiers in the image as a step of intensity discon-
tinuity. To understand the relation between the parameter �
and the discontinuity value |∇�|, �(∇�) can be de	ned as the
following product �(∇�) = � × ∇�, called the �ow di
usion.

(i) If |∇�| ≫ �, then �(|∇�|) → 0 and we have a 	lter
pass-all.

(ii) If |∇�| ≪ �, then �(|∇�|) → 1 and we obtain an
isotropic di
usion 	lter (like a Gaussian 	lter), which
is a low-pass 	lter that attenuates high frequencies.

�e one-dimensional discrete implementation of (1) is
given by

���� (
, �)
= ��
 (�(
, �) ⋅ ∇ (�) (
, �))
≈ ��
(�(
, �) ⋅ 1�
(�(
 + �
2 , �) − �(
 − �
2 , �)))
≈ 1�
2 [�(
 + �
2 , �) ⋅ (� (
 + �
, �) − � (
, �))

−�(
 − �
2 , �) ⋅ (�(
, �) − �(
 − �
, �))]
≈ �right − �le� if �
 = 1,

(3)

where �right = �(
 + (�
/2), �) and �le� = �(
 − (�
/2), �).
�e above result is generalized in �-dimensional:

���� ≈
�∑
�=1
��+� − ��−� (4)

if ∀�, �
� = 1, ��+� = ���(
 + (�
�/2), �) and ��−� = ���(
 −(�
�/2), �).

Figure 2: PM anisotropic di
usion.
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Figure 3: Directional anisotropic di
usion.

Up to now, the anisotropic di
usion has been de	ned
as the case where the di
usivity is a scalar function varying
with the location in the image. As described earlier, the PM
di
usion (Figure 2) limits the smoothing of an image near
the pixels with a high gradient magnitude (edge pixels). As
the di
usion near an edge is very weak, the noise smoothing
near the edge is also small. To address this, di
usions using
matrices instead of scalars have been put forward [36, 40,
41], where the anisotropic di
usion allows the di
usion to
be di
erent along various directions de	ned by the local
geometry of the structures in the image (Figure 3). �us,
the di
usion on both sides of an edge can be prevented
while allowing the di
usion along the edge.�is prevents the
edge from being smoothed and then being removed during
denoising.

�e � �ux of the matrix di
usion (MD) form can be
written as

div(�∇�), (5)

where � is a positive de	nite symmetrie matrix that may be
adapted to the local image structure, which can be written in
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Table 1: Parameters and results of di
erent 	lters for vessel image.

Filter � �  ! �� Neig. PSNR (dB) MSE

GF — — — 2 — 9 × 9 37.7717 10.8620

MF — — — — — 5 × 5 38.6364 8.9011

PM 13 7 — — 0.15 — 39.6735 7.0103

DAD 50 7 0.05 0.8 0.05 — 40.4337 5.8845

terms of its eigenvectors V1 and V2 and eigenvalues "1 and "2,
as follows:

� = [V1 V2] ["1 00 "2][[
V
�
1

V
�
2
]
]
. (6)

Subsequently, the gradient vector 	eld can be written as

∇� = �
V1
V1 + �V2V2. (7)

Following the eigenvalues and eigenvectors that we have
chosen, di
erent matrix di
usions can be obtained [36,
41]. �e di
usion matrix proposed by Weickert et al. [41]
had the same eigenvectors as the structure tensor, with
eigenvalues that are a function of the norm of the gradient
[41, 42]. In our work, we have used a 2D basis (V∗1 , V∗2 ) which
corresponds, respectively, to unit vectors in the directions of
the gradient and to the minimal curvature of the regularized
(or smoothed) version of the image, which is the image
convolved with a Gaussian 	lter with a standard deviation!. �is basis is of particular interest in the context of
small, elongated structures such as blood vessels, where the
minimal curvature holds for the axis direction orthogonal
to the gradient. �ese directions are obtained as two of the
eigenvectors of the Hessian matrix of the smoothed image:-� (further details are described in Section 2.3). �erefore,
the eigenvectors are de	ned as follows:

V
∗
1 ‖ ∇��,

V
∗
2 ⊥ ∇��, (8)

where ∇�� is the gradient of the image convolved with a
Gaussian 	lter with a standard deviation !, V∗2 gives an
estimation of the vessel direction, and V

∗
1 is its orthogonal.

