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Abstract— A new method is proposed for the accurate experi-
mental characterization and fully automated extraction of com-
pact nonlinear models for field-effect transistors (FETs). The
approach, which leads to a charge-conservative description,
is based on a single large-signal measurement under a two-tone
sinusoidal wave excitation. A suitable choice of tone frequencies,
amplitudes, and bias allows to adequately characterize the tran-
sistor over the whole safe operating region. The voltage-controlled
nonlinear functions describing the two-port FET model can be
computed over an arbitrarily dense voltage domain by solving
an overdetermined system of linear equations. These equations
are expressed in terms of a new nonlinear function sampling
operator based on a biperiodic Fourier series description of
the acquired frequency spectra. The experimental validation
is carried out on a 0.25-µm gallium nitride (GaN) on silicon
carbide (SiC) high-electron-mobility transistor (HEMT) under
continuous-wave (CW) and two-tone excitation (intermodulation
distortion test).

Index Terms— Field-effect transistors (FETs), gallium nitride
(GaN), large-signal measurements, nonlinear vector network
analyzer (NVNA), semiconductor device modeling.

I. INTRODUCTION

THE extraction of compact nonlinear field-effect transistor
(FET) models for microwave applications often relies

on multibias S-parameter measurements [1], [2]. However,
these identification methods are typically affected by several
problems, e.g., they usually allow only for a partial exploration
of the voltage domain due to self-heating. In addition, path-
dependent integration of differential parameters is frequently
observed, due to temperature and charge trapping variations
across the bias conditions [3].

Manuscript received July 31, 2019; revised December 26, 2019; accepted
December 30, 2019. Date of publication March 27, 2020; date of current
version May 5, 2020. This work was supported in part by the Spanish
Ministerio de Ciencia, Innovación y Universidades in the frame of Salvador
de Madariaga Program under Grant PRX18/00108. (Corresponding author:
Teresa M. Martín-Guerrero.)

Teresa M. Martín-Guerrero and Carlos Camacho-Peñalosa are with the
Departamento de Ingeniería de Comunicaciones, Universidad de Málaga,
29010 Málaga, Spain (e-mail: teresa@ic.uma.es).

Alberto Santarelli, Gian Piero Gibiino, Pier Andrea Traverso, and Fabio Fil-
icori are with the Department of Electrical, Electronic, and Information Engi-
neering (DEI) Guglielmo Marconi, University of Bologna, 40136 Bologna,
Italy (e-mail: alberto.santarelli@unibo.it).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2020.2968886

The adoption of narrow pulse current [4]–[9] and
S-parameter measurement techniques [4], [6], [7] allows for
isothermal and isotrap state (i.e., isodynamic) FET charac-
terization. Nevertheless, these pulsed techniques make use of
model identification experiments under very specific operating
conditions, which are quite different from the continuous-
wave (CW)-like regimes of large-signal power amplifier (PA)
applications. Generalizing the models to account for those dif-
ferent operating regimes in the presence of charge trapping can
become a complex task, especially considering particular cases
such as the trap-induced nonlinear dynamic behavior displayed
by gallium nitride (GaN) HEMTs [8]. In this context, model
extraction procedures based on large-signal CW or modulated
excitations represent an attractive possibility [10]–[23]. Some
of these approaches exploit artificial neural networks [11],
which feature powerful fitting capabilities to obtain the con-
duction current and the charge functions from a large amount
of data under different bias, radio frequency (RF) excitation,
and impedance terminations. Other methods are aimed at a
preliminary separation between the conduction and displace-
ment of current components [12]–[23]. In [12] and [13], this
separation was obtained by exploiting the constraints between
the real and imaginary parts of complex Fourier coefficients of
measured waveforms for a single-port device. A simulation-
based extension of this approach to the two-port case was
proposed in [14]. In [23], a characterization method relying
on a two-tone, two-port excitation was used for model extrac-
tion. The separation of conduction and displacement currents
exploited a point-by-point local approximation of the large-
signal regime. Isodynamic voltage-dependent small-signal
conductance and capacitance functions were integrated into
the frequency domain to obtain quasi-static model functions.

