
Automatic Extraction of Hierarchical Relations

from Text

Ting Wang12, Yaoyong Li1, Kalina Bontcheva1,
Hamish Cunningham1, and Ji Wang2

1 Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK
{T.Wang, Y.Li, K.Bontcheva, H.Cunningham}@dcs.shef.ac.uk

2 Department of Computer, National University of Defense Technology, Changsha,
Hunan, 410073, P.R.China

{tingwang, jiwang}@nudt.edu.cn

Abstract. Automatic extraction of semantic relationships between en-
tity instances in an ontology is useful for attaching richer semantic meta-
data to documents. In this paper we propose an SVM based approach
to hierarchical relation extraction, using features derived automatically
from a number of GATE-based open-source language processing tools.
In comparison to the previous works, we use several new features includ-
ing part of speech tag, entity subtype, entity class, entity role, semantic
representation of sentence and WordNet synonym set. The impact of the
features on the performance is investigated, as is the impact of the rela-
tion classification hierarchy. The results show there is a trade-off among
these factors for relation extraction and the features containing more
information such as semantic ones can improve the performance of the
ontological relation extraction task.

1 Introduction

Information Extraction (IE) [4] is a process which takes unseen texts as input
and produces fixed-format, unambiguous data as output. It involves processing
text to identify selected information, such as particular named entity or relations
among them from text documents. Named entities include people, organizations,
locations and so on, while relations typically include physical relations (located,
near, part-whole, etc.), personal or social relations(business, family, etc.), and
membership (employ-staff, member-of-group, etc.).

Until recently, research has focused primarily on use of IE for populating
ontologies with concept instances (e.g. [9, 16]). However, in addition to this,
many ontology-based applications require methods for automatic discovery of
properties and relations between instances. Semantic relations provide richer
metadata connecting documents to ontologies and enable more sophisticated
semantic search and knowledge access.

One barrier to applying relation extraction in ontology-based applications
comes from the difficulty of adapting the system to new domains. In order to

overcome this problem, recent research has advocated the use of Machine Learn-
ing (ML) techniques for IE. A number of ML approaches have been used for
relation extraction, e.g. Hidden Markov Models (HMM) [7], Conditional Ran-
dom Fields (CRF) [12], Maximum Entropy Models (MEM) [11]. and Support
Vector Machines (SVM) [19]. The experimental results in [19] showed that the
SVM outperformed the MEM on the ACE2003 relation extraction data3.

Zelenko et al [18] proposed extracting relations by computing kernel func-
tions between shallow parse trees. Kernels have been defined over shallow parse
representations of text and have been used in conjunction with SVM learning
algorithms for extracting person-affiliation and organization-location relations.
Culotta et al [5] extended this work to estimate kernel functions between aug-
mented dependency trees.

Zhou et al [19] further introduced diverse lexical, syntactic and semantic
knowledge in feature-based relation extraction using SVM. The feature system
covers word, entity type, overlap, base phrase chunking, dependency tree and
parse tree, together with relation-specific semantic resources, such as country
name list, personal relative trigger word list. Their results show that the feature-
based approach outperforms tree kernel-based approaches, achieving 55.5% F-
measure in relation detection and classification on the ACE2003 training data.

Motivated by the above work, we use the SVM as well and apply a diverse
set of Natural Language Processing (NLP) tools to derive features for relation
extraction. In particular, several new features are introduced, such as part-of-
speech (POS) tags, entity subtype, entity class, entity role, semantic represen-
tation of sentences and WordNet synonym set.

In the rest of the paper, we first describe the ACE2004 entity and relation
type hierarchy from an ontological perspective (Section 2). Then we give a brief
introduction of SVM used as the classifier for relation extraction (Section 3) and
explain an extensive set of features used in our experiments (Section 4). Section
5 presents and discusses a series of experiments that investigate the impact of
the different features and the classification hierarchy. Finally, we summarise the
work and discuss some future directions.

