
Automatic Extraction of Multi-Objective Aware Pipeline
Parallelism Using Genetic Algorithms

Daniel Cordes, Michael Engel,
Peter Marwedel

TU Dortmund University
Dortmund, Germany

firstname.lastname@tu-dortmund.de

Olaf Neugebauer
Informatik Centrum Dortmund e.V.

Dortmund, Germany
neugebauer@icd.de

ABSTRACT

The development of automatic parallelization techniques has
been fascinating researchers for decades. This has resulted
in a significant amount of tools, which should relieve the de-
signer from the burden of manually parallelizing an applica-
tion. However, most of these tools only focus on minimizing
execution time which drastically reduces their applicability
to embedded devices. It is essential to find good trade-offs
between different objectives like, e.g., execution time, energy
consumption, or communication overhead, if applications
should be parallelized for embedded multiprocessor system-
on-chip (MPSoC) devices. Another important aspect which
has to be taken into account is the streaming-based structure
found in many embedded applications such as multimedia
and network services. The best way to parallelize these ap-
plications is to extract pipeline parallelism. Therefore, this
paper presents the first multi-objective aware approach ex-
ploiting pipeline parallelism automatically to make it most
suitable for resource-restricted embedded devices. We have
compared the new pipeline parallelization approach to an
existing task-level extraction technique. The evaluation has
shown that the new approach extracts very efficient multi-
objective aware parallelism. In addition, the two approaches
have been combined and it could be shown that both ap-
proaches perfectly complement each other.

Categories and Subject Descriptors

D3.4 [Programming Languages]: Processors—Compil-
ers; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—Parallel Programming

General Terms

Algorithms, Design, Languages, Performance

Keywords

Automatic Parallelization, Embedded Software, Genetic Al-
gorithms, Multi-Objective, Pipeline Parallelism, Energy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$10.00.

1. INTRODUCTION
As a result of continuously increasing demands imposed

on modern embedded systems, today the market share of
multiprocessor system-on-chip (MPSoC) devices is growing
at a tremendous rate in different application areas. Higher
frequencies of single processing units are no longer achiev-
able due to physical limitations. By using multiple cores
in one MPSoC system it is possible to increase the perfor-
mance of the platform or to execute the same work with
reduced CPU frequencies, compared to a single-core plat-
form. Unfortunately, these benefits do not come for free.
Nowadays, most embedded applications are written in se-
quential ANSI-C code and have to be partitioned manually
into concurrently executed tasks to take advantage of the ad-
ditional processing units of an MPSoC. Since manual paral-
lelization tends to be very error-prone and time-consuming,
many (semi-) automatic parallelization tools have been in-
vented in the last decades, but most of them are not well
applicable to resource-restricted embedded systems.

This is not surprising, since most of these tools were de-
veloped to extract parallelism for desktop or even high-
performance architectures. For these systems, the minimiza-
tion of the execution time is very often the only objective,
since a huge amount of computational power and – seen from
an embedded systems perspective – an almost inexhaustible
amount of energy are available. The situation changes if one
is looking at embedded devices. Most of them have, e.g.,
only a very limited amount of computational power, small
memories, and are obtaining their energy from a small bat-
tery. Thus, multiple objectives have to be considered at the
same time during parallelization for resource-restricted sys-
tems. For example, it might be a good idea to reduce the
amount of extracted parallelism if a given timing criterion is
still met, instead of extracting as much parallelism as pos-
sible like done by most existing parallelization tools. If less
parallelism is extracted, some of the cores can be switched
into idle mode and a platform with less cores can be used
which saves a significant amount of energy.

In addition to the fact that software for embedded de-
vices should be parallelized using multi-objective aware tech-
niques, special characteristics of embedded software should
also be taken into account. By analyzing these applications
it is noticeable that many of them have a streaming-based
structure. Examples include applications in the domain of
network services, voice- and image-processing as well as mul-
timedia tasks like video decoding. To efficiently parallelize
these applications, different pipeline stages should be ex-
tracted from a (nested) loop body, which execute different

73

iterations of these stages in an interleaved way. Unfortu-
nately, simple loop-level parallelism which is just executing
different iterations of a loop in parallel can often not be
applied, due to frequently occurring complex dependencies
in embedded software. Thus, parallelization tools tailored
towards special requirements of embedded devices should
be able to extract so-called pipeline parallelism to gener-
ate efficient code for MPSoCs. Up to now, all previously
published pipeline parallelization approaches are only opti-
mizing a single-objective which limits their applicability to
embedded devices.