In this article, a new approach for the extraction of
conduction I/V and quasi-static charge Q/V functions from
large-signal measurements is proposed. The method relies
on quasi-periodic two-tone, two-port sinusoidal excitation of
transistors as in the experiment described in [23] and on
constraints between the real and imaginary parts of Fourier
coefficients of waveforms analogous to [14]. This formulation
allows for the direct extraction of conduction current and
charge waveforms’ spectral coefficients. A new nonlinear
function sampling (NFS) operator is introduced and used
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for generating arbitrarily dense model functions. The extrac-
tion procedure is formulated to display linear dependence
on the unknown quantities, leading to an automatic, robust,
and unambiguous identification that avoids the use of non-
linear optimization or integration procedures. The resulting
model functions can be described as simple lookup tables
(LUTs) or can be easily replaced by analytical approximating
functions according to the user preference.

This article is structured as follows. The measurement pro-
cedure and the differences between the quasi-periodic experi-
ment and the actual periodic approximation are addressed in
Section II. Section III deals with the introduction of the NFS
operator. This operator is exploited in Section IV, where the
model extraction method is proposed. The application of the
procedure for a 0.25-µm GaN-on-silicon-carbide (SiC) HEMT
and its experimental validation is discussed in Section V.
Conclusions are finally drawn in Section VI.

II. TWO-TONE, TWO-PORT DEVICE MODELING

A. Characterization Under Quasi-Periodic Regime

Let us consider a specific experimental procedure in which
the device under test (DUT), i.e., an FET in common-source
configuration, is excited at the two gate and drain ports by two
single-tone power waves at independent and incommensurable
frequencies fA and fB [23]. One tone is applied at each
port. The absolute (power and phase) incident and reflected
waves are measured at the extrinsic transistor ports; extrinsic
voltages and currents are then obtained through well-known
linear transformations. Given the device nonlinearity, mixing
products are generated in both voltages and currents at fre-
quencies fn,m = |n fA + m fB |, with n, m = 0, ±1,±2, . . .

(r = |n| + |m| is the mixing order).
After deembedding of the extrinsic parasitic network, one

obtains the intrinsic spectral components (complex quantities)
of transistor voltages V n,m = {VGn,m , V Dn,m}T and currents
I n,m = {IGn,m, IDn,m}T , where symbol {·}T stands for vector
transposition. The corresponding time-domain waveforms are
linked to their spectra by the Fourier analysis

I(t) = Re

{

∑

n,m

I n,m e j (nωA+mωB )t

}

(1)

V(t) = Re

{

∑

n,m

V n,m e j (nωA+mωB )t

}

(2)

where the coefficients have been ordered in terms of the two
excitation frequencies, with I = {IG , ID}T ,V = {VG ,VD}T ,
ωA = 2π fA , and ωB = 2π fB .

In order to ensure well-conditioned waveform acquisitions
for FET modeling, first, fA and fB must be sufficiently
high to stimulate not only the conduction current but also
substantial displacement current components; second, the mix-
ing products must fall in a portion of the frequency spectra
where no spurious memory effects are excited. In practice,
the spectral lines should lie above the cutoff of the low-
frequency dispersive phenomena due to charge trapping and
self-heating. At the same time, they must not extend to very

high frequencies, in order to avoid nonquasi-static effects
associated with junction charge storage.

Due to the beat between the two incommensurable frequen-
cies, the instantaneous gate and drain voltages densely swing
across a certain portion of the operative domain Dv , where
this portion is set by the chosen tone amplitudes [2]. In effect,
given a sufficiently long observation time, any point inside the
outer bound of Dv would be reached. In the frequency domain,
no multiple products will land on the same frequency bin,
thus obtaining the separation among all the mixing products.
In other words, each spectral line will correspond to a single
intermodulation product, and the minimum frequency spacing
between the products would tend to be infinitesimal if unlim-
ited mixing orders were considered. As the transistor dynam-
ically experiences an extremely wide set of equivalent source
and load terminations [18], a great amount of information can
be extracted from this kind of regime for modeling purposes.

From a practical point of view, a finite observation time
must be adopted for acquiring the incident and reflected waves,
resulting in a discrete frequency grid defined by a minimum
frequency, and by a minimum frequency step. It should be
noted that the available instrumentation used for accurate
large-signal network analysis is based on coherent receivers,
which must be frequency-locked with the synthesizers. In addi-
tion, commercial mixer-based architectures for large-signal
network analysis at microwaves rely on a phase reference
usually provided by a comb generator device, which pro-
duces an harmonic frequency grid. Also, a suitable truncation
of spectra to finite maximum harmonic orders, |n| ≤ N ,
|m| ≤ M , and r ≤ R, should inevitably be considered. Thus,
an excitation with two tones at commensurable frequencies is
eventually chosen, leading to a periodic regime with funda-
mental frequency fF given by the greatest common divisor
of the two numbers fA and fB , i.e., fF = GCD( fA fB).
In this case, the instantaneous voltage path traveled over the
voltage plane during the period (TF = 1/ fF ) only touches a
well-determined locus of points within the transistor operating
range. Thus, a poor choice of frequency values could lead to
inadequate voltage loci for the extraction of I/V and Q/V

characteristics over the whole transistor safe operating area.
However, transistor operation akin to the quasi-periodic case
is substantially obtained by choosing two frequencies that
guarantee nonoverlapping mixing products up to a certain
order.