2 The ACE Entity and Relation Hierarchies

Relation extraction from text aims to detect and classify semantic relations
between entities according to a predefined entity and relation type system or an
ontology. The Automatic Content Extraction (ACE) programme [1] defines this

3 SVM has achieved state of the art results in many NLP tasks such as text classifica-
tion, part of speech tagging and information extraction. This is mainly because, on
the one hand, the SVM is an optimal classifier with maximal margin in feature space;
on the other hand, NLP tasks typically represent instances by very high dimensional
but very sparse feature vectors, resulting in positive and negative examples being
distributed into two distinctly different areas of the feature space. As we use a very
high dimensional and very sparse feature vector for relation extraction, it can be
expected that SVM will have similarly good performance.

task as Relation Detection and Characterization (RDC). RDC uses the results
of named entity recognition, which detects and classifies entities according to a
predefined entity type system.

In contrast to earlier ACE evaluations, ACE2004 introduced a type and sub-
type hierarchy for both entity and relations, an important step towards ontology-
based IE. Hence, we evaluate our method on the corpus for learning relation
hierarchy

2.1 The ACE2004 Entity Hierarchy

Entities are categorized in a two level hierarchy, consisting of 7 types and 44
subtypes. The entity type includes Person, Organisation, Facility, Location and
Geo-political Entity (GPE). Subtype refers to sub-concept of entity concept. For
example, The entity type Organisation was divided into the subtypes such as
Government, Commercial and Educational. For details see [2].

Each entity has been assigned a class which describes the kind of reference the
entity makes to something in the world. The class can be one of four values: Neg-
atively Quantified(NEG), Specific Referential(SPC), Generic Referential(GEN),
Under-specified Referential(USP). The occurrence of each entity in the dataset
is called an entity mention, which can be one of the following: Names(NAM) ,
Quantified Nominal Constructions(NOM), Pronouns(PRO), Pre-modifier(PRE).

In addition, GPEs are regarded as composite entities comprising of popula-
tion, government, physical location, and nation (or province, state, county, city,
etc.). Consequently, each GPE mention in the text has a mention role which
indicates which of these four aspects is being referred to in the given context: of
that mention invokes: Person(PER), Organization(ORG), Location(LOC), and
GPE.

2.2 The ACE2004 Relation Hierarchy

In an ontology, the concepts are not only organised in a taxonomy representing
IS-A relations, but also linked together by semantic relations such as Part-Whole,
Subsidiary, LocatedIn, etc. ACE2004 defines a hierarchy of relations with 7 top
types and 22 sub-types, shown in Table 1 [3]. There are 6 symmetric relations
(marked with star in table) and the remaining ones are asymmetric relations.
This relation type and subtype hierarchy can also be described as a three levels
tree (see Fig 1). In the experiments reported next, we use the ACE2004 corpus
to evaluate ontological relation extraction.

3 Using SVM for Relation Extraction

SVM is one of the most successful ML methods, which has achieved the state-of-
the-art performances for many classification problems. For example, our exper-
iments in [13] showed that the SVM obtained top results on several IE bench-
marking corpora.

Table 1. ACE2004 relation types and subtypes
Type Subtype

Physical (PHYS) Located, Near*, Part-Whole

Personal/Social (PER-SOC) Business*, Family*, Other*

Employment/Membership/ Employ-Exec, Employ-Staff, Employ-Undetermined,
Subsidiary (EMP-ORG) Member-of-Group, Subsidiary, Partner*, Other*

Agent-Artifact (ART) User/Owner, Inventor/Manufacturer, Other

PER/ORG Affiliation Ethnic, Ideology, Other
(OTHER-AFF)

GPE Affiliation (GPE-AFF) Citizen/Resident, Based-In, Other

Discourse (DISC) (none)

Fig. 1. The hierarchy of the ACE2004 relation types and subtypes

As SVM were originally designed for binary classification and relation ex-
traction can be reduced into a multi-class classification problem, we have to
extend the SVM for multi-class classification. There exists two approaches to
use the SVM for multi-class problem [10]: (i) constructing and combining sev-
eral SVM binary classifiers via either the one-against-all method or the one-
against-one method; (ii) learning a multi-class SVM classifier directly for the
multi-class problem. The comparison in [10] shows that one-against-one method
is the best in both training time and performance, and suggests that one-against-
one method may be more suitable for practical use on large problems than other
approaches. Therefore we used the one-against-one method in the experiments
(see Section 5.1 for more details).

