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Abstract 
Hierarchical clustering algorithms are typically more effective in detecting the true clustering structure of 
a data set than partitioning algorithms. However, hierarchical clustering algorithms do not actually create 
clusters, but compute only a hierarchical representation of the data set. This makes them unsuitable as an 
automatic pre-processing step for other algorithms that operate on detected clusters. This is true for both 
dendrograms and reachability plots, which have been proposed as hierarchical clustering representations, 
and which have different advantages and disadvantages. In this paper we first investigate the relation 
between dendrograms and reachability plots and introduce methods to convert them into each other 
showing that they essentially contain the same information. Based on reachability plots, we then introduce 
a technique that automatically determines the significant clusters in a hierarchical cluster representation. 
This makes it for the first time possible to use hierarchical clustering as an automatic pre-processing step 
that requires no user interaction to select clusters from a hierarchical cluster representation. 
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1. Introduction and Related Work 
Knowledge discovery in databases (KDD) is the non-trivial process of identifying valid, novel, potentially 
useful, and understandable patterns in large amounts of data. One of the primary data analysis tasks in this 
process is cluster analysis. It is often a first and important step in analyzing a data set, understanding its 
properties, and preparing it for further analysis.  

There are many different types of clustering algorithms for different types of applications. The most 
common distinction is between partitioning and hierarchical clustering algorithms (see e.g. [KR 90]).  

Partitioning algorithms create a “flat” decomposition of a data set into a set of clusters. Examples of 
partitioning algorithms are the k-means [Mac 67] and the k-medoids algorithms PAM and CLARA [KR 
90] and CLARANS [NH 94], or density-based approaches such as [JD 88], [EKSX 96], [SCZ 98], or [HK 
98]. They need, however, in general some input parameters that specify either the number of clusters that 
a user wants to find or a threshold for point density in clusters. Correct parameters for partitioning 
algorithms, which allow the algorithm to reveal the true clustering structure of a data set, are in general 
difficult to determine, and they may not even exist.  

Hierarchical clustering algorithms, on the other hand, do not actually partition a data set into clusters, 
but compute only a hierarchical representation of the data set, which reflects its possibly hierarchical 
clustering structure. The Single-Link method [Sib 73] is a well-known example of this type of method. 
Other algorithms such as Average-Link or Complete-Link, which produce similar hierarchical structures 
have also been suggested (see e.g. [JD 88], [HT 93]) and are widely used. The result of these algorithms 
is a dendrogram, i.e., a tree that iteratively splits a data set into smaller subsets until each subset consists 
of only one object. A different hierarchical clustering algorithm, which generalizes density-based 
clustering, is OPTICS [ABKS 99]. This algorithm produces another type of output representation, a so-
called reachability plot, which is a bar plot of distance values showing clusters as “dents” in the plot.  

Hierarchical clustering algorithms have several advantages over partitioning algorithms: they are 
more robust with respect to their input parameters, they are less influenced by cluster shapes, they are less 
sensitive to largely differing point densities of clusters, and they can represent nested clusters.  
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An important property of many real-data sets is that clusters of very different point densities may 
exist in different regions of the data space and that clusters may be nested, which makes it very hard to 
detect all these clusters using a partitioning algorithm. The reason is that in these cases global parameters, 
which are explicitly or implicitly required by most partitioning algorithms and which would characterize 
all clusters in the data space, do not exist. The 2-dimensional data depicted in Figure 1(a) – nested 
clusters, and in Figure 2(a)  – largely differing densities illustrate the problems (the circles and ellipses in 
the figures should be ignored at this point, they illustrate an aspect that is explained later). In cases like 
these, hierarchical clustering algorithms are a better choice for detecting the true clustering structure. 

There are, however, also problems with hierarchical clustering algorithms, and alleviating those 
problems is the focus of this paper. The first problem is that hierarchical clustering representations are 
sometimes not easy to understand, and depending on the application and the user’s preferences, one of the 
representations, dendrogram or reachability-plot, may be preferable, independent of the algorithm used.  

