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Abstract
This article presents a general algorithm for transforming sequen-
tial imperative programs into parallel data-flow programs. Our al-
gorithm operates on a program dependence graph in SSA form,
extracting task, pipeline, and data parallelism from arbitrary con-
trol flow, and coarsening its granularity using a generalized form of
typed fusion. A GCC-based prototype is applied to the automatic
parallelization of recursive C programs.

Keywords: automatic parallelization, data-flow model, auto-
matic parallelization, loop fusion, program dependence graph.

1. Introduction
The evolution of current processor architectures follows a path of
exponential growth of the number of cores per chip, while little im-
provements for single-core performance are expected. Higher per-
formance returns on newer architectures are therefore contingent
on the amount of parallelism that can be efficiently exploited in ap-
plications. However, not all expressions of parallelism are compat-
ible with a power- and bandwidth-efficient execution. The limited
power envelope and off-chip memory bandwidth of many-core pro-
cessors push for locality-friendly parallelization schemes. By miti-
gating the memory wall and reducing power consumption through
a more efficient management of data communications and control,
the data-flow model of computation provides an important direc-
tion for exploiting upcoming architectures.

The paper discusses a different way of looking at imperative
programs—as data-flow threads. These data-flow threads can be
extracted from a conventional static single assignment (SSA) repre-
sentation. Starting from the extraction of fine-grained parallelism,
grain-coarsening transformations reduce synchronization overhead
while avoiding significant loss of parallelism. As an important con-
tribution, we lift all restriction on data dependence and control flow
patterns, allowing for irreducible control flow and recursive calls.
Our compilation algorithm also emphasizes modularity (separate
compilation) and integration with existing development practices
and binary interfaces.

This paper is limited to the exploitation of scalar data depen-
dences, expecting programmer intervention to expose producer-
consumer relations from array and pointer code by means of ex-
plicit scalar dependences. Our approach is complementary to pro-
gramming language efforts to express inter-task dependences as
pragma annotations [19–21, 24]; it contributes to reducing the ver-
bosity of such annotations.

2. Related Work
The principal motivation for research into dataflow models comes
from the limitations of von Neumann machines to exploit massive
amounts of fine grained parallelism. The early dataflow architec-
tures proposed by Dennis and Misunas [8] or Davis [7] avoid the
von Neumann bottlenecks by only relying on local memory and
replacing the global program counter by a purely data-driven ex-
ecution model, executing instructions as soon as their operands
become available. More recent dataflow architectures rely on the

same principles, albeit at a coarser grain, executing sequences of
instructions, or dataflow threads, instead of single instructions.

While many dataflow programming languages have been pro-
posed [11], our objective here is to automatically extract dataflow
threads from imperative programs.

Compiling imperative programs to data-flow threads. The prob-
lem of compiling imperative programs for data-flow execution has
been widely studied. Beck et al. [3] propose a method for translat-
ing control flow to data flow, and show that data-flow graphs can
serve as an executable intermediate representation in parallelizing
compilers. Ottenstein et al. [17] study such a translation using the
Program Dependence Web, an intermediate representation based
on gated-SSA [25] that can directly be interpreted in either control-,
data-, or demand-driven models of execution. Programs are trans-
formed to the MIT dataflow program graph [2], targetting the Mon-
soon architecture.

Najjar et al. evaluated multiple techniques for extracting thread-
level data-flow [16]. These papers target a token-based, instruction-
level data-flow model, analogous to the simulation of hardware
circuits. In contrast, our data-flow model does not require tokens
or associative maps, shifting the effort of expliciting the consumer
threads to their producers to the compiler. The comparison between
our approach and the token-based solution is further discussed in
Section 3. In addition, thread-level data-flow requires additional
efforts to coarsen the grain of concurrency, handling the dynamic
creation of threads, and managing their activation records (data-
flow frames).

SSA as an intermediate representation for data-flow compilation.
The static single assignment form (SSA) is formally equivalent to a
well-behaved subset of the continuation-passing style (CPS) [1, 13]
model, which is used in compilers for functional languages such
as Scheme, ML and Haskell. The data-flow model has been tied
closely to functional languages, since the edges in a data-flow
graph can be seen both as encoding dependence information as
well as continuation in a parallel model of execution. The SSA
representation builds a bridge between imperative languages and
the data-flow execution model. Our algorithm uses the properties
of the SSA to streamline the conversion of general control flow
into thread-level data-flow.