For a k-class classification task, the one-against-one method constructs k(k−
1)/2 classifiers where each one is trained on data from two classes, while the one-
against-all method learns k classifier each of which is used to separate one class
from all others. Although one-against-one method has to train more classifiers
than one-against-all does (on k classifiers), each training data is much smaller,
resulting into less total training time than the one-against-all method. We used
the Max Wins voting strategy to predicate the class: apply every classifier to
instance x; if one classifier says x is in the i-th class, then the vote for the i-th
class is incremented by one; in the end x is classified as the class with the largest
number of votes.

We built SVM models for detecting the relations, predicting the type and
subtype of relations between every pair of entity mentions within the same sen-
tence. As defined in the ACE evaluation, we only model explicit relations rather
than implicit ones. For example, the sentence

Texas has many cars. (1)

explicitly expresses a ART.User/Owner relation between the two entity mentions
Texas and many cars. What we need to do is to detect the relation and its
type and subtype based on the context information within this sentence. Such
context information is usually expressed as a vector consisting of values for some
specific attributes, which is called features. Choosing the right features is key to
successful application of ML technology.

4 Features for Relation Extraction

Using NLP to derive ML features has been shown to benefit IE results [13].
Features which have been used for relation extractions include word, entity type,
mention level, overlap, chunks, syntactic parse trees, and dependency relations
[7, 11, 18, 19].

Based on the previous works, we developed a set of features for semantic
relation extraction, many of which are adopted from [19]. Moreover, we intro-
duce some new features such as POS tags, entity subtype and class features,
entity mention role feature, and several general semantic features. Zhou et al in
[19] have designed some relation-specific semantic features, for example, some
important trigger words list have been collected from WordNet [15] in order to
differentiate the six personal social relation subtypes. However, these lists are too
specific to the dataset to be applicable for general purpose relation extraction.
Therefore in our method, we introduce instead a set of more general semantic
features produced by a semantic analyser and WordNet.

BuChart (which has been renamed to SUPPLE) is a bottom-up parser that
constructs syntax trees and logical forms for English sentences [8]. One of its
significant characteristics is that it can produce a semantic representation of
sentences - called simplified quasilogical form (SQLF). Previously, one of the
limitations in applying general semantic information in IE is the relative lack of
robustness of semantic analyser. However, BuChart is a general purpose parser
that can still produce partial syntactic and semantic results for fragments even
when the full sentential parses cannot be determined. This makes it applicable
for deriving semantic features for ML-based extraction of semantic relations from
large volumes of real text.

WordNet [15] is a widely used linguistic resource which is designed accord-
ing to psycholinguistic theories of human lexical memory. English nouns, verbs,
adjectives and adverbs are organized into synonym sets (called synsets), each
representing one underlying lexical concept. In this work, WordNet is used to
derive several semantic features based on the synset and hypernym information.

4.1 Using GATE for Feature Extraction

General Architecture for Text Engineering (GATE) [6] is an infrastructure for
developing and deploying software components that process human language. It
provides or includes from other people a set of NLP tools including tokeniser,
gazetteer, POS tagger, chunker, parsers, etc. For the relation extraction task,
we make use of a number of GATE components as follows: English Tokeniser,
Sentence Splitter, POS Tagger, NP Chunker, VP Chunker, BuChart Parser,
MiniPar Parser. To develop more semantic features we also made use of WordNet
and derived the synset information as the features.

4.2 Developing Features

In the experiments we tried to use as many NLP features as could be provided by
GATE components and which were considered as potentially helpful for modeling
the relation extraction task. This is a valid approach due to one advantage of
the SVM learning algorithm. Namely, carefully choosing features is crucial for
some learning algorithms such as decision trees and rule learning. However, it is
no so important for the SVM, because the irrelevant features for one particular
binary problem usually distribute evenly over the positive and negative training
examples and therefore would have little contribution to the SVM model due to
its learning mechanism. Hence, when using SVM, we can put into the feature
vector as many features as possible and let the SVM algorithm determine the
most useful ones for a given binary classification problem.

In Section 5.3 we will experimentally discuss the contributions of these fea-
tures to the relation extraction task.

The total feature set consists of 94 features. The rest of the subsection provide
an overview of the different types of features we used. Due to space limitations,
a complete description is provided in a separate technical report [17].

Word Features. This set consists of 14 features including the word list of the
two entity mentions and their heads, the two words before the first mention, the
two after the second mention, and the word list between them.