In this article, a setup based on a mixer-based nonlinear
vector network analyzer (NVNA) has been used for the exper-
iment (see Fig. 1), featuring a 10-MHz harmonic phase refer-
ence up to 67 GHz. Thus, fA = 2 GHz and fB = 2.74 GHz
were chosen, resulting in fF = 20 MHz. Considering that
the DUT is a 0.25-µm GaN-on-SiC HEMT, the GHz range
is suitable for both frequencies, with a spacing shorter than
an octave, i.e., 1 < fB/ f A < 2. The spectra were measured
by assuming N = 10, M = 10, and R = 20, leading to
NB = 220 frequency bins. The minimum mixing product is
obtained at fmin = 220 MHz, and the minimum frequency
spacing is 1 fmin = 4 fF = 80 MHz. The maximum frequency
in the measured spectra is fmax = 47.4 GHz.
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Fig. 1. (a) Block diagram and (b) photograph of the measurement setup.

B. Bitemporal Waveform Analysis

When adopting a quasi-periodic excitation (or equivalently,
its periodic approximation), a signal description based on
multidimensional Fourier series [24] can be effectively used
in order to extract information from the waveforms spanning
the whole voltage plane. This technique is based on the
introduction of an auxiliary bitemporal domain (τA, τB) in
such a way that the quasi-periodic signals can be more effi-
ciently treated as biperiodic ones. According to this technique,
the expressions in (1) and (2) are replaced by

I(τA, τB) =̇ Re

{

∑

n,m

I n,m e j (nωAτA+mωB τB)

}

(3)

V(τA, τB) =̇ Re

{

∑

n,m

V n,m e j (nωAτA+mωBτB )

}

. (4)

Cleary, the bitemporal functions defined by (3) and (4)
coincide with the ones in (1) and (2) only for τA = τB = t .
On the other hand, both (3) and (4) have the advantage of being
periodic along the two auxiliary time axes τA and τB , with
periods TA = 2π/ωA and TB = 2π/ωB , respectively. Due to
the continuity of the sinusoidal waveforms in (3) and (4) with
respect to τA and τB , any voltage pair (vG , vD) in the voltage
domain Dv can be obtained with a suitable choice of the
(τA, τB) auxiliary time variables. In other words, any voltage
pair (vG , vD) can be reached, provided that a sufficiently
dense discretization is adopted along the two periodic auxiliary
axes τA and τB .

Fig. 2. FET equivalent circuit including parasitic elements. The conduction
drain current fD represents a specific isodynamic condition. To account for
thermal and trapping effects, fD is substituted by f ′

D
as in Section V.

In the following Fourier series expansions, we will separate
real and imaginary parts of spectral components. For instance,
by considering the unilateral current spectral components
I n,m , we let

I n,m = I a
n,m − j I b

n,m (5)

where I a
n,m and I b

n,m are now vectors of real quantities. Thus,
(3) becomes

I (τA, τB) =̇I 0,0 +
∑

n,m

I a
n,m cos (nωAτA + mωBτB)

+
∑

n,m

I b
n,m sin (nωAτA + mωBτB) . (6)

The spectral coefficients V a
n,m and V b

n,m are defined accord-
ingly.

C. Intrinsic Quasi-Static FET Model Formulation

According to the particular characterization adopted in this
article, a quasi-static intrinsic transistor model (see Fig. 2) can
be assumed, that is

i(v) = f (v) +
dq(v)

dt
(7)

with i = {iG, iD}T and v = {vG , vD}T . The f (v) =

{ fG(v) , fD(v)}T functions in (7) represent isodynamic I/V

input and output FET conduction characteristics. The vector
q(v) = {qG(v), qD(v)}T includes the gate and drain quasi-
static charge functions. It is to be noted that, in general,
the thermal and trapping state associated with the particular
operating regime depends on the bias condition and on the
excitation signals. Thus, different excitation conditions gener-
ally involve different extracted f (v) and q(v) (see Section V).