For very small data sets, a dendrogram may give a clearer view of the cluster membership of 
individual points than a reachability plot, and in some application areas such as biology, domain experts 
may prefer tree representations because they are more used to it. However, dendrograms are much harder 
to read than reachability plots for more than a few hundred data points, since the diagram grows rapidly 
when the size of the data set increases. When the user has to scroll through several screens, identifying the 
clusters becomes very difficult, and the horizontal lines connecting the nodes may in fact visually obscure 
the clustering structure instead of helping the user to identify the clusters. When the data set is large, 
identifying the overall clustering structure is much easier in reachability plots. Figure 1 and Figure 2 show 
a reachability plot in part (b) of the figures, and a Single-Link dendrogram in part (c) of the figures, for 
the depicted data sets. To indicate which regions in the hierarchical clustering representations correspond 
to which clusters in the data sets, we used corresponding labels (“A” through “D”). More details about 
how to interpret these hierarchical clustering representations will be given in section 2. Roughly speaking, 
in a reachability plot, clusters are indicated by a “dent” in the plot; in a dendrogram, the nodes of the tree 
represent potential clusters. 

The second problem with hierarchical clustering algorithms is that clusters are not explicit in the 
output of the algorithms and have to be determined somehow from the representation. There are two 
common approaches. In the first approach, a user selects and extracts manually each single cluster from a 
dendrogram or reachability plot, guided by a visual inspection of the graphical representation. The second  
 
 
 
 
 
 
 
 
 

Figure 1: Example dataset 1: hierarchical clustering structure, i.e., nested clusters. 

 
 
 
 
 
 
 
 

Figure 2: Example dataset 2: largely differing densities and sizes of clusters. 
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approach is semi-automatic: a user first defines a horizontal cut through the clustering representation, and 
then the resulting connected components (usually those having a minimum size) are automatically 
extracted as clusters. The latter approach has two major drawbacks: when clusters have largely differing 
densities, a single cut cannot determine all of the clusters, and secondly, it is often difficult to determine 
where to cut through the representation so that the extracted clusters are significant. The resulting clusters 
for some cut-lines through the given reachability plots are illustrated in Figure 1 and Figure 2. The circles 
and ellipse roughly describe the extracted clusters that correspond to the cut-line having the same style: 
solid or dashed. The example in Figure 2 also shows a case where there is clearly no cut-line through the 
hierarchical representation, which would determine all the clusters present in this data set. 

Both approaches have the disadvantage that they are unsuitable for an automated KDD process in 
which the output of hierarchical clustering algorithms are the input of subsequent data mining algorithms, 
which analyze the data set on the level of clusters. A typical application of such a data mining process is, 
for instance, the description and characterization of detected clusters in a geographic database by higher-
level features such as the diameter, the number neighbors of a certain type etc (see e.g., [KN96]). The 
ability to automatically extract clusters from hierarchical clustering representations as a preprocessing 
step to generate summary information for the clusters will also make it possible to track and monitor the 
changes of a hierarchical clustering structure over time in a dynamic data set.  

To our knowledge, the only proposal for a method to extract automatically clusters from a 
hierarchical clustering representation can be found in [ABKS 99]. The authors propose a method for 
reachability plots that is based on the steepness of the “dents” in a reachability plot. Unfortunately, this 
method requires an input parameter, which is difficult to understand and hard to determine. There is no 
known and reliable heuristics to set the value for this parameter. The result of the method is in fact rather 
sensitive to the value of the input parameter. Small variations in the parameter can result in drastic 
changes to the final hierarchical clustering structure extracted. For large and complex hierarchical 
structures, this method certainly can speed-up the process of manually extracting significant clusters from 
a reachability plot, if a user can find a suitable parameter setting after trying several different values. But 
it is definitely not suitable in an automatic preprocessing step in a larger KDD process.  

Our paper contributes to a solution of these problems in the following ways. First, we analyze the 
relation between hierarchical clustering algorithms that have different outputs, i.e. between the Single-
Link method, which produces a dendrogram, and OPTICS, which produces a reachability plot. Although 
the algorithms and the resulting representations may seem significantly different, we will show that the 
clustering representations have essentially the same properties, and that they can even be considered 
equivalent in a special case. Based on this analysis we develop methods to convert dendrograms and 
reachability plots into each other, making it possible to choose the most advantageous representation, 
independent of the algorithm used. Converting a dendrogram into a reachability plot is also an important 
step in our new method for automatic cluster extraction from hierarchical clustering representations. We 
introduce a new technique to create a tree that contains only the significant clusters from a hierarchical 
representation as nodes. Our new tree has the additional advantage that it can be directly used as input to 
other algorithms that operate on detected clusters. The result of this method can be either a cluster tree (if 
the subsequent algorithms for characterizing and analyzing clusters can handle hierarchical structures), or 
only the leaves of this tree (if the algorithm requires a flat partitioning of the data set as an input). 
Selecting only the leaves from our cluster tree corresponds to selecting the most significant clusters 
simultaneously from different levels of a dendrogram or reachability plot (rather than applying a simple 
cut at a certain level of a hierarchical clustering representation, which may miss important clusters).  