Decoupled software pipelining. Closely related to our work, and
in particular to our analysis framework, is the decoupled software
pipelining (DSWP) technique [18]. It partitions loops into long-
running threads that communicate via inter-core queues, follow-
ing the execution model of Kahn process networks [12]. DSWP
builds a Program Dependence Graph (PDG) [9], combining control
and data dependences (scalar and memory). In contrast to DOALL
and DOACROSS [4] methods which partition the iteration space
into threads, DSWP partitions the loop body into several stages
connected with pipelining to achieve parallelism. It exposes par-
allelism in cases where DOACROSS is limited by loop-carried de-
pendences on the critical path, it handles uncounted loops, complex
control flow and irregular pointer-based memory accesses. Parallel-
Stage Decoupled Software Pipelining (PS-DSWP) [23] is an exten-



sion to combine pipeline parallelism with some stages executed in
a DOALL, data-parallel fashion.

These techniques have a few caveats however. They offer lim-
ited support for decoupling along backward control and data depen-
dences. They provide a complex yet somewhat conservative code
generation method to decouple dependences between source and
target statements governed by different control flow.

Outline of the paper. The remainder of this paper is organized as
follows. Section 3 describes the data-flow execution model. Sec-
tion 4 presents our algorithm for the modular translation of impera-
tive programs to coarse grain data-flow. Section 5 briefly describes
our implementation. Section 6 presents experimental results, before
we conclude in Section 7.

3. Thread-Level Data-Flow Execution Model
To express producer-consumer and control dependences, we define
an abstract data-flow interface suitable for parallelization passes
in compilers as well as expert programmers developing low-level
data-flow code. This interface is designed after the DTA data-driven
execution model and the T* ISA [10, 22].

The interface defines two main components: data-flow threads,
or simply threads when clear from the context, together with their
associated data-flow frames, or simply frames.

The frame of a data-flow thread stores its input values, and op-
tionally some local variables or thread metadata. The frame’s ad-
dress also serves as an identifier for the thread itself, to synchro-
nize producers with consumers. Communications between threads
are single-sided: the producer thread knows the address of the data-
flow frames of its dependent, consumer threads. A thread writes its
output data directly into the data-flow frames of its consumers.

Each thread is associated with a Synchronization Counter (SC)
to track the satisfaction of producer-consumer dependences: upon
termination of a thread, the SC of its dependent threads is decre-
mented. A thread may execute as soon as its SC reaches 0, which
may be determined immediately when the producer decrements the
SC. The initial value of the SC is derived from the dependence
graph: it is equal to the number of arguments of the thread, each
one corresponding to an externally defined use.

In contrast, token-based approaches require checking the pres-
ence of the necessary tokens on incoming edges. This means that
either (1) a scanner must periodically check the schedulability of
data flow threads, or (2) data flow threads are suspendable. The
former poses performance and scalability issues, while the latter re-
quires execution under complex stack systems (e.g., cactus stacks)
that may introduce artificial constraints on the schedule. The SC
aggregate the information on the present and missing tokens for
a thread’s execution, allowing producer threads to decide when a
given consumer is fireable.

We introduce four functions to manage threads and frames.
They are implemented as compiler builtins, recognized as primitive
operations of the compiler’s intermediate representation. They can
be implemented efficiently in software or hardware [10, 22].

void *tcreate(void (*func)(), int sc, int size);

Creates a new data-flow thread and allocates its associated
frame. func is a pointer to the argument-less function to be
executed by the data-flow thread, sc is the initial value of
the thread’s synchronization counter, and size is the size of
the data-flow frame to be allocated. It returns a pointer to the
allocated data-flow frame.

void tdecrease(void *fp);

Marks the thread designated by frame pointer fp to be decre-
mented upon termination of the current thread.

void tend();

Terminates the current thread and deallocates its frame.

void *tget cfp();

Returns the frame pointer of the current thread.