The extraction method here proposed leads to a direct
identification of the conduction characteristics f (v) and the
displacement charge functions q(v) on the basis of the mea-
sured voltage and current spectral components V n,m , I n,m at
the intrinsic plane. After deembedding the parasitic network,
the method is almost automatic. In fact, it is based on the solu-
tion of linear systems (thus avoiding convergence problems of
nonlinear optimization algorithms) and it does not require any
choice by the operator, apart from the definition of reasonable
time- and voltage-domain discretization grids (see Section V).
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For an assigned set of voltage waveforms V(t) ≡ v(t), the
quasi-static current I(t) predicted by model (7) is given by

I(t) = F(t) +
dQ(t)

dt
(8)

where F(t) and Q(t) are two set of (yet unknown) waveforms
describing the conduction transistor response and the evolution
of the charge function values over time. Coherently, in the
bitemporal domain, F and Q can be defined as

I (τA, τB) =̇F (τA, τB) +
∂Q (τA, τB)

∂τA

+
∂Q (τA, τB)

∂τB

. (9)

Clearly, it holds

I (τA, τB) = i
(

V (τA, τB)
)

(10)

F (τA, τB) = f
(

V (τA, τB)
)

(11)

Q (τA, τB) = q
(

V (τA, τB)
)

(12)

where V (τA, τB) are the bitemporal voltage waveforms. Spec-
tral components Fa

n,m and Fb
n,m associated with F (τA, τB)

and Qa
n,m

and Qb
n,m

associated with Q (τA, τB) lead to

F (τA, τB) =̇ F 0,0 +
∑

n,m

Fa
n,m cos (nωAτA + mωBτB)

+
∑

n,m

Fb
n,m sin (nωAτA + mωBτB) (13)

Q (τA, τB) =̇
∑

n,m

Qa

n,m
cos (nωAτA + mωBτB)

+
∑

n,m

Qb

n,m
sin (nωAτA + mωBτB) (14)

where I 0,0 = F 0,0 as in (9). In addition, since Q
0,0

is an
irrelevant and unknown quantity, it will be arbitrarily chosen
equal to zero. The derivative of (14) with respect to the two
auxiliary time variables (τA, τB) leads to

∂Q (τA, τB)

∂τA

+
∂Q (τA, τB)

∂τB

=
∑

n,m

(nωA + mωB) Qb

n,m
cos (nωAτA + mωBτB)

−
∑

n,m

(nωA + mωB) Qa

n,m
sin (nωAτA + mωBτB) .

(15)

Thus, on the basis of (6), (13), and (15), the quasi-static
current model (9) can be written in terms of the following
spectral balance equations, for each n and m:

I a
n,m = Fa

n,m + ωnm Qb

n,m

I b
n,m = Fb

n,m − ωnm Qa

n,m
(16)

where ωn,m = 2π fn,m = 2π |n fA + m fB | .

III. NONLINEAR FUNCTION SAMPLING

The quasi-static model in spectral balance form (16) repre-
sents the basis for the identification of conduction current and
charge waveform spectral coefficients. Additional constraints,
which are needed for a well-conditioned extraction, will be
derived in Section IV by imposing that conduction current

Fig. 3. Elementary cell (i, j) over the gate and drain voltage domain Dv .

f (v) and quasi-static charge q(v) characteristics must be
memoryless (i.e., algebraic) functions of voltages, according
to quasi-static model assumptions.

To this aim, an NFS operator, linking algebraic voltage func-
tions and corresponding time-domain waveforms, is introduced
in this section. This operator will both simplify the formulation
of the spectral coefficients identifying equations and allow
for a straightforward evaluation of the conduction current and
charge functions over an arbitrarily dense voltage grid based
on their bitemporal waveforms.