Therefore, to the best of our knowledge, this paper presents
the first multi-objective aware parallelization approach which
is able to extract pipeline parallelism from sequential em-
bedded applications. The new approach is based on ge-
netic algorithms and has been compared against the previ-
ously published multi-objective aware task-level paralleliza-
tion approach presented in [7]. The evaluation has shown
that the new approach extracts very efficient parallelism
for embedded real-world applications. In addition, the two
approaches have been combined into one framework and it
could be shown that both perfectly complement each other.

The main contributions of this paper are as follows:

1. To the best of our knowledge, this is the first automatic
multi-objective aware parallelization approach which
uses genetic algorithms to extract pipeline parallelism
from sequential applications.

2. In contrast to high-performance computing, this frame-
work focuses on requirements of constraint-driven em-
bedded devices.

3. We use high-level models to evaluate different objec-
tives without re-simulating the application, which dras-
tically decreases the optimization time.

4. We combine this new approach with an existing task-
level parallelism extraction technique and show how
well both approaches complement each other to extract
very efficient parallelism from embedded applications.

The rest of this paper is organized as follows: Section 2
gives a survey of related work, followed by a motivating ex-
ample in Section 3. Afterwards, Section 4 gives a short
explanation of the program dependence graph which is em-
ployed as intermediate representation. Section 5 then de-
scribes the multi-objective aware approach which is able
to extract pipeline parallelism. The integration of this ap-
proach into an existing parallelization framework is described
in Section 6, before the effectiveness and efficiency of the
approach are evaluated in Section 7. Finally, Section 8 sum-
marizes this paper and gives directions for future work.

2. RELATED WORK
In the last decades, many semi- and fully automatic tech-

niques have been published that try to simplify the task of
parallelizing a given sequential embedded application. While
earlier publications on instruction-level parallelism (see, e.g.,
[29] and [13]) were targeting VLIW processors, recent multi-
core architectures rely on the extraction of more coarse-
grained software-based parallelism. The latter one can be
grouped into at least the three categories of task-level-, loop-
level- and pipeline parallelism which are discussed in the fol-
lowing paragraphs.

A representative work of the first category, namely task-
level parallelism, was presented by Hall et al. [11]. The au-
thors present a technique which automatically extracts task-
level parallelism as part of the SUIF Parallelizing and Op-
timizing Compiler framework [12]. Their approach is based
on an interprocedural analysis and is not limited to function
boundaries. Ceng et al. developed a semi-automatic paral-
lelization assistant [3]. The application code is transformed
into a weighted statement control data flow graph which is
subsequently processed by a heuristical clustering algorithm,
generating tasks after several iterations. The approach pro-
posed by Ceng requires a user feedback loop to steer the
granularity of the parallelized program.

More recent work on automatic extraction of task-level
parallelism was presented in our previous publications [8]
and [7] describing two techniques based on Integer Linear
Programming (ILP) and genetic algorithms. While the ILP-
based approach in [8] is only able to optimize the execution
time, the second work in [7] is able to extract task-level par-
allelism in a multi-objective aware manner. However, the
potential of parallelizing loops with task-level parallelism is
very limited, especially of those with loop-carried depen-
dencies. Therefore, the approach presented in this paper
extracts pipeline parallelism to provide a remedy for this
restriction.

Other frameworks which extract task-level parallelism were
presented by, e.g., Verdoolaege et al. [26], Nikolov et al. [17],
Sarkar [22], and Ottoni [18].