4. Conversion to Thread-Level Data-Flow
The general approach for transforming sequential imperative pro-
grams into parallel data-flow programs extracts the finest grain
of thread-level parallelism, splitting basic blocks at the statement
level, which is then coarsened through typed fusion to reduce com-
munication overhead. Strongly Connected Components (SCC) of
the program dependence graph, where no parallelism can be ex-
ploited, are also coalesced.

Our algorithm operates on a low-level program representation
in SSA form [5, 6] form, common in modern production compilers
like GCC and LLVM. Our algorithm is implemented as a new
parallelization pass of GCC’s middle-end.

We only consider scalar data dependences and control depen-
dences. As stated in the introduction, arrays and pointers are cur-
rently ignored from the dependence analysis. The correctness of
program transformations requires programmers to expose depen-
dences as scalar dependences in the source program.

4.1 Algorithm for Generating Data Flow Threads
We first build the Program Dependence Graph (PDG) [9] under
SSA form (SSA-PDG) from the serial program, then coarsen the
granularity by merging SCCs in the graph and applying typed fu-
sion. To align the flow of values and data-flow frames with con-
trol dependences, we define the Data-Flow Program Dependence
Graph (DF-PDG), built from the SSA-PDG. The DF-PDG allows
to generate target data-flow code. The typed fusion and DF-PDG
conversion algorithms are the main contributions of the paper.

We illustrate our algorithm on the example in Figure 1 (left),
where we assume that all functions are pure (no side effects, no
state). In the loop body, bar(i) is evaluated at each iteration, but
only the last computed value will be used outside of the loop, along
with the last value of i.

4.1.1 Loop Unswitching
The SSA form uses a unique name for each assignment to a vari-
able. In this way, each use of a variable has a unique reaching def-
inition. A merging Φ node is introduced in the SSA form at points
where multiple control flow paths converge and a given variable is
defined on more than one path. For the example on the left side of
Figure 1, the Φ nodes for variables i, a and b will be placed before
S9, in the loop header, as shown in Figure 2 (left).

Some of these Φ nodes in the header carry redundant data flow:
the Φ node for variable i defines a value used inside the loop body,
while the Φ nodes for a and b only define values used outside
of the loop. To differentiate the type of Φ node, we apply loop
unswitching so that the inductive Φ node for variable i will remain
at the header while the Φ nodes capturing the last values of a and
b will be placed at loop exit, before their respective uses, as in
Figure 2 (right).

S1 a = 0;
S2 i = 0;
S3 b = 0;

S9 while (i < 100) {
S6 a = i;
S7 b = bar (i);
S8 i = next (i);

}

S12 if (a > b)
S13 ret = a;

else
S14 ret = b;
S16 return ret;

S1 a = 0;
S2 i = 0;
S3 b = 0;
S4 if (i < 100) {

do {
S6 a = i;
S7 b = bar (i);
S8 i = next (i);
S9 } while (i < 100);

}
S12 if (a > b)
S13 ret = a;

else
S14 ret = b;
S16 return ret;

Figure 1. Running example (left) and after unswitching (right).



# i1 = $\Phi$ (i0, i2);
# a1 = $\Phi$ (a0, a2);
# b1 = $\Phi$ (b0, b2);

S9 while (i1 < 100) {
S6 a2 = i1;
S7 b2 = bar (i1);
S8 i2 = next (i1);

}
/*use of a1, b1. */

if (i1 < 100) {
do {
# i1 = $\Phi$ (i0, i2);

S6 a2 = i1;
S7 b2 = bar (i1);
S8 i2 = next (i1);
S9 } while (i1 < 100);

}
# a1 = $\Phi$ (a0, a2);
# b1 = $\Phi$ (b0, b2);
/* use of a1, b1. */

Figure 2. SSA form before unswitching (left) and after (right).

4.1.2 Build Program Dependence Graph under SSA
There are two main reasons for relying on a SSA-based represen-
tation of the PDG:

1. making the reaching definitions unique for each use, effectively
converting the scalar flow into a functional program;

2. reducing the complexity from O(N2) to O(N), as the number
of def-use edges can become very large, sometimes quadratic
in the number of nodes [14].

In SSA form, multiple reaching definitions for a use are factored
through Φ nodes, which ensures that the number of def-use chains
is bounded by the number of chains in the control flow graph.