The rest of the paper is organized as follows. Section 2 analyzes the relation between dendrograms 
and reachability plots in detail, and introduces methods to convert between these two representations. In 
section 3, we propose and evaluate a method to automatically extract the significant clusters from a 
hierarchical clustering representation. This method is based on reachability plots. However, if a 
hierarchical clustering result is given as a dendrogram the method can still be applied since the method 
proposed in section 2 can be used to convert the dendrogram into a reachability plot first. Section 4 
concludes the paper with a summary and some directions for future research.  
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2. Converting Between Hierarchical Clustering Representations 
2.1 The relation between the Single-Link Method and OPTICS 
The Single-Link method and its variants like Average-Link or Complete-Link create a recursive 
hierarchical decomposition of a given data set. Starting with the clustering obtained by placing every 
object in a unique cluster; in every step the two closest clusters in the current clustering are merged until 
all points are in one cluster. Methods like Average-Link and Complete-Link differ only in the distance 
function that is used to compute the distance between two clusters.  

The result of such a hierarchical decomposition is then represented by a dendrogram, i.e., a tree that 
represents the merges of the data set according to the algorithm. Figure 3 (left) shows a very simple data 
set and a corresponding Single-Link dendrogram, which is interpreted as follows: The root represents the 
whole data set, a leaf represents a single object, an internal node represents the union of all the objects in 
its sub-tree, and the height of an internal node represents the distance between its two child nodes. 

OPTICS is a hierarchical clustering algorithm that generalizes the density-based notion of clusters 
introduced in [EKSX 96]. It is based on the notions of core-distance and reachability-distance for objects 
with respect to parameters Eps and MinPts. The parameter MinPts allows the core-distance and 
reachability-distance of a point p to capture the point density around that point. Using the core- and 
reachability-distances, OPTICS computes a “walk” through the data set, and assigns to each object p its 
core-distance and the smallest reachability-distance reachDist with respect to an object considered before 
p in the walk (see [ABKS 99] for details).  

For the special parameter values MinPts = 2 and Eps = ∞, the core-distance of an object p is always 
the distance of p to its nearest neighbor, and the reachability-distance of an object p relative to an object q 
is always the distance between p and q. The algorithm starts with an arbitrary object assigning it a 
reachability-distance equal to ∞. The next object in the output is then always the object that has the 
shortest distance d to any of the objects that were “visited” previously by the algorithm. The reachability-
value assigned to this object is d. We will see in the next two subsections that a similar property holds for 
the sequence of object and the height of certain ancestor nodes between the objects in a dendrogram. 

Setting the parameter MinPts in OPTICS to larger values will weaken the so-called single-link effect 
(which, as a side effect, also smoothes the reachability plot), and if the dimension of the data set is not too 
high, OPTICS is more efficient than traditional hierarchical clustering algorithms since it can be 
supported by spatial index structures. The output is a reachability plot, which is a bar plot of the 
reachability values assigned to the point in the order they were visited. Figure 3 (right) illustrates the 
effect of the MinPts parameter on a reachability plot. Such a plot is interpreted as following: “Valleys” in 
the plot represent clusters, and the deeper the “valley”, the denser the cluster. The tallest bar between two 
“valleys” is a lower bound on the distance between the two clusters. Large bars in the plot, not at the 
border of a cluster represent noise, and “nested valleys” represent hierarchically nested clusters.  

Although there are differences between dendrograms and reachability plots, both convey essentially 
the same information. In fact, as we will investigate in the next subsections, there is a close relationship 
between a dendrogram produced by the Single-Link method and a reachability plot of OPTICS for Eps = 
∞ and MinPts = 2, which allows us to convert between these results without loss of information.  