Also, we have used the eigenvalues in (6) as a di
usion
function associated to each vector of the basis depending on
the 	rst order derivative of the intensity in this direction,
instead of the traditional norm of the smoothed gradient.
Furthermore, the di
usion can be decomposed as a sum of
di
usions in each direction of the orthogonal basis and the
divergence term can be written as [36]

div(�) = div( 2∑
�=1
7�(�V∗� ) ⋅ V∗� ) = 2∑

�=1
div(7�(�V∗� ) ⋅ V∗� ), (9)

where �
V
∗
�
and 7� indicate the 	rst order derivative of the

intensity in the direction V� and the �th di
usion function,
respectively. Also, 71 can be chosen to be any of the di
usivity
functions from the traditional nonhomogeneous isotropic

di
usion equation, which depends on the 	rst order deriva-

tive of the intensity in this direction, as 71(�V∗1 ) = �V∗1 <−(�V∗1 /	)2
and 72(�V∗2 ) = > ⋅ �

V
∗
2
, with 0 < > < 1, being only a di
using

function to allow smoothing in a V
∗
2 direction. For further

details, the reader could refer to [36, 43].
As in [36], we use a data attachment term with a

coe�cient  which allows a better control of the extent to
which the restored image di
ers from the original image�0 (at � = 0) and of the result of the di
usion process at
convergence. �e anisotropic di
usion equation becomes

���� =
2∑
�=1

div(7�(�V∗� ) ⋅ V∗� ) +  (� − �0). (10)

In order to evaluate the denoising e
ects of the directional
anisotropic di
usion (DAD), we have added aGaussianwhite
noise to each of the images in Figure 4. Once the di
usion
method is applied to these noisy images, its e
ectiveness in
reducing the noise is got by calculating the peak signal to
noise ratio (PSNR) relative to the original image as follows:

PSNR = 10 ⋅ log10( �2
MSE

), (11)

where � = 255 and MSE is the mean-squared error which is
written as

MSE = 1�B

∑
�=1

�∑
�=1
(Coriginal(�, D) − Cdenoised(�, D))2, (12)

where Coriginal refers to the original image without noise andCdenoised is the image a�er the denoising process.
�e higher the PSNR is, the better the e
ect of the

denoising is. Note that this measure does not necessarily
imply that an image with a higher PSNR is also more visually
gratifying. However, based on our experiments using the
three test images with an additive white Gaussian noise, we
can draw some observations. First, all the techniques we have
tried have several parameters that must be selected carefully
to obtain the best results. Since we have a “clean” original
image, as well as one with noise, we can use the increment in
the PSNR value to guide our choice of the parameters. �ese
parameters and the obtained results are indicated in Tables 1,
2, and 3, where we can observe that for the images corrupted
with an additive Gaussian noise, the DAD method performs
better than the PMmethod. It gains a higher PSNR (40.4337,20.9045, and 33.3515) and a smaller MSE (5.8845, 527.9932,
and 30.0557) than the aforementioned three methods.

Figure 4 represents some of the best results for the di
er-
ent methods (GF, MF, PM, and DAD) on the presented three
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(a) (b) (c) (d) (e) (f)

Figure 4: Original images (a) and the corresponding images with additive Gaussian noise (b); denoised images: best result with GF (c), best
result with MF (d), best result with PM 	lter (e), and best result with directional anisotropic di
usion 	lter (f).

Table 2: Parameters and results of di
erent 	lters for phantom image.

Filter � �  ! �� Neig. PSNR (dB) MSE

GF — — — 2 — 5 × 5 18.8731 842.8924

MF — — — — — 5 × 5 20.2437 614.7677

PM 20 3 — — 0.15 — 20.8821 530.7294

DAD 75 2 0.05 0.8 0.05 — 20.9045 527.9932

Table 3: Parameters and results of di
erent 	lters for Lena image.