Each node in the SSA-PDG represents a statement in SSA form
and edges in the graph represent either control or data dependences.
Control dependences can form several weakly connected graphs.
We add control dependences from the entry node of the function
to the root node of each weakly connected graph. The root node
of each weakly connected graph is defined as the first node in the
graph reached by the control flow.

Figure 3 shows the SSA representation, after loop unswitching,
for the code on Figure 1 (right), and the corresponding SSA-PDG
is presented on Figure 4, where dashed edges represent control
dependences and solid edges represent data dependences. We add
control dependences from the function entry point foo to S2, S4,
S1, S3, S10, S11, S12, S15, S16.

int foo () {
S1 a0 = 0;
S2 i0 = 0;
S3 b0 = 0;
S4 if (i0 <= 99)

goto S5;
else

goto S10;

S5 # i1 = $\Phi$(i0, i2);
S6 a1 = i1;
S7 b1 = bar (i1);
S8 i2 = next (i1);
S9 if (i2 <= 99)

goto S5;
else

goto S10;

S10 # a2 = $\Phi$(a0, a1)
S11 # b2 = $\Phi$(b0, b1)
S12 if (a2 > b2)

goto S13;
else
goto S14;

S13 ret0 = a2;
goto S15;

S14 ret1 = b2;

S15 # ret2 = $\Phi$(ret0, ret1)
S16 return ret;

}

Figure 3. SSA representation after loop unswitching.

4.1.3 Merging Strongly Connected Components
In the SSA-PDG, SCCs present no parallelization opportunities.
Their execution is sequential, so generating data flow threads
would mostly incur parallelization overhead.1 We coalesce SCCs,
as shown on Figure 5 where the new node SCC1 replaces nodes S5,

1 Some latency-hiding benefits exist, but we concentrate on parallelism
extraction in this paper.
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Figure 4. SSA-PDG for the code example in Figure 3.

S8 and S9 from Figure 4. This SCC corresponds to the induction
on variable i in the loop.
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Figure 5. SSA PDG after merging the SCC.

4.1.4 Typed Fusion
Before partitioning, we coarsen the granularity of each data-flow
thread using a generalized form of the typed fusion algorithm of
McKinley and Kennedy [15]. In SSA-PDG, we assign a type to
each node according to its control dependences: all nodes sharing
identical control dependences are assigned the same type. Nodes
of the same type are candidates for typed fusion. On Figure 5,
the nodes S6 and S7 have the same type, as both are control
dependent on S4, and can potentially be fused. Similarly, nodes S2,
S4, S1, S3, S10, S11, S12, S15 and S16 could be fused,
but this would lead to adverse side effects, in particular reducing
parallelism by creating artificial SCCs. In our example, such a
fused node would lead to SCC with nodes S13 and S14 because
of the dependence chains S10-S13-S15 and S11-S14-S15.

For this reason, we limit the fusion algorithm to avoid introduc-
ing new SCCs or increasing the size of existing SCCs, which are
on the critical path of the program’s execution.

Our approach for typed fusion follows a simple greedy algo-
rithm, which starts from a random node in each typed set and adds
new nodes of the same type to the fusion set as long as: (1) the new
additions do not lead to creating a new SCC in the SSA-PDG after
fusion; and (2) the fusion set does not contain SCCs itself. As this
algorithm is applied after fusing the existing SCCs, the latter con-
dition simply means that nodes that have self-dependences are not
considered candidates even if their type matches.

Figures 5 and 6 (A) present one possible outcome of typed
fusion applied to the running example. There are five different
types in the graph on Figure 5: (foo), (S2, S4, S1, S3, S10,
S11, S12, S15, S16), (SCC1, S6, S7), (S13) and (S14).
Note that S13 and S14 have distinct types because their control
dependences correspond to different truth values for S12.

For the typed set (SCC1, S6, S7), SCC1 cannot be fused with
any other node as it would increase the size of an existing SCC
(restriction (2)). This only leaves S6 and S7, which can be fused
and yield the fused node F2 on Figure 6 (A). For the typed set



(S2, S4, S1, S3, S10, S11, S12, S15, S16), there are
many possible outcomes, depending on the traversal order of typed
sets. In this case and as we discussed above, restriction (1) does not
allow, for example, nodes S4 and S10 to be in the same fusion set
because of the dependence chain S4-S6-S10. The algorithm will
always lead to at least three fusion sets for this type due to the long
dependence chain S4-S6-S10-S13-S15.

foo

F3F1

F2SCC1 S13

F4

S14

fp_f3
fp_f4

foo

F3F1

F2SCC1

i0

b1
a1

i1
S13

F4

a2b2 ret1

ret0

S14

(A) (B)

Figure 6. (A) SSA-PDG after typed fusion. (B) Data Flow Pro-
gram Dependence Graph.