For other algorithms such as Average-Link, Complete-Link, and OPTICS using higher values for 
MinPts, there is no strict equivalence of the results (although in practice the result will be similar since the 
detected clustering structures are a property of the data set and not a property of the algorithm used). 
Nevertheless, the  proposed methods for converting between dendrograms and  reachability plots are also 
 
 
 
 
 
 

Figure 3: Left: Illustration of a Dendrogram – Right: Illustration of Reachability Plots 
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applicable in those cases. Converting, e.g., a dendrogram produced by the Average-Link method into a 
reachability plot will generate a reachability plot that contains the same cluster information as the 
dendrogram (even though there may be no MinPts parameter so that OPTICS would generate a strictly 
equivalent result). Vice versa: converting a reachability plot of OPTICS for a higher MinPts value into a 
dendrogram will result in a tree representation of the same clustering information as the reachability plot 
(even though no other hierarchical method may produce a strictly equivalent result). Thus, these 
conversion methods allow a user to choose the best representation, given the properties of the data set, the 
user’s preferences, or some application needs, e.g., algorithms that process a clustering result further and 
expect a certain input format – one example of such a method is our technique for automatic cluster 
extraction from a hierarchical clustering representations, proposed in section 3.  

Please note that neither a dendrogram nor a reachability plot for a given data set is unique. There are 
many ways to draw a tree of merges as produced by, e.g., the Single-Link method. Intuitively: given one 
particular dendrogram, rotating the two children of any node in this representation and re-drawing the 
tree, we get another dendrogram, which is also a valid representation of the same clustering structure. For 
instance, in the dendrogram from Figure 3 (left), the right sub-tree of the root can as well be drawn first to 
the left, followed by the left sub-tree, drawn to the right. Using different starting points in the OPTICS 
algorithm will also produce different reachability plots, which however represent the same clustering 
structure. For instance, in Figure 3 (right), if we would start with a point in cluster C, the “dent” for that 
region would then come before the “dents” for clusters A and B.  

2.2 Converting dendrograms into reachability plots 
 It is easy to see that the order in which the leaf nodes are drawn in a dendrogram satisfies the following 

condition: for any two points in leaf nodes it holds that the height of 
their smallest common ancestor node in the tree is a lower bound for 
the distance between the two points. For instance, using the example 
dendrogram depicted to the left, the minimum distance between T (or 
any of the four points T, S, V, U) to I (or any other point among A, 
through R), is at least 3 since the smallest common ancestor node 
which separates  between I and T is the root at height 3.  

We get an even stronger condition if we assume that the dendrogram is organized in the following way: 
for any internal node (representing the merging of its two children), the right child is drawn in a way that 
the point in this sub-tree which is closest to the set of points in the left child (the point that determined the 
distance between the two children in the Single-Link method) is always the leftmost leaf in the sub-tree of 
the right child. This property can always be achieved via suitable rotations of child nodes in a given 
dendrogram. In such a dendrogram the height of the smallest common ancestor between a point p and p’s 
left neighbor q is the minimum distance between p and the whole set of points to the left of p. 

Recall that in a reachability plot of OPTICS (using MinPts = 2 and Eps = ∞) the height of a bar (the 
reachability value) for a point p is also the smallest distance between p and the set of points to the left of p 
in the reachability plot. This relationship allows us to easily convert a dendrogram into a reachability plot. 
We iterate through the leaves of a given dendrogram from left to right and assign each point its 
reachability value: the reachability value of the first point is (always) infinity in any reachability plot. For 
each other point p in the dendrogram the reachability value is simply the height of the smallest common 
ancestor of p and the left neighbor of p. In pseudo code:  

    leafs[0].r_dist = ∞;  
    for (i = 1; i < n; i++)  

leafs[i].r_dist = height_of_smallest_common_ancestor(leafs[i], leafs[i-1]); 

The transformation of our example dendrogram can be illustrated as following (see Figure 4): For the first 
point in the dendrogram A: r_dist = ∞. For the next point B, the height of the smallest common ancestor 
of A and B is 2. The height of the smallest common ancestor of the next point I, and the previous point B 
is also 2. This is the smallest distance between I and the group of points {A, B}. Point I is the first point  

1 

2 

3 
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Figure 4: Illustration of the conversion of a dendrogram into a reachability plot 

in a cluster, but its reachability value is still high. This is correct since in reachability plots the value for 
“border” objects of a cluster indicates the distance of that cluster to the previous points. For the next point 
J, the reachability value will be set equal to 1, since this is the height of the smallest common ancestor 
with previous point I. This is again the smallest distance between the current point J and the set of point to 
the left of J. In the same way we can derive the reachability values for the following points in the 
dendrogram, from point L to point H. When we consider the point T in the dendrogram we see that it is 
the first point of a cluster (containing T, S, V, and U) with an internal “merging distance” of 1. Again, its 
reachability distance is correctly set to 3, since the smallest common ancestor between T and H is the root 
of the dendrogram at height 3 (– also the smallest distance between T and the points to the left of T).  