Representative publications of the second category, fine-
grained loop-level parallelism, were developed by Franke et
al. [9] and Chandra et al. [4]. Franke describes an approach
which automatically extracts loop-level parallelism from C
applications for DSP architectures with multiple address
spaces. This approach also applies program code recovery
techniques which, e.g., replace pointer arithmetic with ar-
ray accesses to enable more precise data analysis. Chandra
parallelizes loops of sequential applications for CC-NUMA
(cache-coherent non-uniform memory access) architectures.

Another popular technique to extract fine-grained data-
level parallelism from sequential applications is the use of
polytope models. Here, loops are transformed into poly-
topes, which describe the iteration space and dependencies
of nested loops by linear inequalities spanning a geometric
object in an n-dimensional space. Those approaches have
the drawback that they can only analyze affine loops so that
already existing applications can, in general, not be paral-
lelized without manually adapting the source code. Papers
by Lengauer [15] and Bondhugula et al. [2] are representative
publications in this area.

The last mentioned category, pipeline parallelism, is most
relevant for this work, since the presented approach of this
paper aims at the extraction of this kind of parallelism. Ra-
man et al. [20], Tournavitis et al. [24], [25], and our pre-
vious work in [6] presented different approaches to achieve
this. They are able to automatically split loops into different
pipeline stages and further increase the application’s per-
formance by splitting pipeline stages into additional tasks.
While our approach in [6] uses a mathematical problem de-
scription based on Integer Linear Programming, Raman and
Tournavitis lack detailed cost models and only use heuristic
clustering approaches. However, in contrast to the work of
this publication, all those approaches aim at the minimiza-
tion of the execution time as the only optimization objective.

74

t0

t2

t4

t6

t8

t10

 for (i = 0; i < NUMAV; ++i) {

 float sample_real[SLICE];

 float sample_imag[SLICE];

 int index = i * DELTA;

 for (int j = 0; j < SLICE; ++j) {

 sample_real[j] =

 input_signal[index + j] * hamming[j];

 sample_imag[j] = zero;

 }

 fft(sample_real, sample_imag);

 for (int j = 0; j < SLICE; ++j) {

 mag[j] = mag[j] + (((sample_real[j] *

 sample_real[j]) + (sample_imag[j] *

 sample_imag[j])) / SLICE_2);

 }

 }

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

T1

...

time

1

2

3

(a) Sequential code

 for (i = 0; i < NUMAV; ++i) {

 float sample_real[SLICE];

 float sample_imag[SLICE];

 int index = i * DELTA;

 for (int j = 0; j < SLICE; ++j) {

 sample_real[j] =

 input_signal[index + j] * hamming[j];

 sample_imag[j] = zero;

 }

 fft(sample_real, sample_imag);

 for (int j = 0; j < SLICE; ++j) {

 mag[j] = mag[j] + (((sample_real[j] *

 sample_real[j]) + (sample_imag[j] *

 sample_imag[j])) / SLICE_2);

 }

 }

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

for (int j = 0; j < SLICE; ++j) {

mag[j] = mag[j] + (((sample_real[j] *

sample_real[j]) + (sample_imag[j] *

sample_imag[j])) / SLICE_2);

}
T3

T1 T2 T3

...

time

fft(sample_real, sample_imag); T2

int index = i * DELTA;

for (iinntt j = 0; j < SLICE; ++j) {

sample_real[j] =

input_signal[index + j] * hamming[j];

sample_imag[j] = zero;

} T1

4

2

1

5

6

3

2

7

8

4

3

9

1

2

1

3

10

5

4

11

t0

t2

t4

t6

t8

t10

(b) Horizontal loop split

t0

t2

t4

t6

t8

t10

 for (i = 0; i < NUMAV; ++i) {

 float sample_real[SLICE];

 float sample_imag[SLICE];

 int index = i * DELTA;

 for (int j = 0; j < SLICE; ++j) {

 sample_real[j] =

 input_signal[index + j] * hamming[j];

 sample_imag[j] = zero;

 }

 fft(sample_real, sample_imag);

 for (int j = 0; j < SLICE; ++j) {

 mag[j] = mag[j] + (((sample_real[j] *

 sample_real[j]) + (sample_imag[j] *

 sample_imag[j])) / SLICE_2);