Let vGmin, vGmax, vDmin, and vDmax be the extremes of
the gate and drain voltage domain Dv corresponding to
a particular set of FET excitation waves. The gate/drain
voltage plane is partitioned into a set of elementary cells
defined by an NG × ND discretization grid. Grid node
voltages v i, j = {vGi vDj }

T with i = 0, 1, . . . , NG − 1
and j = 0, 1, . . . , ND − 1 define elementary cells with
dimensions 1vG = (vGmax − vGmin) /NG and 1vD =

(vDmax − vDmin) /ND . Pairs of indexes (i, j) identify one cell
and its central point ṽ i, j = {ṽGi , ṽDj }

T , as shown in Fig. 3.
Let us now consider a generic algebraic voltage function

ϕ(v), whose corresponding time-domain waveform is given
by φ(τA, τB) = ϕ(V(τA, τB)) in the presence of an assigned
biperiodic (TA, TB) excitation with intrinsic voltage wave-
forms V(τA, τB). Any generic voltage v = {vG , vD}T within
the characterization domain Dv belongs to a certain elementary
voltage cell (i, j) with

i = int

{

vG − vGmin

1vG

}

, j = int

{

vD − vDmin

1vD

}

(17)

where int {·} extracts the integer part. Under the operation
considered, we introduce here the NFS operator, linking the
waveform φ (τA, τB) to its parent nonlinear function ϕ

(

v
)

ϕ(v) = NFS{φ, v}

= lim
1v→0

∫∫

TA,TB
φ(τA, τB) 1(V(τA, τB) − ṽ i, j ,1v) dτA dτB

∫∫

TA,TB
1(V(τA, τB) − ṽ i, j ,1v) dτA dτB

(18)
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where 1v = {1vG , 1vD}T and

1(v,1v)

=

⎧

⎨

⎩

1, −
1vG

2
≤ vG <

1vG

2
; −

1vD

2
≤ vD <

1vD

2
0, elsewhere.

(19)

Once the waveform is known, the operator allows the
computation of the corresponding voltage function all over
the characterization domain. The value of the function ϕ over
a generic elementary voltage cell is obtained as the average
of the waveform φ values falling within the cell. Clearly,
the elementary cell dimensions 1vG and 1vD must be chosen
small enough to guarantee an adequate approximation of the ϕ

function. In fact, according to (18), the NFS operator defines
a continuous function with vG = ṽG,i and vD = ṽD, j as those
incremental dimensions approach zero. In practice, finite 1vG

and 1vD steps will lead to a piecewise approximation of the
function. Obviously, the auxiliary time axes τA and τB must
also be discretized. Let us assume L time instants τA,l = l 1τA

with l = 0, 1, . . . , L − 1(1τA = TA/L) and K time instants
τB,k = k 1τB with k = 0, 1, . . . , K − 1(1τB = TB/K ).
In this case, the NFS operator is replaced by

ϕ
(

v
)

= NFS
{

φ, v
}

= lim
1v→0

∑L−1,K−1
l,k=0 φ(τA,l , τB,k) 1(Vl,k − ṽ i, j ,1v)

∑L−1,K−1
l,k=0 1(V l,k −ṽ i, j ,1v)

(20)

where it is assumed: V l,k = V
(

τA,l , τB,k

)

. It is worth noting
that, by reducing the discretization steps 1τ = {1τA , 1τB}T ,
any number of samples can be obtained within any elementary
cell due to the bitemporal interpolation. For instance, if
s =

∣

∣dV/dt
∣

∣

max were the vector of maximum slopes of the
voltage waveforms, at least two points in each elementary cell
would be obtained by choosing 1τ < 1v/2s. In practice,
since the model extraction is based on a global system of
linear equations in the unknown spectral waveform compo-
nents, a reasonable number of time samples (not necessarily
involving samples in any voltage elementary cell) can be easily
obtained, as will be demonstrated in Section IV.

IV. FET MODEL EXTRACTION PROCEDURE

Transistor model extraction on the basis of the known
intrinsic current spectral components I a

n,m and I b
n,m is done in

two main steps: 1) identification of the whole set of complex
coefficients Fa

n,m , Fb
n,m , Qa

n,m
, and Qb

n,m
entirely defining the

conduction current and displacement charge waveforms and
2) extraction of the conduction I/V transistor characteristics
f
(

v
)

and Q/V charge functions q
(

v
)

from their parent
waveforms.

The empirical waveforms of intrinsic currents I (τA, τB)

at the transistor intrinsic ports have been related through
(9) to the corresponding waveforms of purely conduction
currents F (τA, τB) and displacement charges Q (τA, τB).
These waveforms are associated with algebraic characteristics
f
(

v
)

and q
(

v
)

appearing in the quasi-static model (7), yet to
be extracted. According to the definition of the NFS operator

(20), we have

f (v) = NFS{F , v} (21)

q(v) = NFS{Q, v}. (22)

With the time discretization 1τA and 1τB adopted, let
Pi, j be the number of samples falling into the (i, j) ele-
mentary voltage cell. In addition, let {V(τA,lp, τB,kp)}i, j , with
p = 0, 1, . . . , Pi, j −1, be the intrinsic voltage samples falling
into the (i, j) cell. Only the cells with Pi, j ≥ 2 will contribute
to model extraction.