A reachability plot created by OPTICS (using MinPts = 2 and Eps = ∞) contains more information 
than an arbitrary Single-Link dendrogram. Our transformation will generate a reachability plot in a strict 
sense only when applied to the dendrogram that satisfies the additional condition mentioned above. 
However, when converting an arbitrary dendrogram we will still get a bar plot that reflects the 
hierarchical clustering structure well enough for cluster analysis. Clusters will still form “dents” in the 
plot, only the order of the points may be different and the border points may not be correct, since this 
information was not represented in the dendrogram. For instance, if in our previous example the order of 
the points {T, S, V, U} would be different in the dendrogram the shape of the resulting reachability plot 
would not change. Instead of T, one of the other points S, U, V in the cluster would get a high reachability 
value, separating this group as a cluster from the rest of the points.  

2.3 Converting reachability plots into dendrograms 
To understand how to transform a reachability plot into a dendrogram consider the properties that hold for 
a reachability plot generated by OPTICS (using MinPts = 2 and Eps = ∞). Assume that the order 
generated by OPTICS is (p1, p2, …, pi-1, pi, pi+1, …, pn). The reachability value di of point pi is the shortest 
distance between pi and the set of points S1={p1, p2, …, pi-1} to the left of p. Furthermore, pi is the point 
that is closest to the set S1 among all points in the set of points S2={pi, pi+1, …, pn} to the right of p (this 
is guaranteed by the way OPTICS algorithm select the next point after processing pi-1).  

Now consider applying the Single-Link method to this data set. Obviously, at some point (possibly 
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after some iterations) a node N2 containing pi (and possibly other points from S2) will be merged with a 
node N1 containing only points from S1. The distance used for the merging (the height of the resulting 
node in the dendrogram) will be the reachability value di of pi. The node N1 (containing points to the left 
of pi) will always include pi-1 (the left neighbor of pi). The reason is that in fact a stronger condition on the 
distance between pi and the points to its left holds in a dendrogram: there is a point pi-m to the left of pi 
with the largest index such that its reachability value is larger than di, and di is the smallest distance to the 
set of points S1*={pi-m, …, pi-1}. When the node N2 containing pi will be merged in the Single-Link 
method at the distance di, it will be merged with the node N1 containing its nearest neighbor in S1*. But, 
since the reachability values of the points in S1* are smaller than di, – except for di-m, the points in S1*’ 
will have been merged already in previous steps of the Single-Link method. Hence they will be contained 
in N1, including pi-1. Based on this observation, we can transform a reachability plot into a dendrogram 
using the following method: 
 
    // RPlot=[p1, …, pn] is the input reachability plot; each element RPlot[i]=pi has the following attributes:  
    // RPlot[i].r_dist = reachability distance of pi  
    // RPlot[i].current_node = the current node in the dendrogram where pi belongs to  
    // PointList = [q1, …, qn] is a sequence of references to the points in ascending order of 
    // the corresponding reachability values – excluding p1 since p1.r_dist = ∞ in any reachability plot. 

    for (i = 1; i < n; i++)  
             create a leaf node N_i for RPlot[i]; 

RPlot[i].current_node = N_i;  //assign the new leaf node to be the points initial current_node 

    for (i = 1; i < n; i++)  
p = PointList[i]; // pick the point with the next smallest r_dist 
q = left neighbor of p in Rplot; 
create a new node N in the dendrogram; 
N.height = p.r_dist; 
N.left_child  = q.current_node;  
N.right_child  = p.current_node; 
p.current_node  = q.current_node = N; 