 }

 }

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

for (int j = 0; j < SLICE; ++j) {

mag[j] = mag[j] + (((sample_real[j] *

sample_real[j]) + (sample_imag[j] *

sample_imag[j])) / SLICE_2);

}
T2

*

j

l

n

ag

e

*

n

g

e

int index = i *

for (int j = 0; j

sample_rea

input_sign

sample_ima

}

fft(sample_re

T1,1

a

*

[

a

g

a

DELTA;

< SLICE; ++j) {

j] =

al[index + j] *

g[j] = zero;

al, sample_im

j

a

g

a

T1,2

h

a

h

a

hamming[j];

ag);

h

a

T1,3

T1,1 T1,2 T1,3 T2

...

4 5 6

1

2

3

1 2 3

7 8 9

4

5

6

time

7

8
10 11 12

(c) Horizontal and vertical loop split

Figure 1: Pipelining-based Loop Level Parallelization - Motivating Example

Additional approaches in this area were presented by Liu
et al. [16] which eliminate loop-carried dependencies by re-
timing the execution of statements in a loop. They are mov-
ing executions of statements to earlier iterations of the loop.
Thus, dependencies may change which creates the opportu-
nity to parallelize different iterations of the loops.

Gordon et al. [10] present a compiler framework which
combines the extraction of task, data, and pipeline paral-
lelism for applications written in the programming language
StreamIt [23]. The designer has to extract tasks manually
by defining independent actors connected by explicit data
channels. The algorithms described in [10] search for paral-
lelism in the given task structure.

All aforementioned approaches, with the exception of our
previous publication in [7], which extracts a different type
of parallelism, have in common that the minimization of
the execution time is the only considered objective. Thus,
their applicability to resource-restricted embedded devices
is very limited. However, some more recent publications try
to optimize the energy consumption of parallelized applica-
tions. Qiu et al. [19] propose an energy-aware loop paral-
lelization method. This method optimizes performance and
energy consumption while parallelizing an application. The
approach follows a two-phase strategy. First, it parallelizes
loops to optimize the performance of the application. Af-
terwards, it tries to decrease the energy consumption of the
system based on the previously parallelized application. Due
to the decoupled phases, this might lead to sub-optimal re-
sults. Wang et al. [27] also implement a two-phase strategy
to parallelize streaming applications. Cho et al. [5] present
theoretical formulas which describe the interplay of program
performance and energy consumption of a parallelized ap-
plication.

Thus, to the best of our knowledge, the work presented
in this paper is the first one extracting pipeline parallelism,
which is very efficient for many embedded applications, in a
multi-objective aware manner.

3. MOTIVATING EXAMPLE
The extraction of coarse-grained task-level parallelism is

a very efficient technique to parallelize large independent
blocks of an application such as function calls which can be
executed concurrently. However, those approaches lack the
possibility to extract parallelism from loops, especially from
those with loop-carried dependencies. Thus, the new ap-

proach presented in this paper extracts pipeline parallelism
in a multi-objective aware manner.

Before the extraction algorithm is described, a small moti-
vating example should demonstrate the potential of pipeline
parallelism for an embedded real-world application. The
code snippet depicted in Figure 1(a-c) represents the main
computation loop of the spectral benchmark [14]. On the
left-hand side of each figure, the application’s source code
and the way how the statements are partitioned into concur-
rently executed tasks are shown. The right-hand side shows
the time at which the iterations of the tasks are executed.

Simple loop-level parallelism which is just executing dif-
ferent iterations of the whole outer loop in parallel cannot be
applied here, due to a loop-carried dependency of the second
inner loop starting in line 14 of Figure 1(a-c). There, the
content of the mag-array (mag[j]) generated in the previous
iteration of the outer loop is consumed which serializes the
execution of loop iterations. One way to provide a remedy
is the extraction of pipeline parallelism which splits the loop
horizontally and vertically into concurrently executed tasks.
While horizontal splits distribute the statements of the loop
body into disjunctive tasks which are executed in a pipelined
manner, vertical splits further partition the different loop it-
erations of the created tasks into additional sub-tasks.