POS Tag Features. Because the word features are often too sparse, we also in-
troduce POS tag features. For example, sentence 1 has been tagged as: Texas/NNP
has/VBZ many/JJ cars/NNS, where NNP denotes proper name, JJ - adjectives,
NNS - plural nouns, etc. Similar to the word features, this set of features includes
the POS tag list of the two entity mentions and their heads, the two POS tags
before the first mention, the two after the second mention, and the tag list in
between.

Entity Features. As already discussed, ACE2004 divides entities into 7 types
and all the entity mentions has also been annotated with the entity type , sub-
type and class, all of which have been used to develop features. For each pair
of mentions, the combination of their entity types is taken as the entity type
feature. For the example sentence above, there are two entity mentions: Texas
categorized as GPE, and many cars as WEH. In addition, the entity hierarchy is

used, because subtypes carry more accurate semantic information for the entity
mentions. Therefore, the combination of the entity subtypes of the two entity
mentions is provided as the entity subtype feature. The subtypes of the two
example mentions are State-or-Province and Land. Finally, each entity has also
been annotated with a class which describes the kind of reference for the entity.
So the entity class is also used in this paper to predicate semantic relations. The
classes for the above two mentions are SPC and USP.

Mention Features. This set of features includes the mention type and role
information of both mentions, which is also provided by the ACE2004 anno-
tations. For the example sentence, the mention types for the two mentions in
sentence (1) are NAM and NOM, while the mention role for Texas is GPE and
there is no role information for the second because only GPE entity can take
role information.

Overlap Features. The relative position of the two entity mentions can also be
helpful for indicating the relationship between them. For these features, we have
considered: the number of words separating them, the number of other entity
mentions in between, whether one mention contains the other. As the feature
indicating whether one mention contains the other is too general, it has been
combined with the entity type and subtype of the two mentions to form more
discriminating features.

Chunk Features. GATE integrates two chunk parsers: Noun Phrase (NP) and
Verb Phrase (VP) Chunker that segment sentences into noun and verb group
chunks. For instance, the example sentence (1) is chunked as: [Texas] has [many
cars], in which, Texas and many cars are NPs, while has is the VP between
them whose type and voice are FVG (means finite verb phrase) and active. The
following information has been used as chunk features: whether the two entity
mentions are included in the same NP Chunk or VP Chunk, the type and voice
information of the verb group chunk in between if there is any.

Dependency Features. In contrast to Kambhatla [11] and Zhou et al [19],
who derive the dependency tree from the syntactic parse tree, we apply MiniPar
to directly build the dependency tree. MiniPar is a shallow parser which can
determine the dependency relationships between the words of a sentence [14].
Fig 2 shows the dependency tree for the example sentence. From the resulting
dependency relationships between words, the dependency features are formed,
including: combination of the head words and their dependent words for the two
entity mentions involved; the combination of the dependency relation type and
the dependent word of the heads of the two mentions; the combination of the
entity type and the dependent word for each entity mention’s head; the name of
the dependency relationship between the heads of the two mentions if there is
any; the word on which both the heads of the two mentions depend on if there
is any; and the path of dependency relationship labels connecting the heads of
the two mentions.

Parse Tree Features. The features on syntactic level are extracted from the
parse tree. As we mentioned above, we use BuChart to generate the parse tree

Fig. 2. The dependency tree for the example sentence

and the semantic representation of each sentence. Unlike many full parsers which
would fail if a full sentential parse cannot be found, BuChart can still produce
the partial parsing trees and correspondent semantic representations for the
fragments. The following list the parse tree in the bracket form for the example
sentence,

(s (np (bnp (bnp core (bnp head (ne np (tagged location np (list np
”Texas”))))))) (fvp (vp (vpcore (fvpcore (nonmodal vpcore (nonmo-
dal vpcore1 (vpcore1 (av (v ”has”))))))) (np (bnp (bnp core (premods
(premod (jj ”many”))) (bnp head (n ”cars”))))))))

Consequently, from the product of the parser, we extract the following fea-
tures: the lowest and second lowest phrase labels governing each entity mentions
involved; the lowest phrase labels governing both entity mentions; the lowest
phrase labels governing the heads of both entity mentions; the path of phrase
labels connecting both mentions in the parse tree; and that connecting the heads
of both mentions.