 
In Figure 5 we use the simple reachability plot from the previous section to illustrate the algorithm. In the 
first step, the algorithm will connect a point with the smallest reachability value, here J, with its left 
neighbor, here I. It will create a new node N1 with its height equal to the reachability value of J. The 
current_node for both I and J will become the new node N1. In the second step, it selects the next point 
from the sorted list of points (i.e., with the next smallest reachability value), say L. Again, it will create a 
new node N2 and connect the current_node of L (which is the leaf containing L) with the current_node of 
L’s left neighbor. The point is J, and J’s current_node is the node N created in the previous step. After 
processing the points in our example with a reachability value of 1, the intermediate dendrogram looks 
like the one depicted. The points I, J, L, M, K, and N at this stage will have the same current node, e.g. Nr, 
and similar for the other points. The next smallest reachability value in the next step will be 2. Assume 
the next point found in PointList (with a reachability value of 2) is point B. B is merged with B’s left 
neighbor A. The current nodes for A and B are still the leaves that contain them. A new node Nu is created 
with the reachability value of B as its height. The current node for both A and B is set to Nu. In the next 
step, if I is selected, the current_node of I (=Nr) will be merged with current_node of I’s left neighbor B 
(=Nu). After that, node Ns will be merged with this new node in the next step and so on until all points in 
our example with a reachability value of 2 are processed; the intermediate result looks like depicted 
above. The only point remaining in PointList at this point is T with a reachability value of 3. For point T 
the current_node is Nt, the current node of T’s left neighbor H is Nv. Hence Nt and Nv are merged into a 
new node Nw at height 3 (the reachability value of T).  

Figure 6 demonstrates our method using the data set shown in Figure 3, where we have a larger 
variation of distances between points than in the example we used for the explanation of the method (but 
this also make the dendrograms  less readable).  Obviously, if  we have a reachability plot for parameters 
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Figure 5: Illustration of the conversion of a reachability plot into a dendrogram 

other than MinPts = 2 and Eps = ∞, our method generates a dendrogram where the merging distances are 
based on the minimum reachability distances between groups of points instead of point-wise distances. 

3. Extracting Clusters from Dendrograms and Reachability Plots 
As argued in section 1, it is desirable to have a simplified representation of a hierarchical clustering 
structure that contains only the significant clusters, so that hierarchical clustering can be used as an 
automatic pre-processing step in a larger KDD process.  

We base our method on a reachability plot representation of a hierarchical clustering structure. To 
apply this method to dendrograms we have to transform the dendrogram into a reachability plot first using 
the method introduced in the previous section. Figure 7(a) illustrates our goal of simplifying a hierarchical 
clustering structure. Given a hierarchical representation such as the depicted reachability plot, the goal of 
our algorithm is to produce a simple tree structure, whereby the root represents all of the points in the 
dataset, and its children represent the biggest clusters in the dataset, possibly containing sub-clusters. As 
we proceed deeper into the tree the nodes represent smaller and denser clusters. The tree should only 
contain nodes for significant clusters as seen by a user who would identify clusters as “dents” or “valleys” 
in a reachability plot. The dents are roughly speaking regions in the reachability plot, having relatively 
low reachability values, and being separated by higher reachability values. Our automatic cluster 
extraction method first tries to find the reachability values that separate clusters. Those high reachability  
 
 
 
 
 
 
 
 

Figure 6: Transformation between Dendrogram and Reachability plot for the data set in Figure 3 
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Figure 7: (a) Desired transformation; (b) illustration of insignificant local maxima and clusters 

values are local maxima in the reachability plot. The reachability values of the immediate neighbors to the 
left and right side of such a point p are smaller than the reachability value of p, or do not exist (if p is the 
leftmost or rightmost point in the reachability plot). However, not all local maxima points are separating 
clusters, and not all regions enclosed by local maxima are prominent clusters. A local maximum may not 
differ significantly in height from the surrounding values, and local maxima that are located very close to 
each other create regions that are not large enough to be considered important clusters. This is especially 
true when using a small value for MinPts in OPTICS or a reachability plot converted from a Single-Link 
dendrogram (see Figure 7(b) for an illustration).  

To ignore regions that are too small in the reachability plot we assume (as is typically done in other 
methods as well) a minimum cluster size. In our examples, we set the minimum cluster size to 0.5% of the 
whole data set, which still allows us to find even very small clusters. The main purpose is the elimination 
of “noisy” regions that consists of many insignificant local maxima, which are close to each other.  