An example where horizontal splits are applied to the
spectral application is depicted in Figure 1(b). There, the
loop body of the outer loop is divided into three tasks T1,
T2, and T3. The benefit of such a parallelization can be seen
on the right-hand side of Figure 1(b). As soon as the first it-
eration of task T1 has completed its work, the required data
is sent to T2. Now, T1’s second and third iteration can be
executed in parallel to the first iteration of task T2. After-
wards, T2 sends its data to T3, so that all three tasks are
executing their work in a pipelined manner.

As can be seen, this example is not well balanced, since
T3 has to wait for data of task T2 after each iteration. To
circumvent this problem, different loop iterations of the cre-
ated tasks can be executed in parallel, generated by so-called
vertical splits. The extracted parallelism in Figure 1(c) com-
bines horizontal and vertical splits and is much more efficient
(at least regarding execution time) than the solution which
is only generating pipelined tasks, shown in Figure 1(b).
Tasks T1 and T2 of Figure 1(b) are joined in this solution,
but this new task is now vertically divided into three sub-
tasks. These tasks are now executing the first, second and
third loop iteration of the statements assigned to this task

75

Exit

 Edge Info:

 Edge type: Read-after-Write

 Communication cost: 64

 Communicated data: [i]

 Iteration count: 16

 Interleaving level: 1
Node Info:

Iteration count: 16

Execution cost: 200

Reference to Statement

i += 1

Entry

sum += a + b

i < 100

a = foo_a(i) b = foo_b(a)

i sum

a b

a

i

sum
i

i

 while (i < 100) {

 a = foo_a(i);

 b = foo_b(a);

 sum += a + b;

 i++;

 }

1.

3.

5.

Figure 2: Program Dependence Graph

in parallel. As soon as all tasks have communicated their
data to the consuming task T2, the iterations four, five and
six are executed in parallel to the first three iterations of
task T2 and so on. By combining both kinds of splits, the
work-load is optimally balanced.

The extraction of this kind of parallelism has already been
studied before, e.g., in [6] and [20]. However, in contrast to
these earlier approaches, the one presented in this paper is
able to consider multiple objectives at the same time while
extracting pipeline parallelism. The solution in Figure 1(c)
is very efficient regarding execution time, since all tasks exe-
cute their work in parallel without any delays. Nevertheless,
four processing units are running at maximum speed, which
consumes a significant amount of energy. In addition, a large
amount of data has to be communicated concurrently which
causes high bus contention and may block the execution of
the tasks. Even if the solution shown in Figure 1(b) seems
to be less efficient, a platform with fewer cores can be used
to execute this solution which may save a huge amount of
energy. Thus, if timing criteria are still met, solutions with
less extracted parallelism may also be beneficial for other
objectives.

4. PROGRAM DEPENDENCE GRAPH
The multi-objective aware pipeline parallelization app-

roach presented in this paper employs an intermediate rep-
resentation called augmented program dependence graph
(PDG). The PDG is extracted for each loop of the appli-
cation and combines both, control- and data-dependencies
which makes it most suitable for our purposes. An example
is given in Figure 2. The graph contains one entry, one exit
and one node for each statement of the considered loop’s
body. Control flow dependencies are visualized by solid
directed edges while data dependencies are represented by
dashed arrows. Even for this small example many depen-
dencies exist which makes it nontrivial to detect pipeline
parallelism based on the graphical representation.

The presented parallelization approach of this paper uses
high-level models to evaluate the benefit of a parallelized
solution candidate of the considered loop in a very efficient
way (c.f. Section 5.2). These models are used to determine
the influence of a newly extracted task for all considered
objectives, because task creation overhead and communica-
tion costs may prohibit efficient parallel execution. There-
fore, necessary information like, e.g., estimated execution
costs and the iteration count of the attached statement are
annotated to the nodes of the graph (cf. Node Info in Fig-
ure 2). In addition, the edge type, communication costs, the
communicated data, the iteration count and the interleav-

ing level – describing the minimal amount of loop iterations
which can be executed before the data is consumed by the
target node – are annotated at the edges of the graph (cf.
Edge Info in Figure 2). By combining the graphical repre-
sentation with the additional cost information, all necessary
information is available to extract well-balanced, efficient
pipeline parallelism. The data is automatically extracted by
the framework described in Section 6.