Filter � �  ! �� Neig. PSNR (dB) MSE

GF — — — 2 — 5 × 5 31.4598 46.4621

MF — — — — — 5 × 5 29.14504 79.1734

PM 10 7 — — 0.15 — 32.9911 32.6562

DAD 20 7 0.05 0.8 0.05 — 33.3515 30.0557

test images (Vessels, phantom, and Lena). For instance, the
results recorded a�er applying the DAD method show that
this latter improves much more the visual rendering of the
image compared to othermethods. As shown in the images of
the 	rst row, a DAD 	lter can e
ectively improves the quality
of a noisy image and also well enhances edges and preserves
more details than other 	lters. Indeed, the Gaussian 	lter
smooths very strongly the planar areas which causes loss of
information regarding the 	ne structures of the image, and it
blurs the image.�eMedian 	lter, compared to the Gaussian
	lter, preserves edges but losses details. Comparing the results
of the DAD method to those obtained by the PM di
usion
in Figures 5 and 6, we can derive several observations. �e
denoising of PM di
usion model is sensitive to the value
of the conductance parameter �, and, therefore, smoothing
is performed along ridges but not across a ridge line which
causes enhancing the desired ridges as well as the noise.
To be compared to the DAD di
usion 	lter, the di
usivity

is a tensor-valued function varying with the location and
orientation of edges in an image. So, when this 	lter is applied
to a ridge line smoothing is performed along ridges as across
a ridge line while preserving the details.

2.2. Multiscale Medialness. �e general approach of multi-
scale methods is to choose a range of scales between �min and�max (corresponding to !min and !max), which are discretized
using a logarithmic scale in order to have more accuracy
for low scales and to compute a response for each scale
from the initial image [36, 43, 47]. �e user speci	es the
minimal and maximal radius of the vessels to extract. �us,
the computation of the single scale response requires di
erent
steps. First, a number of points are preselected using the
eigenvalues of the Hessian matrix. �ese points are expected
to be near a vessel axis. �en, for each preselected point, the
response is computed at the current scale !. �e response
function uses eigenvectors of the Hessianmatrix of the image
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Figure 5: PM anisotropic di
usion (� = 3,� = 100).

Figure 6: Directional anisotropic di
usion (� = 3, � = 100, > =0.5).

to de	ne at each point an orientation �(!, 
) orthogonal to
the axis of a potential vessel that goes throughB. From this
direction, the two points located at an equal distance ofB in
the direction �, noted B1 and B2 (Figure 7). �e responseI�(C) at B is taken as the maximum absolute value, among
these two points, of the 	rst derivative of the intensity in the� direction:

I� (
)
= max{∇�C(!, 
 + ! ⋅ �) ⋅ (+�), ∇�C(!, 
 − ! ⋅ �) ⋅ (−�)},

(13)

where � is the unitary vector of the direction �, that is,� = L→
V1, and ∇�C is the gradient of the image at the scale !.∇�C is obtained by the convolution with the 	rst derivative

of a Gaussian function of the standard deviation !, where
multiplying the derivatives by ! ensures the scale invariance
property and allows comparing the responses obtained from
di
erent scales.�e gradient vector∇�C can be computed by a
bilinear interpolation for better accuracy, which is especially
needed when looking at small vessels [37, 39].

A vessel of a radius M is detected at a scale �, so we use
the scales corresponding to each radius for the multiscale
processing. For a 	xed scale �, we calculate a response
image I
(C) where C is the initial image. �en we calculate

∇I(�, x + r · d)

+d

x + r · d

x

x − r · d

−d

∇I(�, x − r · d)

Figure 7: Representation of vesselness measure calculation (from
the point 
 on the central line, � is the unit vector perpendicular to
the main direction of the vessel and M = ! is the current scale).

the multiscale response for the image Imulti(C) which is the
maximum of the responses over scales: for each point 
 ∈ C
and a range [�min, �max] of scale:

Imulti(
) = max


{I
(
), � ∈ [�min, �max]}. (14)

�is responseImulti(
) can be interpreted as an indicator that
the point 
 belongs to the center line of a vessel, andI
(
) can
be interpreted as an indicator that the point 
 belongs to the
center line of a vessel with a radius �. Finally, this response
is normalized to give a multiscale response that combines
interesting features of each single scale response.