Semantic Features from SQLF. Using relation- or domain- independent se-
mantic features potentially makes the approach easier to adapt to new domains.
BuChart provides semantic analysis to produce SQLF for each phrasal con-
stituent. The logical form is composed of unary predicates that denote entities
and events (e.g., chase(e1), run(e2)) and binary predicates for properties (e.g.
lsubj(e1,e2)). Constants (e.g., e1, e2) are used to represent entity and event iden-
tifiers (see [8] for further details). The (somewhat simplified) semantic analysis
of the example sentence in SQLF is

location(e2), name(e2,’Texas’), have(e1), time(e1,present), aspect(e1,simple),
voice(e1,active), lobj(e1,e3), car(e3), number(e3,plural), adj(e3,many), lsubj(e1,e2)

From the SQLFs, a set of semantic features is generated, one of which is the
path of predicate labels connecting the heads of both mentions in the semantic
SQLFs. This path may be too specific to be effective and cause data sparseness
problem, so we also take some important predicate labels as separate features,
such as the first, second, last and penultimate predicates labels in that path.

Semantic Features from WordNet. To exploit more relation-independent
semantic features, we use WordNet together with a simple semantic tagging
method to find the sense information for the words in each sentence. Tagging
words with their corresponding WordNet synsets (e.g. word sense disambiguation

- WSD) is a difficult task, which usually can not achieve accuracy as high as
other NLP tasks such as POS tagging. However, WordNet’s design ensures that
synsets are ordered by importance, so a simple and yet efficient heuristic can be
used instead of a WSD module, without major accuracy penalty. The heuristic
is to take the first synset from WordNet, which matches the POS tag of the
given word. Each synset has been assigned an id (consisting of the POS tag
and its offset in the WordNet files) which is used in the features. Similar to the
word and POS tag features, the features from WordNet include the synset-id list
of the two entity mentions and their heads, the two synset-ids before the first
mention, the two after the second mention, and the synset-id list in between.
With considerations of the data sparseness problem, we also developed a set of
more abstract features by using the hypernym information of each synset, which
exactly parallel the synset ones by replacing each synset-id with the id of its
hypernym synset.

5 Experiment Results and Analysis.

We evaluate our method, especially the contribution of the different features, on
the ACE2004 training data. As mentioned above, only explicit relations between
pairs of entity mentions within the same sentence are considered. We not only
evaluate the performance of the system as a whole, but also investigate in detail
several factors which have impact on the performance, such as the features set
and the relation classification hierarchy.

5.1 Experimental Settings

The ACE2004 training data consists of 451 annotated files (157,953 words) from
broadcast, newswire, English translations of Arabic and Chinese Treebank, and
Fisher Telephone Speech collection. Among these files, there are 5,914 relation
instances annotated which satisfied the experiment set up described above. The
distribution of the instances is listed in Table 2.

Following previous work, in order to focus on the performance of the relation
extraction only, we suppose that all named entity mentions have been recognised
without mistakes and only evaluate the performance of relation extraction on
”true” named entity mentions with ”true” chaining (i.e. as annotated by the
ACE2004 annotators).

Among the 23 relation subtypes (including DISC which has no subtype),
there are 6 symmetric ones. So to model the relation extraction task as multi-
class classification, we use two labels to denote each non-symmetric relation and
only one label for each symmetric one. Also we assign a label to the class of
no-relation, which indicates that there is no relation between the two entity
mentions. Consequently, in our experiments, relation extraction is modeled as
a 41-class classification task, where each pair of entity mentions is assigned one
of these 41 relation classes, based on the features discussed in Section 4. In the

Table 2. The distributions of the relation instances in ACE 2004 training data

Type Subtype Number Type Subtype Number

PHYS Located 1029 OTHER Ethnic 53
Near 141 -AFF Ideology 55
Part-Whole 518 Other 75

PER Business 197 GPE Citizen/Resident 368
-SOC Family 178 -AFF Based-In 333

Other 69 Other 87
EMP Employ-Exec 630 ART User/Owner 273
-ORG Employ-Undetermined 129 Inventor/Manufacturer 13

Employ-Staff 694 Other 7
Member-of-Group 225 DISC 434
Subsidiary 300
Partner 16
Other 90 Total 5,914

following experiments, we use the package LIBSVM4 for training and testing the
SVM classifiers with one-against-one method for multi-class classification which
has been described in Section 3.