This technique coarsens the granularity of data flow threads,
without inserting redundant computations and without increasing
the number of instructions belonging to SCCs (which usually hap-
pens when relying on basic blocks to partition the computation).

4.1.5 Data Flow Program Dependence Graph
As data flow threads communicate by writing directly in the data
flow frame of their consumers, it is necessary that, along all data
dependence edges of the SSA-PDG, the producer nodes know the
data flow frame of the consumer nodes. We transform the SSA-
PDG graph to reflect the communication required to this effect.

Thread creation point Thread creation occurs, conditionally,
along each control dependence edge of the SSA-PDG. The thread
creation points for a given node are its predecessor nodes in the
control dependence graph. On Figure 6 (B), where dashed lines
represent control dependences, the nodes foo, F1, F3 and SCC1
are thread creation points as they have outgoing control dependence
edges. Control dependences can be conditional, like in the case of
F3 which creates either S13 or S14 depending on the conditional
statement S12, or unconditional in the case of the function entry
point foo.

At a thread creation point, the data-flow frame for the newly
created thread is known and it needs to be passed to all threads
producing data for this new thread.

Passing data-flow frame information The DF-PDG for our run-
ning example is shown on Figure 6 (B). We add data dependences
to the SSA-PDG for passing the data-flow frame information of
consumer threads to producer threads. The edges with white trian-
gular arrow communicate the data-flow frame of F4 (consumer) to
the data-flow threads S13, S14 (producers). The values of ret0
and ret1, produced in S13 and S14 are consumed by F4. As the
data is stored directly in the frame of the consumer, the producer
must get a pointer to the frame of F4. The thread creation point
for F4 is the function entry point, foo, and it needs to forward this
frame pointer to all producers, which involves thread F3 in our ex-
ample.

We rely on the following algorithm to pass the data flow frame
pointers of consumers to producers. For each data dependence from
a node A to a node B in the SSA-PDG, we visit the predecessors
of each node along control dependences until we reach a common
predecessor P.

• If P is an immediate predecessor of the consumer node B, then P
is the thread creation point for B and therefore knows the data-
flow frame of B. We add data dependences for the frame pointer
of B along all control dependence paths in the graph to A.

• If P is not an immediate predecessor of B, we need to split
the data dependence as the frame of the consumer cannot be
known due to diverging control flow paths, as illustrated on

Figure 7. We remove the original data dependence from A to B
and we add data dependences, for the same variable, from A to
all successors D of P in the SSA-PDG such that there is a control
dependence path from D to B. We further add data dependences
for the data flow pointer of D from P to A and also for the data
itself, from D to B.

This second case is illustrated on Figure 7, where data depen-
dences from S1 to S2 and S3 need to be split. The common prede-
cessor is the function entry node foo, which is not an immediate
predecessor of either S2 or S3. The successor of foo that is a pre-
decessor of S2 and S3 is C1, which is used to forward the data pro-
duced by S1. The frame pointer of C1 is sent to S1 from its thread
creation point.

foo

S1 C1

S2 S3

foo

S1 C1

S2 S3

a a
a

a a

fp_c1

(A) (B)

Figure 7. Splitting data dependences: (A) the original SSA-PDG
and (B) the generated DF-PDG.

Strongly connected components in the DF-PDG The algorithm
for building the DF-PDG presented above introduces additional
data dependences that can lead to new SCCs in the graph. These
new constraints need to be enforced, which serializes the execution.
For this reason, we perform one additional pass of fusion of SCCs
once the DF-PDG is constructed.