One di�culty with the multiscale approach is that we
want to compare the result of a response function at di
erent
scales, whereas the intensity and its derivatives are decreasing
scale functions. So far, all considerations have been made at
a single scale de	ned by the scale parameter !. In his work,
about scale space theory, Lindeberg and Fagerström [48]
showed the need for a multiscale analysis to take the varying
size of objects into account. He also showed the necessity of
normalizing the spatial derivatives between di
erent scales.
�us, the normalized vesselness response is obtained by the
product of the normalization term !� and the 	nal vesselness:

I∗(Σ, P, 
) := max
�∈Σ

!� ⋅ I(!, 
) = max
�=1,...,�

!�� ⋅ I(!�, 
). (15)

�e parameter P can be used to indicate the preference for
a particular scale (Figure 8). If it is set to one, no scale is
preferred. Besides, the multiscale response is got by selecting
the maximum response over a set of di
erent scales between!min and !max.

2.3. Extraction of Local Orientations. �e proposed model
assumes that the intensity pro	le of the vessels in the cross
section is Gaussian (Figure 9). �is is a common assumption
that it is employed in numerous algorithms [28, 35, 49].



International Journal of Biomedical Imaging 7

(a) (b) (c)

Figure 8: In�uence of the normalization parameter P on multiscale response; (a) P = 1 is neutral; (b) P > 1 favors large scales; 	nally, (c)P < 1 favors small scales.
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Figure 9: Example of cross sectional pro	le of blood vessel from gray scale 2D image (the gray intensities are plotted in a 3D view. �e 
, S
axis is the position of the pixel in the 2D plane of the image, whereas the T-axis is the gray value or intensity of the pixel).

It is also commonly assumed that the intensity does not
change much along vessels [49–51]. Recently, the Hessian
matrix could be used to describe the local shape charac-
teristics and orientation for elongated structures [35, 52].
�e eigenvalues of this matrix, when the gradient is weak,
express the local variation of the intensity in the direction
of the associated eigenvectors. Subsequently, we assume that
we want to characterize the dark vessels (low intensity) on a
white background (high intensity).

Let us denote "1 and "2 as the eigenvalues of the Hessian
matrix with "1 ≥ "2 and L→

V1,
L→
V2 being their associated

eigenvectors (Figure 10). For a linear model with a Gaussian
cross section, the vessel direction is de	ned by the eigenvector
with the smallest eigenvalue at the center of the vessel, but it
is less determined at the contours because both eigenvalues
of the Hessian matrix are zero.

To summarize, for an ideal linear structure in a 2D image,

VVVV"2VVVV ≈ 0,VVVV"1VVVV > VVVV"2VVVV. (16)

In retinal images, some large vessels may have a white
line in their center and some elongated and disjoint spots
(Figures 11(a), 11(b), and 11(c)); accordingly, the vessels do
not invalidate the Gaussian pro	le assumption. So, such lines
are usually lost a�er the preselection of vessel pixels using
the Hessian eigenvalue analysis and classi	ed as background
pixels. �erefore, the responses of the gradient magnitude
are a task which is of particular importance in improving
the detection vessels (Figure 11). �e experimental results are
demonstrated in Figure 11, which shows hand labeled “truth”
images, and segmented images obtained, respectively, by the
Hessian eigenvalue analysis and the gradient magnitude.
From these results we can deduce that responses based on the
gradient magnitude can availably detect white lines as vessel
pixels an removes some noise spots.