From Table 2 we can see that the different relation subtypes and types are
distributed very unevenly, so we only measure the micro-average of Precision,
Recall and F1 measure(which is 2 ∗ Precision ∗ Recall/(Precision + Recall)),
because in such cases macro-average does not reflect the performance reliably.

In each of the following experiments, we performed 5 folds cross validation on
the whole data. In every execution, the corpus is spited into a training set (80%
of the total files) and a testing set (20% of the total files). All the performance
results of Precision, Recall and F1 reported are the means averaged over five
runs.

5.2 Evaluation on Different Kernels

Since different kernel functions can be used with SVM, in order to select a
suitable kernel for relation extraction task, we have implemented experiments
to compare three different types of kernels for SVM: the linear, quadratic and
cubic kernels. In the comparison, all the features have been used and Table 3
shows the result. The result shows that with all the features the linear kernel
is better than both the quadratic and cubic ones. But the t paired test we did
using the results from 5-fold cross validation showed that the linear kernel was
no significantly better than quadratic kernel at the 95% confidence level (the
p-value of the test was 0.088). Since the linear kernel is more simple and efficient
than others and obtained better results, in the following experiments we only
use the linear kernel with SVM.

4 See http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

Table 3. The result on different kernel functions

Kernel type Precision(%) Recall(%) F1(%)

Linear 66.41 49.18 56.50
Quadratic 68.96 46.20 55.33
Cubic 71.31 42.39 53.17

5.3 Evaluation on Features

We carried out the experiments to investigate the impact of different features on
the performance by adding them incrementally. The features have been added
in the order from the shallow to deep to see the effect of different features. Ta-
ble 4 presents the results from the experiments. It is possible that not only the
individual features but also the combinations of features would affect the per-
formance. Hence, more experiments will be done in the future to figure out the
effects of the features on relation extraction. It can be seen from the table, the

Table 4. The result on different feature sets

Features Precision(%) Recall(%) F1(%)

Word 57.90 23.48 33.38
+POS Tag 57.63 26.91 36.66
+Entity 60.03 44.47 50.49
+Mention 61.03 45.60 52.03
+Overlap 60.51 48.01 53.52
+Chunk 61.46 48.46 54.19
+Dependency 63.07 48.26 54.67
+Parse Tree 63.57 48.58 55.06
+SQLF 63.74 48.92 55.34
+ WordNet 67.53 48.98 56.78

performance improves as more features are used, until the F1 measure reaches
56.78% which is comparable to the reported best results(55.5%) of [19]on the
ACE2003 training data. From the new features introduced in this work, the POS
tag features and the general semantic features all contribute to the improvement.
The improvement of the general semantic features, including semantic features
from SQLF and WordNet, is significant at confidence level 95%, as the p-value
of the t paired test on the corresponding data is 0.003. The improvement 1.72%
(from 55.06% to 56.78%) was even higher than that brought by some syntactic
features such as the chunk, dependency and parse tree features which was only
1.54%(from 53.52% to 55.06%) in total. Therefore, the contribution of the se-
mantic features shows that general semantic information is beneficial for relation
extraction and should receive further attention.

The entity features lead to the best improvement in performance. It is not
surprised because the relation between two entity mentions is closely related to

the entity types of the two mentions. Actually we took advantage of the ACE2004
corpus which included not only the entity types but also entity subtype and
class. Therefore we used more entity type features than the previous studies
using the ACE2003 corpus which only had entity type. Further investigation
shows that the two additional features are in fact very helpful: when only using
entity type feature the F1 improvement is 10.29%, and when using the other
two features additionally, the improvement increase to 13.83%. This result shows
that the more accurate information of the entity mentions we have, the better
performance can be achieved in relation extraction.

From Table 4, we can also see that the impact of the deep features is not as
significant as the shallow ones. Zhou et al [19] show that chunking features are
very useful while the dependency tree and parse tree features do not contribute
much. Our results even show that features from word, POS tag, entity, mention
and overlap can achieve 53.52% F1, while the deeper features (including chunk,
dependency tree, parse tree and SQLF) only give less than 2% improvement over
simpler processing. As the number of features impacts directly the required size
of training data and the efficiency of training and application (more features
need more annotated data for training the model and need more computation
resources), there is an interesting trade-off in feature selection for relation ex-
traction.