Since the F and Q waveforms derive from algebraic voltage
functions f

(

v
)

and q
(

v
)

, then each pth sample within any
(i, j) voltage cell must satisfy

F(τA,lp τB,kp) = f (ṽ i, j ) (23)

Q(τA,lp τB,kp) = q(ṽ i, j ) (24)

where the second-term quantities may be evaluated by (21)
and (22) as

f (ṽ i, j ) = NFS{F, ṽ i, j } ≃
1

Pi, j

Pi, j −1
∑

p=0

F(τA,lp , τB,kp) (25)

q(ṽ i, j ) = NFS{Q, ṽ i, j } ≃
1

Pi, j

Pi, j −1
∑

p=0

Q(τA,lp , τB,kp). (26)

Thus, by replacing (25) and (26) into (23) and (24), we finally
obtain

F(τA,lp , τB,kp ) ≃
1

Pi, j

Pi, j −1
∑

p=0

F(τA,lp , τB,kp) (27)

Q(τA,lp , τB,kp ) ≃
1

Pi, j

Pi, j −1
∑

p=0

Q(τA,lp , τB,kp). (28)

These constraints can be set for each (τA,lp , τB,kp) sample
held into each (i, j) elementary voltage cell, for a total of P =
∑

i, j(Pi, j ≥2) Pi, j times. For the sake of notation compactness,
let us assume

{θn,m,lp,kp }i, j
= nωAτA,lp + mωBτB,kp (29)

where the i j indexes indicate that p may assume values
0, . . . , Pi, j − 1. In addition, we assume

〈fT{θn,m,lp,kp }i, j
〉p =

1

Pi, j

Pi, j −1
∑

p=0

fT{θn,m,lp,kp }i, j
(30)

where fT is either the cos {·} or sin {·} trigonometric function.
With analogous notation, let it finally be

1fT{θn,m,lp,kp }i, j
= fT{θn,m,l p,kp }i, j

−〈fT{θn,m,lp,kp }i, j
〉p .

(31)
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Then, (27) and (28) can be easily transformed by using the
Fourier series (13) and (14) into

∑

n,m

Fa
n,m1cos{θn,m,lp,k p

}
i, j

+
∑

n,m

Fb
n,m1sin{θn,m,lp,k p

}
i, j

≃ 0 (32)

∑

n,m

Qa

n,m
1cos{θn,m,lp,k p

}
i, j

+
∑

n,m

Qb

n,m
1sin{θn,m,lp,k p

}
i, j

≃ 0. (33)

Due to the spectral balance form in (16), (32) can also
be expressed in terms of the charge spectral components.
In particular, after simple algebraic manipulation, it holds

∑

n,m

ωn,m Qb

n,m
1cos{θn,m,lp,k p

}
i, j

+
∑

n,m

ωn,m Qa

n,m
1sin{θn,m,lp,k p

}
i, j

≃
∑

n,m

(

I a
n,m1cos{θn,m,lp,k p

}
i, j

+ I b
n,m1sin{θn,m,lp,k p

}
i, j

)

. (34)

Finally, by imposing the constraints (33) and (34) for each
set of Pi, j bitemporal samples within each (i, j) voltage cell
(only cells with Pi, j ≥ 2 included), an overdetermined linear
system of equations is obtained to be solved with respect to the
set of 4NB unknown spectral components Qa

n,m
and Qb

n,m
of

the complex displacement charge (gate and drain). Once the
system is solved, the conduction spectral components, Fa

n,m

and Fb
n,m , are also obtained by (16).

As a general rule, proper equation weighting is mandatory
for a well-conditioned system solution. In this article, each
voltage cell was weighted equally over the voltage plane,
independently of the number of time samples falling into
each cell. Therefore, a weight inversely proportional to Pi, j

was associated with each equation for each p value with
V(τA,lp, τB,kp) within the (i, j) cell. In addition, since all the
system equations should be dimensionally coherent, the charge
constraints (33) were weighted proportionally to the constant
angular frequency ω0 = (ωA + ωB) /2.