3. Results

In this section, the proposed method has been evaluated on
two publicly available retinal image databases, the STARE
database [33] and the DRIVE database [25]. �e STARE
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Figure 10: Eigenvalue analysis. (a) vessel cross section; (b) intensity distribution (! = 4.55) vessel cross section; (c) corresponding eigenvalues.
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Figure 11: Retinal blood vessel detection. (a, b, and c) original images [33]; (d–g, e–h, and f–i) subimage of hand labeled image, vessel detection
based Hessian eigenvalue analysis, and improved vessel detection with gradient magnitude.
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(a) (b)

Figure 12: Binary mask of STARE project retinal image [33].

dataset contains twenty fundus colour retinal images, ten of
which are from healthy ocular fundi and the other ten are
from unhealthy ones.�ese images are captured by a Topcon
TRV-50 fundus camera at a 35 Field Of View (FOV), which
have digitized with a 24-bit gray-scale resolution and a size
of 700 × 605 pixels. �e dataset provides two sets of standard
hand-labeled segmentations, which are manually segmented
by two eye specialists.We create for this dataset a binarymask
of the gray channel of the image using a simple threshold
technique (Figure 12). We adapt the 	rst eye specialist hand
labelled as the ground truth to evaluate our vessel detection
technique. �e DRIVE dataset consists of 40 fundus ocular
images, which have been divided into a training set and a
test set by the authors of the database. �ese images are
captured by the Canon CR5 camera at 45 FOV, which have
been digitized at 24 bits with a resolution of 565 × 584 pixels.
�e dataset also gives two sets of standard hand-labeled
segmentations by two human experts as a 9-ground truth.

�e 	rst expert hand labelled segmentation has been
adapted as a ground truth to evaluate segmentation tech-
niques on both STARE and DRIVE datasets. It is a common
practice to evaluate the performance of retinal vessel seg-
mentation algorithms using receiver operating characteristic
(ROC) curves [25, 35]. An ROC curve plots the fraction
of pixels correctly classi	ed as vessels, namely, the true
positive ra te (TPR), versus the fraction of pixels wrongly
classi	ed as vessels, namely, the false positive rate (FPR), by
varying the rounding threshold X from 0 to 1 (Figure 13).
�e closer the curve approaches the top le� corner, the better
the performance of the system. In order to facilitate the
comparisonwith other retinal vessel detection algorithms, we
have selected the value of the area under the curve (AUC),
which is 1 for an ideal system.

To measure the performance of the proposed enhance-
ment 	lter, we ran our multiscale analysis 	lter with the
following set of parameters:

(i) Mmin, Mmax, Y, and the minimal and maximal radii used
in this application are Mmin = 1.25 and Mmax = 7, dis-
cretized using Y = 4 scales;

(ii) the parameter P set to one to indicate no scale is
preferred;

(iii) the value � is a constant threshold on the norm of
gradient on the image;

(iv) � is the number of iterations for the anisotropic
di
usion 	lter.

�e computing time of our algorithm for an image of the
STARE database is about 64 seconds, including anisotropic
di
usion 	ltering, and about the same time for the DRIVE
database. �e implementation of the 	lter has been done in
MATLAB, on a personal computer with a 2.13 Intel Core
Duo processor and 4GB of memory. In the 	rst experiment,
we apply a preprocessing task such as 	ltering data with
an anisotropic di
usion version, cited above, in order to
remove or at least reduce noise. �e DAD 	lter denoises
the original image by preserving edges and details. To show
that the segmentationworks betterwith anisotropic di
usion,
Figure 14 presents a segmentation result before and a�er the
application of the anisotropic di
usion scheme. In this 	gure,
we show the improvements provided by the DAD model,
which tends to remove noise e
ects and, unfortunately,
smaller objects. So, it preserves e�ciently the vessels while
making the background more homogeneous.