The significance of a separation between regions is determined by the ratio between the height of a 
local maximum p and the height of the region to the left and to the right of p. The ratio for a significant 
separation is set to 0.75, i. e. for a local maximum p to be considered a cluster separation, the average 
reachability value to the left and to the right has to be at least 0.75 times lower than the reachability value 
of p. This value represents approximately the ratio that a user perceives as the minimum required 
difference in height to indicate a relevant cluster separation. We experimented with different ratios and in 
fact, any value in the range 0.7-0.8 always gives good results, i.e., results, which automatically determine 
the clusters that a user would select manually (evidence is given at the end of this section in the 
experimental evaluation of our method).  

In the first step of our algorithm, we collect all points p whose reachability value is a local maximum 
in a neighborhood that encloses minimum-cluster-size many point to the left of p and to the right of p (if 
this is possible – points close to the border of the reachability plot may have less points on one side). The 
local maxima points are sorted in descending order of their reachability value, and then processed one by 
one to construct the final cluster tree. The pseudo-code for a recursive construction of a cluster tree is 
shown in Figure 8. Intuitively, the procedure always removes the next largest local maximum s from the 
maxima list (until the list is empty), determines whether this split point justifies new nodes in the cluster 
tree – and if yes, where those nodes have to be added. This is done in several steps: First, two new nodes 
are created by distributing the points in the current node into two new nodes according to the selected 
split point s: All points that are in the reachability plot to the left of s are inserted into the first node; the 
second node contains all the points that are right of s in the reachability plot (for the recursion, also the 
list of all local maxima points for the current node are distributed accordingly into two new lists). The two 
new nodes are possible children of the current node or the parent node, depending on the subsequent tests.  

We first check that the difference in reachability between the newly created nodes and the current 
local maximum indicates a relevant separation (as discussed above). If the test is not successful, the 
current local maximum is ignored and the algorithm continues with the next largest local maximum. If the 
difference is large enough, we have to check whether the newly created nodes contain enough points to be 
considered a cluster. If one of these nodes does not have the minimum cluster size it is deleted. If the 
nodes are large enough, they will be added to the tree. There are two possibilities to add the new nodes to 
the tree: as children of the current node, or as children of the parent node, replacing the current node. If 
we would always add the nodes as children of the current node, we would create a binary tree. This may 
not  result  in  the desired  representation as illustrated in Figure 9. To determine whether two reachability  
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cluster_tree(N, parent_of_N, L) 
// N is a node; the root of the tree in the first call 
// parent_of_N is the parent node of N; nil if N is the root of the tree 
// L is the list of local maxima points, sorted in descending order of reachability 
   if (L is empty) return; // parent_of_N is a leaf 

// take the next largest local maximum point as a possible separation between clusters 
N.split_point  = s = L.first_element();  
L = L - {s}; 

// create two new nodes and add them to a list of nodes 
N1.points = {p ∈ N.points | p is left of s in the reachability plot}; 
N2.points = {p ∈ N.points | p is right of s in the reachability plot}; 
L1 = {p ∈ L | p lies to the left of s in the reachability plot); 
L2 = {p ∈ L | p lies to the right of s in the reachability plot); 
Nodelist NL = [(N1, L1), (N2, L2)]; 

// test whether the resulting split would be significant:  
if ((average reachability value in any  node in NL) / s.r_dist > 0.75)  
         // if split point s is not significant, ignore s and continue 

            cluster_tree(N, parent_of_N, L); // 
  else //remove clusters that are too small 

          if (N1.NoOfpoints) < min_cluster_size) NL.remove(N1, L1);  
          if (N2.NoOfpoints) < min_cluster_size) NL.remove(N2, L2); 
          if (NL is empty) return; // we are done and parent_of_N will be a leaf 

          // check if the nodes can be moved up one level 
            if (s.r_dist and parent_of_N.split_point.r_dist are approximately the same) 
                let parent_of_N point to all nodes in NL instead of N; 
            else  
                let N point to all nodes in NL; 
            // call recursively for each new node 
            for each element (N_i, L_i)  in NL 

  cluster_tree(N_i, parent_of_N, L_i) 

Figure 8: Algorithm for constructing a cluster tree from a reachability plot 

values are approximately the same, we use a simple but effective test: we assume that the reachability 
value of the parent node (after scaling) is the true mean of a normed normal distribution (σ=1). If the 
(scaled) reachability value of the current node is within one standard deviation of the parent’s value, we 
consider the two values as similar enough to attach the newly created nodes to the parent node of the 
current node instead of the current node itself. This heuristic gives consistently good results for all classes 
of reachability plots that we tested.  