The example on Figure 8 (left) and corresponding SSA-PDG
(center) illustrate this issue. There are two data dependences: S1 to
S2 and the loop-carried dependence S3 to S1. For the latter, the DF-
PDG construction algorithm explores every control dependence
paths linking S3 and S1 from a common predecessor, namely
C0→S3 and C0→C1→S1. As S1 is only reached through C1, the
data dependence is split and the data forwarded to S1 through C1,
as shown by the extra data dependence edges on Figure 8 (right).
Similarly, the data dependence from S1 to S2 needs to be split,
resulting in the gray path. There are four different combinations for
each data dependence and we only show one on Figure 8, yet it
already results in a SCC involving nodes S1, S3 and C1.

C0 if (c) goto S1;
else goto D1;

S1 a2 = $\Phi$ (a0, a1);
S2 ... = a2;
S3 a1 = ...;
C1 if (c) goto S1

else goto D1
D1 ...

C0

S1 S2S3

C1

C0

S1 S2S3

C1

a2 fp_c1

a1

a1 a1

a2
a2

fp_c1

a1

Figure 8. SSA representation for a simple loop carried dependence
(left) and the corresponding SSA-PDG (center) and a partial DF-
PDG (right).

4.2 Modular Code Generation
We put a strong emphasis on generality and flexible integration of
data-flow compilation tools in a state-of-the-art development pro-
cess. Modularity has not been considered a first-class objective in
previous thread-level data-flow algorithms. We show that modular
code generation is possible, provided that each processor core (or
instruction fetch unit) is associated with a private user-level stack.
The stack only needs to be accessed by this particular core. Data-
flow threads themselves do not need any internal stack; they are



non-suspendable and run sequentially w.r.t. other data-flow threads
scheduled on the same core. Any data-flow thread scheduled on a
given core is free to use the core’s private stack. This stack stream-
lines the implementation of classical (blocking) function calls. It
may also be used to spill registers within a thread, although data-
flow frames may accommodate free space for this purpose.

For modular compilation purposes, externally visible functions
in a compilation unit should be cloned, to preserve the original
control flow interface, while the clone is compiled into data-flow
threads. The original function can be used when calling the func-
tion from outside of a parallel data-flow region or to avoid satu-
rating the system with threads. The clone must be exported among
the module’s symbols to seamlessly compose threaded code over
separately compiled modules.

Within a parallel region, all functions are called asynchronously.
Internal functions, within the scope of the compilation unit, are
directly compiled into data-flow threads. External functions, linked
from separately compiled modules, and builtin functions from the
compiler are wrapped into a data-flow thread in which they are
called synchronously.

Every threaded clone of a function is split into three stages: the
entry thread, multiple compute threads, and the return thread.

• The entry thread implements the entry block of the control
flow graph, creating all the threads for the blocks that are
unconditionally executed upon entering the function.

• The compute threads are systematically created by the immedi-
ate predecessors in the control dependence graph, as described
in the previous section. Thread creation is conditional on the
predicate at the source of the control dependence. Input argu-
ments and pointers to the frames of the dependent threads are
handled according to the DF-PDG.

• The return thread propagates the return value to the continua-
tion threads at the call site of the function.

callee.entry

bb thread 
callee.bb.2

entry thread bb thread 
callee.bb.1

  return thread 
  callee.return

caller.bb.1
bb thread

bb thread 
caller.bb.2

create

create create

create

create

continuation passing 

continuation

caller threads callee threads

Figure 9. Caller and callee, threaded version.

Figure 9 illustrates the calling convention. Calling a data-flow
function creates the entry thread (callee.entry) of the callee and
the caller’s continuation thread (caller.bb.2); the latter will wait
for the value of the callee’s return thread (callee.return).

5. Implementation of the Data-Flow Interface
We target data-flow execution on a shared-memory multiprocessor
with hardware coherence.

Our prototype has been developed within GCC 4.7.0 20110426.
It replaces the libgomp OpenMP runtime of GCC. The scheduler
takes data-flow threads whose SC reached 0 and moves them to the
ready queue.

We currently assume there are enough ready threads to occupy
the processor cores and hide latency. This hypothesis eliminates the
need for a waiting queue collecting threads whose SC has not reach
0, since we do not need to start prefetching data or code for these
threads. Revisiting this hypothesis may be necessary when studying

applications with limited parallelism degree where scheduling and
memory latencies are harder to hide.