On the other hand, for computing the response, it is
possible to retain the mean of the two calculated values (the
gradient of the two points located at an equal distance from
the current point), like in the 3D case proposed by [36], or
the minimal calculated value in the 2D case [37]. We prefer
retaining the maximum of these two values. Figure 15 shows
a synthetic image which consists of 100 × 100 pixels with an 8-
bit resolution. We have chosen this image because it contains
an object close to the vessel form. �e latter 	gure shows the
segmentation results by maximum, average, and minimum
response functions. We note that for the case of minimum or
average responses, the ring is not completely detected like in
the original image, since we can see it has beenmissing pixels
belonging to the edges, in contrast to maximum case where
the extraction of the ring is complete. Table 4 presents the
AUC calculatedwith ourmethod for the test set of the STARE
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Figure 13: ROC curve of retinal image (06 test.tif) downloaded from DRIVE dataset [34]; (a) original image; (b) segmented image; (c) Roc
curve.

(a) (b) (c) (d)

Figure 14: E
ect of anisotropic di
usion. (a) Green channel of the original image downloaded from the STARE project dataset [33]. (b)
Subimage of the original image, rescaled for better visualization, (c) segmentation without anisotropic di
usion, and (d) segmentation with
anisotropic di
usion, � = 1.25,  = 0.05, and� = 30.
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Figure 15: Original synthetic image, maximum response, average response, and minimum response ! ∈ {0.25, 0.5, 1, 2, 4} (le� to right-top
to bottom).

Table 4: STARE project database [33].

Mean Min Max

AUC 0.9329 0.9053 0.9445

database, using the green channel images. As given in the
table, the experimental results show that themaximummodel(AUC = 0.9445) performs much better than the average(AUC = 0.9329) or minimummodel (AUC = 0.9053).

Figure 16 presents the obtained response image of a real
retinal image, where four scales have been used for radii of
vessels ranging from 1.25 to 7: {1.25, 2.22, 4, 7}. �is 	gure
shows that small and large vessels can be better distinguished
in the maximum case than the minimum or average ones.

Although the contrast is not very high in the original
	gure (Figure 14(a)), the method detects most vessels, over
a large size range. For example, in Figure 17, an image of
the retinal tree vasculature is presented, where di
erent
responses recorded at increasing scales are represented. �e
last image shows a quite good performance of the vessel
subtraction. Yet Figure 18 proves that it is possible to design a
system that approaches the performance of human observers.

In order to evaluate the suggested method, experiment
results of the 20-image sets of the STARE database are shown
in Table 5. In Table 6, our method is compared to the most

Table 5: ROC curve analysis of STARE project database [33].

Number MAA TPR FPR

1 0.9014 0.5537 0.0398

2 0.8740 0.1178 0.0045

3 0.9168 0.3819 0.0119

4 0.9286 0.5525 0.0135

5 0.9240 0.5678 0.0218

6 0.9414 0.5128 0.0139

7 0.9672 0.7626 0.0141

8 0.9683 0.7534 0.0149

9 0.9652 0.7366 0.0123

10 0.9420 0.6171 0.0182

11 0.9503 0.6379 0.0133

12 0.9655 0.7694 0.0105

13 0.9864 0.6992 0.0180

14 0.9480 0.6899 0.0162

15 0.9487 0.6882 0.0207

16 0.9226 0.6788 0.0215

17 0.9499 0.7099 0.0168

18 0.9484 0.6812 0.0102

19 0.9585 0.6058 0.0114

20 0.9345 0.6000 0.0172

Av.MAA Av.TPR Av.FPR

0.9402 0.6145 0.0162
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Figure 16: Real angiography image downloaded from DRIVE dataset [34], average response, maximum response, and minimum response
(le� to right-top to bottom).

Table 6: Comparison of vessel segmentation results on STARE
project database [33].