5. MULTI-OBJECTIVE AWARE EXTRAC-

TION OF PIPELINE PARALLELISM
The parallelization algorithm presented in this paper is

able to extract pipeline parallelism from loops of sequen-
tial ANSI-C applications in a multi-objective aware man-
ner. Therefore, each loop(-nest) is transformed into an aug-
mented program dependence graph and processed by a ge-
netic algorithm presented in this section. As a result, a
front of Pareto-optimal solutions representing parallelized
versions of the considered loop is returned. The method to
combine the different solutions of all loops to a global result
is presented hereafter in Section 6.

5.1 Chromosome Representation
Genetic algorithms are favored for solving optimization

problems in a multi-objective aware manner. They start
with an initial population consisting of individuals represent-
ing possible solution candidates for the optimization prob-
lem. Each individual is characterized by a gene sequence
called chromosome which describes the configuration of the
optimization values. In each optimization step, some promis-
ing individuals are chosen to be mutated or recombined with
other individuals to create a new population. This process is
then repeated until a pre-defined termination criterion, e.g.,
a maximum number of generated populations, is met.

The challenge of using genetic algorithms is to map the
optimization problem to genes of the individuals’ chromo-
somes in such a way that they can be efficiently evaluated
for different objectives. In the case of a genetic pipeline
parallelization approach, disjunct pipeline stages of a loop(-
nest) which are executed in an interleaved way, like shown in
the example of Section 3, should be extracted. This can be
achieved by horizontally splitting the loop’s body. To fur-
ther increase the application’s performance, the genetic al-
gorithm should also be able to vertically split these pipeline
stages so that different loop iterations of the stage can be
executed concurrently. Thus, both splits have to be part
of each individual’s chromosome, like depicted in Figure 3.
As can be seen, the structure of the chromosomes is divided
into two parts. The mapping of PDG nodes, representing
statements of the loop’s body, to tasks is shown on the left-
hand side. Here, each node is mapped to exactly one task
which represents one of the extracted pipeline stages due
to horizontal splits. On the right-hand side, an integer vari-
able declares how often each task, i.e., pipeline stage, is split
into sub-tasks which are executing different loop iterations
of the stage in parallel. In the example of Figure 3, the
statements represented by nodes N1 and N2 are mapped to
task (or pipeline stage) T1, while node N3 is mapped to task
T2. The first pipeline stage T1 is split S1 times, T2 is split S2

times, and so on. Each chromosome can be represented by
an array of integers. The size of this array is as large as the
number of statements contained in the loop’s body plus the

76

 T1 T1 T2 T3 ... T4 S1 S2 S3 S4 ... Sm

Node1..n Task1..m

Node-to-Task Mapping

(horizontal splits)

Task-Split Variables

(vertical splits)

Figure 3: Structure of Chromosomes

number of maximal pipeline stages to generate. Thus, each
chromosome can be decoded very efficiently which enables
the generation of a huge amount of individuals.

The impact of a chromosome’s configuration is visualized
in more detail in Figure 4. As can be seen in the top part of
the figure, nodes N1 and N2 are mapped to the first pipeline
stage (T1), N4 and N5 are mapped to stage T3, while N3 and
N6 are mapped to stages T2 and T4. Thus, T1 starts with
the execution of the first iteration of nodes N1 and N2. Af-
terwards, the generated data is sent to pipeline stages T2

and T3 so that the next iteration of T1 is executed concur-
rently to the first iteration of T2 and T3, analogously to the
example of Section 3. The dependencies between the differ-
ent extracted pipeline stages rely on the node to task (i.e.
node to pipeline stage) mapping. Thus, if one node is moved
from one task to another, e.g., by mutating an individual,
the dependencies between the stages may change which also
influences the execution order of the tasks. If, e.g., node N2

would be moved from T1 to T2, a new edge has to be added
between the stages of tasks T2 and T3 which has to be taken
into account while mutating and recombining individuals.
Thus, even small changes in the mutation steps may have
big influences for the evaluation of different objectives.