Data-flow frames are allocated from a dedicated memory pool.
This pool internally uses slab allocation to accelerate the allocation
and deallocation of frames of predefined sizes. The frame structure
itself is laid out as follows:

• a thread template pointer referring to invariant meta-data shared
by all thread instances of this template, including the function
(code) pointer and the size of the frame;

• the thread’s synchronization counter (SC);
• pointers to frames of data- and control-dependent threads;
• the thread’s arguments.

The last two items correspond to the frame structure exposed in the
abstract data-flow interface and generated by the compiler.

6. Experimental Validation
We validate our approach on two universal examples of tree recur-
sion, Fibonacci and merge sort. The objectives are:

1. checking the method on diverse data and control flow, includ-
ing loops over arrays, divide and conquer recursion, and data-
dependent conditions;

2. Fibonacci exhibits the finest-grain threads possible, which gives
a precise reference on the break even point and scalability for
thread-level data flow compared to fine-grain data flow;

3. merge sort is more realistic and allows to illustrate typed fusion
for grain coarsening.

We target an Intel Core i7-2720QM 4-core laptop (Sandy Bridge
chip) and an AMD Opteron 6164 HE 24-core blade server (two
Magny Cours chips). Both benchmarks are recursive, sequential C
programs, and automatically parallelized.2

To assess the effect of thread granularity, we set a threshold
for parallel recursive calls. Below this threshold, the serial version
is executed. This programmer-controlled granularity complements
the effects of the automatic typed fusion algorithm. Modular com-
pilation allows the serial version to be called seamlessly as an ex-
ternal function.

As an illustration, in the Fibonacci implementation below,
fib.threaded will be transformed to data-flow threads, and
fib.serial will not since it is declared as an external function.

extern int fib.serial (int);

int fib.threaded (int n) {
if (n < THRESH)

return fib.serial (n);
else

return fib.threaded (n-1) + fib.threaded (n-2);
}

Figure 10 reports the performance of merge sort on 200, 000
random integers between 0 and 10, 000. The compiler automati-
cally partitions the function into data-flow threads, then converts
the data and control dependences into the proper frame operations.
The algorithms not only parallelize the recursive division of the ar-
ray, but also the merge operation. The latter is a good candidate
for typed fusion: the array comparisons and assignments are domi-
nated by the same loop header and can be fused into a coarser-grain
thread.

The grain threshold ranges from 20 to 218 (262, 144, effectively
sequentializing the execution). The figures show the speedup as
a function of the granularity of the parallel threads. As the grain
threshold increases, speedup gained from parallel execution on

2 The array dependences in merge sort are covered by scalar dependences
on the indexes, and can safely be ignored.



multiple cores exceeds the overhead of thread creation. The gen-
erated code breaks even at the threshold of 24. This low break-even
threshold is a benefit of the applicability of typed fusion on the
merge operation. As a divide and conquer algorithm, the problem
size is reduced in each division, the array eventually fitting into the
cache; it reaches a maximal speedup of 2.82.
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Figure 10. Merge Sort running on 4 cores.

Figure 11 shows the performance results for fib(42). Fi-
bonacci is an extreme case where typed fusion is ineffective, since
no pairs of instructions share the same control dependence. The
generated code breaks even when setting the threshold at fib(15),
where 227 threads are created. But as granularity increases, the
overhead of thread synchronization decreases. Our results on 24
cores reach a speedup of 11.86, which validates our algorithm’s
ability to exploit parallelism effectively.
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Figure 11. Computing the 42th Fibonacci number on 4 cores
(above) and 24 cores (below).

7. Conclusion and Perspectives
We presented an automatic parallelization algorithm to compile
arbitrary imperative control flow to a thread-level data-flow model.
The algorithm operates on an SSA form PDG, extracting task,

pipeline and data parallelism, then applying a generalized form
of typed fusion to coarsen the synchronization grain, and finally
expressing the communications in a suitable way for tokenless
threaded data-flow execution. Our prototype is implemented in a
production compiler; it currently supports scalar dependences only.

Of course, the algorithm and implementation should be ex-
tended to handle pointer and array dependences. Language support
will be needed in general. We see our automatic parallelization al-
gorithm as a means to reduce the verbosity of dependence annota-
tions in a task-parallel language.
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