Method MAA TPR FPR

2nd human
observer

0.9354 0.8949 0.0610

Hoover [33, 35] 0.9267 0.6751 0.0433

Mendonça (green)
[21]

0.9440 0.6996 0.0270

Staal [25] 0.9516 0.6970 0.0190

Soares [44] 0.9480 0.7165 0.0252

Matched 	lter [13] 0.9384 0.6134 0.0245

Martinez-Perez
[45]

0.9410 0.7506 0.0431

MF-FDOG [14] 0.9484 0.7177 0.0247

Proposed method 0.9402 0.6145 0.0162

recent methods in terms of TPR, FPR, and maximum accu-
racy average (MAA) where the maximal accuracy indicates

how to extract a binary image that matches the vessel images
to a high degree. �e accuracy is estimated by the ratio of
the sum of the number of correctly classi	ed foreground and
background pixels, divided by the total number of pixels in
the image. In this latest table, the performance measures of
Staal et al. [25], Zhang et al. [14], Mendonça and Campilho
[21], Chaudhuri et al. [13], Martinez-Perez et al. [45], and
Hoover et al. [35] have been reported by their original papers.
In addition, these performance results are the average values
for the whole set of 20 images, except the method of Staal
[25] which used 19 out of 20 images of the STARE images,
among which ten were healthy and nine were unhealthy.
Table 5 presents our results on all 20 images in the STARE
database, estimated using the hand-labeled images set of
the 	rst human expert designated as a ground truth. �e
estimated experimental results are the average TPR = 0.6145
corresponding to an FPR of around 0.0162 and a maximum
average accuracy MAA = 0.9402. �e results show that our
method has a competitive maximum average accuracy value
where it performs better than the matched 	lter [13] and
remains close to the others.
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Figure 17: Di
erent responses for di
erent scales of Figure 14(a) (top to bottom); the 	rst four images show the vesselness obtained at
increasing scales. �e last image is the result a�er the scale selection procedure (normalized image).

�e results of the proposed method are also compared
with those on twenty images from the DRIVE database,
and the result is depicted in Table 7. �e hand-labeled
images by the 	rst human expert have been used as ground
truth. �e experimental results show an MAA around of0.9155. Also, we have compared the performance of the
suggested technique with the sensitivities and speci	cities of
the methods cited in Table 7. It has been found that for the
DRIVE database the method has provided a sensitivity of0.5879 and a speci	city of 0.0166. We have shown that the
proposed method performs well with a lower speci	city even
in the presence of lesions in the abnormal images.

4. Conclusion

�e purpose of this work is to detect linear structures in
real retinal images in order to help the interpretation of
the vascular network. We put forward to combining an
anisotropic di
usion 	lter to reduce the image noise with a
multiscale response based on the eigenvectors of the Hessian
matrix and on the gradient information to extract vessels
from retinal images. �e main advantage of this technique
is its ability to extract large and 	ne vessels at various image
resolutions. Furthermore, the directional anisotropic di
u-
sion plays a vital role in denoising images and in decreasing
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Figure 18: An image of a retina [35], the segmented image, and the hand labeled “truth” images (im0077.vk and im0077.ah) (le� to right-top
to bottom) [33].

Table 7: Comparison of vessel segmentation results on DRIVE
database [34].

Method MAA TPR FPR

2nd human
observer [34]

0.9473 0.7761 0.0275

Martinez-Perez
[45]

0.9344 0.7246 0.0345

Staal [25, 34] 0.9442 0.7194 0.0227

Mendonça [21] 0.9452 0.7344 0.0236

Matched 	lter [13] 0.9284 0.6168 0.0259

Niemeijer [34, 46] 0.9417 0.6898 0.0304

Proposed method 0.9155 0.5879 0.0166

the di�culty of vessel extraction especially for thin vessels.
Our 	rst results show the robustness of the method against
noise as well as its applicability to detect blood vessels. �e
MAA is used as a performance measure, and the values
achieved with our algorithm are competitive compared to the
existing methods. �erefore, from the experimental results,
it can be seen that the number of classi	ed pixels has been
slightly lower compared to the other methods using the
same database mainly due to the weakness of blood vessels,
causing missing vessels, and also because of lesions, resulting
in a detection error. Also, the retinal images su
er from
nonuniform illumination and have a poor contrast. �us,

to avoid wrong classi	ed pixels ormiss classi	ed ones, caused
by an occasional falsemeasurement, this system can very well
be improved in the future with adding, for instance, some
postprocessing tasks to reachmore accuratemeasurement for
blood vessels.
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