We performed a large number experiments to evaluate our new method, but due to space limitations, 
we can only show a limited number of representative results in Figure 10. For comparison, we also show 
the results of the ξ-cluster method that was proposed in the original OPTICS publication [ABKS 99]. We 
also show the data sets that were clustered using OPTICS. This illustration should only help to understand 
the extracted clusters; the compared methods are, strictly speaking, not dependent the actual data set, but 
only on the properties of the reachability plot from which (potential) clusters are extracted.  

                                           
Figure 9: Illustration of the “tree pruning” step 

Split point 
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Split point 
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Figure 10: Performance comparison of our new automatic cluster extraction method with the extraction of  
ξ-clusters presented in [ABKS 99], using for reachability plots with different characteristics 

The results for our new method are shown in the middle column, and the results for ξ-clusters are given in 
the left column. For both methods, the extracted cluster trees are depicted underneath each reachability 
plot. The nodes are represented as a horizontal bars that extend along the points, which are included in 
this node, and which would be used to generate cluster descriptions such center, diameter, etc for each 
node. This tree itself is drawn in reverse order, i.e., the leaves are closest to the reachability plot. The root 
of the tree is always omitted since it always contains all point and therefore would be represented by a bar 
at the bottom of each plot, extending over the whole width of the plot. 

The experimental results we show are for three different reachability plots, each representing an 
important class of reachability plots having similar properties. The essential characteristics: of the three 
reachability plots are the following: (a) relatively smooth plot with nested clusters, (b) noisy plot and 
fuzzy cluster separation, (c) smooth plot with clusters having largely differing densities (c). Examples (a) 
and (c) are also examples where the method of a simple cut through the dendrogram will not reveal all 
existing clusters at the same time, because such a cut does not exist.  

The results clearly show the superiority of our method: in all three different cases, our new method 
generates a cluster tree, which is very similar to what a user would extract as clusters from the given 
reachability plots. The ξ-cluster method, on the other hand, always constructs rather convoluted and much 
less useful cluster trees – using its default parameter value ξ=0.03 (for each of the examples there are 
some ξ-values, which give slightly better results than those shown above, but those best ξ-values are very 
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Figure 11: Results for different reachability ratios to determine significant cluster separation in our method 
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different for each example, and even then, none of them matched the quality of the results for our 
proposed new method). Note that we did not have to change any parameter values to extract the clusters 
from largely differing reachability plot (whereas finding the best ξ- values for the each example would 
involve an extensive trial and error effort). The internal parameter value of a 75% ratio for a significant 
cluster separation works well in all our experiments, and as noted above.  Our method is in fact very 
robust with respect to this ratio, as shown in Figure 11 where we present the results for the same data as 
above, but for different ratios (70%, and 80%). In fact, we only suggest in extreme cases that a user might 
consider changing this value to a higher or lower value. The rule to set the value for this ratio is: the lower 
the value, the less deep a “valley” can be (relative to its surrounding) to be considered as a significant 
cluster region in a reachability plot. 

4. Conclusions 
In this paper we first showed that dendrograms and reachability plots contain essentially the same 
information and introduced methods to convert them into each other. We then proposed and evaluated a 
new technique that automatically determines the significant clusters found by hierarchical clustering 
methods. This method is based on a reachability plot representation, but also applicable to dendrograms 
via the introduced transformation. The major purpose of these methods is to allow hierarchical clustering 
as an automatic pre-processing step in a data mining process that operates on detected clusters in later 
steps. This was not possible before, since hierarchical clustering algorithms do not actually determine 
clusters, but compute only a hierarchical representation of a data set. Without our methods, a user 
typically has to manually select clusters from the representation based on visual inspection. Our algorithm 
generates a cluster tree that contains only the significant clusters in a given representation as nodes.  

There are some directions for future work: currently, a cluster from a hierarchical clustering result is 
represented simply as the set of points it contains. For an automatic comparison of different clustering 
structures, we will investigate the generation of more compact cluster descriptions. Using those 
descriptions, we will also investigate methods to compare different cluster trees generated by our method. 
This is an important prerequisite for data mining applications like monitoring the clustering structure and 
its changes over time in a dynamic data set.  
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