Once the waveforms F(τA, τB) and Q(τA, τB) have been
extracted, the isodynamic gate and drain I/V characteristics
f (v) and Q/V charge functions q(v) can be obtained (see
Section V). To this aim, direct application of the NFS operator
leads to the final goal according to (21) and (22). Any
arbitrarily dense grid of voltages can be generated, possibly
the same used for solving the linear system of (33) and (34),
provided that an adequate discretization is assumed for the
bitemporal domain. In this article, the obtained functions have
been stored into LUTs but may also be approximated through
analytical functions [25], [26].

V. EXPERIMENTAL RESULTS

The modeling procedure described in Section IV was
applied to a 8 × 125 µm (1-mm) GaN-on-SiC HEMT in
0.25-µm technology. The DUT was biased at IDQ ≃ 80 mA

Fig. 4. Number of samples (Pi, j ) within each elementary cell of the voltage
domain Dv .

and VDQ = 30 V. As discussed in Section II-A, fA = 2 GHz
and fB = 2.74 GHz were chosen for the two-tone two-port
characterization. The synthesizers available input powers were
PA = 18 dBm and PB = 36 dBm at the gate and drain ports,
respectively. NVNA measurements were performed by means
of a Keysight PNA-X N5247A (see Fig. 1).

The extrinsic parasitic elements (see Fig. 2), here identified
with the automatic linear-regression-based technique in [27],
were deembedded from measurements, leading to the intrinsic
voltages and currents both versus time (1) and (2) and versus
the auxiliary bitemporal domain (τA, τB) (3) and (4). With the
input power levels adopted, the intrinsic voltage waveforms
V (τA, τB) were found sweeping the domain Dv , with vG ∈

[−8 , 0] V and vD ∈ [0 , 77] V. This domain was discretized
by choosing 1vG = 0.8 mV and 1vD = 7.7 mV, correspond-
ing to NG = 1000 and ND = 10 000 points on the gate and
drain axis, respectively. The auxiliary time axes τA and τB

were discretized by assuming L = K = 29 time instants
within the TA and TB periods, which led to 1τA = 0.71 ps and
1τB = 0.97 ps. With the discretization of voltage and aux-
iliary bitemporal axes adopted, the numbers Pi, j of intrinsic
voltage samples V(τA,lp , τB,kp) within each elementary volt-
age cell (i, j) were distributed, as shown in Fig. 4. The number
of elementary voltage cells holding two or more samples was
found to be about 7800. The resulting linear system of equa-
tions obtained by imposing (33) and (34) within each (i, j)

voltage cell was made of about 70 000 equations to be solved
with respect to the 4NB = 440 unknown displacement charge
spectral components Qa

n,m
and Qb

n,m
(two systems of equa-

tions can be separately solved for the gate and drain charges).
The Q/V model charge functions qG(v) and qD(v), obtained
by processing the charge waveforms through the NFS operator
(26), are shown in Fig. 5 (gate) and Fig. 6 (drain). Contours
at constant function values are also plotted in Figs. 5 and 6.

Conduction current spectral components Fa
n,m and Fb

n,m

were then obtained by (16) and, with similar application of the
NFS operator, the I/V characteristics were also evaluated. The
extracted drain current reference characteristic fD

(

v
)

is shown
in Fig. 7. For illustrative purposes, fD

(

v
)

is also plotted in
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Fig. 5. Gate charge qG (vG , vD) samples as a function of voltage (blue dots).
Contours at constant charge values (black dotted lines).

Fig. 6. Drain charge qD(vG , vD) samples as a function of voltage (blue
dots). Contours at constant charge values (black dotted lines).

Fig. 8 in the classic format of I/V curves, showing a plausible
behavior. Since the forward operation of the gate junction was
never involved by the dynamic regime adopted, the gate I/V

characteristic fG

(

v
)

was found to be practically zero over the
voltage domain Dv . All the model functions were implemented
into linearly interpolated LUTs.

Hereinafter, f ′
D(v, ϑ, x) will indicate the generic drain cur-

rent accounting for any temperature ϑ and charge trapping
state x , while the drain conduction current fD(v) is that
extracted under steady-state conditions with ϑ = ϑ̂ and
x = X̂ so that fD(v) ≡ f ′

D(v, ϑ̂, X̂). Then, f ′
D(v, ϑ, x) can

be modeled for above cutoff, periodic steady-state operation
regime by an equivalent voltage [23] as follows:

f ′
D(v, ϑ, x) ∼= [1 + αϑm · (ϑ − ϑ̂)] · f ′

D(vGeq, vD, ϑ̂ , X̂),

(35)

vGeq = vG + αϑ t · (ϑ − ϑ̂) + αx · (x − X̂). (36)

The instantaneous channel temperature ϑ is obtained by
ϑ = ϑB + Rϑ · P0, where ϑB is the measured baseplate

Fig. 7. Drain conduction current fD(vG , vD) samples as a function of
voltage (blue dots). Contours at constant charge values (black dotted lines).