5.4 Experiments on Hierarchical Classification

As already discussed, ACE2004 defined both an entities and relations hierarchy,
which provides a data resource for evaluating our method for ontology-based IE.
The significant contribution of entity subtype and class features demonstrated
above shows that the entity hierarchy information is important for relation ex-
traction. As shown in Fig 1 the relation hierarchy has three levels, so we ran
experiments to evaluate our method with these different classification levels:
subtype classification – 23 relations at leaf level, type classification – 7 relations
at middle level, relation detection – predicating if there is relation between two
entity mentions, which can be treated as a binary classification task. The ex-
periments on the three different classification levels have been done separately.
In each experiment, the classifier is trained and tested on the corresponding re-
lation labels (e.g. 23, 7, or 1 relations). All these experiments made use of the
complete feature set and Table 5 shows the averaged overall results.

Table 5. The result on different classification levels

Level Precision(%) Recall(%) F1(%)

Subtype classification 67.53 48.98 56.78
Type classification 71.41 60.03 65.20
Relation detection 73.87 69.50 71.59

The results show that performance on relation detection level is the highest
while that on subtype classification is the lowest. The Precision, Recall and F1
all show the same trend, revealing that it is more difficult to classify on deeper
levels of the hierarchy because there are less examples per class and also the
classes are getting more similar as the classification level gets deeper. This has
been supported by the more detailed results for the relations type EMP-ORG
and its subtypes, as shown in Table 6. The performance for the type EMP-ORG
when classifying on the type level is the best among all 7 relation types: 77.29%
Precision, 75.00% Recall and 76.01% F1 averaged over 5 folds cross validation.
However, the performance on the 7 subtypes within EMP-ORG when classifying
at subtype level is not only much lower than the result for EMP-ORG overall
but also rather unstable: from zero for Partner to 72.79% for Subsidiary. The
two biggest subtypes Employ-Exec and Employ-Staff get only 67.16% and 62.25
% F1 which are much lower than the 76.01% on type level for their parent type
EMP-ORG. We consider that the zero result for Partner is mainly due to too
few instances. Therefore, the closer distance between the classes at subtype level
causes the performance to decrease and become unstable.

Table 6. The result on the subtypes of EMP-ORG

Subtypes Num Precision(%) Recall(%) F1(%)

Employ-Exec 630 71.37 63.9 67.16
Employ-Undetermined 129 68.76 43.23 51.2
Employ-Staff 694 64.39 60.97 62.25
Member-of-Group 225 62.16 38.55 46.85
Subsidiary 300 83.81 65.29 72.79
Partner 16 0 0 0
Other 90 33.33 5.89 9.9

We also investigated the influence of different feature sets on the different
classification levels (see Table 7). For all of the three classification levels, the
improvements are almost stable as more features are introduced and the best
performance is achieved with the complete feature set (there is only one excep-
tion when add SQLF features in relation detection). But the improvement at
various levels is different: as more features are used, the improvement in relation
detection is only 10.34% (from 61.25% to 71.59%), while the improvement in
type and subtype classification is much more significant: 23.59% (from 41.61%
to 65.20%) and 23.40% (from 33.38% to 56.78%). Such difference suggests that
features provide more significant effect for classification on deep level. Further-
more, the impact of the SQLF and WordNet synset features on different levels
also shows that semantic knowledge will play more important role in extracting
fine granularity relations.

Table 7. The F1(%) results on different feature sets and classification levels

Features Relation detection Type classification Subtype classification

Word 61.25 41.61 33.38
+POS Tag 60.03 44.13 36.66
+Entity 63.31 57.84 50.49
+Mention 65.57 59.45 52.03
+Overlap 66.84 61.36 53.52
+Chunk 66.61 62.52 54.19
+Dependency 70.01 63.61 54.67
+Parse Tree 70.42 64.05 55.06
+SQLF 70.08 64.24 55.34
+WordNet 71.59 65.20 56.78

6 Conclusions

In this paper we investigated SVM-based classification for relation extraction
and explored a diverse set of NLP features. In comparison to previous work,
we introduce some new features, including POS tag, entity subtype and class
features, entity mention role features and even general semantic features which
all contribute to performance improvements. We also investigated the impact of
different types of feature and different relation levels.