Fig. 8. I/V curve for the conduction current extracted under steady-state
conditions: fD(v) versus vD , with vG as a parameter.

temperature, P0 is the average dissipated power, and Rϑ ≃

14 ◦C/W as provided by the foundry. The parameters αϑm =

−2 mA/◦C and αϑ t = 1.5 mV/◦C, which account for
temperature-dependent carrier mobility and threshold volt-
age shift, respectively, were obtained from the I/V curves
extracted with the proposed method at different baseplate
temperatures.

The charge trapping state was here assumed as unambigu-
ously determined by the voltage peaks v̌G (negative) and v̂D

(positive) reached. For an operating regime above the cutoff of
the low-frequency trapping effects [8], the trap state deviations
were quantified by the following normalized formulation:

X0(v̌G , v̂D) − X̂

=
f ′

D(vs
G , vs

D, ϑ̂ , X0(v̌G , v̂D))− f ′
D(vs

G , vs
D, ϑ̂, X̂)

f ′
D(vs

G , vs
D, ϑ̂ , X̂)

(37)

where (vs
G , vs

D) represents a current-sensing point on the
voltages plane (a point in the saturation region was actu-
ally adopted). The current f ′

D(vs
G , vs

D, ϑ̂ , X0(v̌G , v̂D)), to be
possibly compensated for any temperature discrepancy with
respect to the reference case, is the one measured at the charge
trapping state X0 set by the actual voltage peaks (v̌G , v̂D).
By performing various acquisitions under different steady-
state regimes (i.e., with different voltage peaks), the trap
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Fig. 9. Measured (x) and modeled (continuous line) GaN HEMT intrin-
sic current loci. CW excitations at 2.5 GHz: ZL1 = 48.6 �  177◦,
ZL2 = 45.9 �  − 179◦, and ZL3 = 49.3 �  − 172◦ : (a) iG versus vG ,
(b) iG versus vD , (c) iD versus vG , and (d) iD versus vD .

Fig. 10. Measured (x) and modeled (continuous line) GaN HEMT
intrinsic current loci. CW excitation at 5 GHz: ZL1 = 45.9 �  − 179◦,
ZL2 = 54.0 �  179◦, and ZL3 = 57.6 �  − 166◦: (a) iG versus vG , (b) iG
versus vD , (c) iD versus vG , and (d) iD versus vD .

state deviations (37) were characterized and eventually linearly
approximated over the entire voltage domain Dv , obtaining
αx = −0.8 V by using (36).

Fig. 11. (a) CW test at 2.5 GHz and (b) 5 GHz. Measurements (x) versus
model (continuous line). Load impedance terminations as in Fig. 9 (2.5 GHz)
and Fig. 10 (5 GHz).

Fig. 12. IMD Test at 2.5 MHz with 1 f = 20 MHz. Measurements (x)
versus model (continuous line). Load impedance terminations as in Fig. 9.

The extracted GaN HEMT model has been experimentally
validated under CW operation at 2.5 GHz and 5 GHz in a 50-�
environment. Gate and drain current loci versus voltages are
compared to the measurements in Fig. 9 (2.5 GHz) and Fig. 10
(5 GHz) at different available input power levels, whereas
gain and power-added efficiency are shown in Fig. 11. An
intermodulation distortion validation test has been eventually
carried out by applying two tones at the gate DUT input with
f0 = 2.5 GHz central frequency and 1 f = 20 MHz tone
spacing. The fundamental tone and third-order intermodulation
product versus the available input power are shown in Fig. 12.
The accurate predictions of measured results validate the
proposed modeling approach.
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VI. CONCLUSION

This article proposes a measurement-based method for the
global extraction of nonlinear transistor models. A new nonlin-
ear sampling function (NFS) operator, which links waveforms
of electrical variables to parent algebraic voltage functions,
has been introduced. The operator allows a robust extraction
of conduction current I/V characteristics and charge Q/V

functions from the current spectra measured under large-signal
two-tone two-port quasi-periodic excitation. The procedure is
accomplished by solving an overdetermined global system
of linear equations with respect to the unknown spectral
components of the charge waveforms. The proposed method
is especially suitable for automatic model generation.
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