Further work on using machine learning for relation extraction needs to ad-
dress several issues. Firstly, although the ACE2004 entity and relation type sys-
tem provides a hierarchy organization which is somewhat like ontology, it is still
very limited for large-scale ontology-based IE. We plan to extend our method
and evaluate it on bigger scale ontology. Another interesting future work is to
integrate the automatic named entity recognition with relation extraction, which
would be more realistic than the experiments described in this paper where re-
lation extraction was based on the gold standard named entities. It would also
be interesting to compare the SVM model with other variants of the SVM (such
as the SVM with uneven margins) as well as with other ML approaches (such
as CRF, MEM and so on) for relation extraction.

Acknowledgements: This research is supported by the EU-funded SEKT project
(www.sekt-project.com) , the National Natural Science Foundation of China (60403050)
and the National Grand Fundamental Research Program of China under Grant No.
2005CB321802. Thanks to Guodong Zhou for his helpful information about his work.

References

[1] ACE. See http://www.nist.gov/speech/tests/ace/
[2] Annotation Guidelines for Entity Detection and Tracking (EDT) Version 4.2.6,

http://www.ldc.upenn.edu/Projects/ACE/docs/EnglishEDTV4-2-6.PDF. (2004)
[3] Annotation Guidelines for Relation Detection and Characterization (RDC)

Version 4.3.2, http://www.ldc.upenn.edu/Projects/ACE/docs/EnglishRDCV4-3-
2.PDF. (2004)

[4] Appelt, D.: An Introduction to Information Extraction. Artificial Intelligence Com-
munications, 12(3) (1999) 161-172

[5] Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. Proceed-
ings of 42th Annual Meeting of the Association for Computational Linguistics. 21-26
July Barcelona, Spain (2004)

[6] Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics. Philadelphia, July (2002)

[7] Freitag, D., and McCallum A.: Information extraction with HMM structures
learned by stochastic optimization. Proceedings of the 7th Conference on Artifi-
cial Intelligence (AAAI-00) and of the12th Conference on Innovative Applications of
Artificial Intelligence (IAAI-00), 584-589,Menlo Park, CA. AAAI Press (2000)

[8] Gaizauskas, R., Hepple, M., Saggion, H., Greenwood, M.A., Humphreys, K.: SUP-
PLE: A Practical Parser for Natural Language Engineering Applications. Technical
report CS–05–08, Department of Computer Science, University of Sheffield (2005)

[9] Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM — Semi-automatic CREAtion
of Metadata. Proceedings of the13th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW02), Siguenza, Spain(2002)

[10] Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector
machines , IEEE Transactions on Neural Networks, 13(2). (2002)415-425

[11] Kambhatla, N.: Combining lexical, syntactic and semantic features with Maximum
Entropy models for extracting relations. Proceedings of 42th Annual Meeting of the
Association for Computational Linguistic. 21-26 July Barcelona, Spain (2004)

[12] Lafferty, J., McCallum, A., Pereira. F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International Conf.
on Machine Learning, Morgan Kaufmann, San Francisco, CA (2001) 282-289

[13] Li, Y., Bontcheva, K., Cunningham, H.: SVM Based Learning System For Infor-
mation Extraction. In Proceedings of Sheffield Machine Learning Workshop, Lecture
Notes in Computer Science. Springer Verlag (2005)

[14] Lin, D.: Dependency-based Evaluation of MINIPAR. In Workshop on the Evalu-
ation of Parsing Systems, Granada, Spain, May (1998)

[15] Miller, A., ”WordNet: An On-line Lexical Resource”, Special issue of the Journal
of Lexicography, vol. 3, no. 4(1990)

[16] Motta, E., VargasVera, M., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna,
F.: MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic
Markup. Proceedings of the 13th International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW02), Siguenza, Spain(2002)

[17] Wang, T., Bontcheva, K., Li, Y., Cunningham, H.: D2.1.2. Ontology-Based
Information Extraction. SEKT Deliverable D2.1.2. (2005). http://www.sekt-
project.org/rd/deliverables/index html/

[18] Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
Journal of Machine Learning Research (2003) 1083-1106

[19] Zhou G., Su, J., Zhang, J., Zhang, M.: Combining Various Knowledge in Relation
Extraction, Proceedings of the 43th Annual Meeting of the Association for Compu-
tational Linguistics (2005)