The genes of the vertical splits are shown in the bottom-
left part of Figure 4. Here, the pipeline stages T1 and T3

are split once, resulting in two sub-tasks for both pipeline
stages. Stages T2 and T4 are not split in this example so that
each iteration of these stages is executed sequentially. The
timing which belongs to the chromosome’s configuration is
visualized in the bottom-right corner of Figure 4. Due to
the split of stage T1, the first two iterations of this stage
are executed concurrently. As soon as the results are avail-
able, the data is communicated to T2 and both instances
of task T3. In the next time frame, iterations 3 and 4 are
executed in parallel to the first and second iterations of T2

and both sub-tasks of T3. After four time slots, all six tasks
are concurrently executing the statements assigned to their
pipeline stage. Depending on task creation and communi-
cation costs, this configuration of the genes’ values might
represent a good solution candidate for the given example
regarding executing time. Nevertheless, six tasks are exe-
cuted in parallel so that many processing units have to ex-
ecute their work concurrently which consumes significantly
more energy if voltage scaling is not applied. Thus, other
allocations of the chromosome’s decision values might lead
to solutions which reduce other limited resources as well.

5.2 Evaluation of Objectives
Since the quality of the final Pareto-optimal solutions re-

turned by a genetic algorithm primarily depends on the pop-
ulation sizes used and the number of generated populations,
the configuration of an individual’s chromosome must be
evaluated very efficiently. Thus, simulating each solution
candidate which is generated by the genetic algorithm on the
target platform is not an option since it would be too time

 T1

 T3

T2

 T4

N3

N6

N2

N1

N4

N5

Gene

Representation
Task Graph

T1

T1

T2

T3

T3

T4

N2

N3

N4

N5

N6

N1

N
o

d
e

-t
o

-T
a

sk
 M

a
p

p
in

g

(h
o

ri
zo

n
ta

l
sp

li
ts

)

T
a

sk
-S

p
li

t
V

a
ri

a
b

le
s

(v
e

rt
ic

a
l

sp
li

ts
)

1

0

1

0

T2

T3

T4

T1

t0

t2

t4

t6

t8

...time

1 task-split

of task 1

(= 2 parallel

sub-tasks)

T3,2

2

4

6

T3,1

1

3

5

T2

1

2

3

4

5

6

T1,2

2

4

6

8

T1,1

1

3

5

7

T4

1

2

3

4

T

Evaluation

0 task-splits

of task 4

(all iterations

sequential)

Figure 4: Impact of Genes’ Configuration

consuming. Instead, the employed genetic parallelization al-
gorithm uses high-level models to evaluate the different ob-
jectives. Here, we adapted the high-level models presented
in [7] since these models can be evaluated very efficiently.
In addition, the paper has also shown that the results of
the objective values generated by the models are compa-
rable to the ones extracted by the MPARM simulator [1],
which is also used as target platform in this paper. The cur-
rent implementation of our framework provides models for
the objectives execution time, energy consumption, and the
amount of communicated data. These models are described
in the following.

Since different iterations of the same task may or may
not depend on each other, the loop iterations are virtually
unrolled for the calculation within these models. Like de-
picted in the right part of Figure 4, two circumstances can
create dependencies between different tasks and their iter-
ations. First, one iteration of task Ti depends on an itera-
tion of task Tk, if data- or control-dependencies between two
statements with the matching interleaving level of these task
exist, like shown in the top right part of Figure 4. Second,
different iterations of a task Ti may depend on each other
controlled by the number of splits (see bottom-right part of
Figure 4). Since task T1 is split into two sub-tasks, iteration
one and two of Task T1 can be executed concurrently, while
the third and fourth iteration depend on iteration one and
two, respectively. If task T1 would not be split, all iterations
of this task would depend on each other. Thus, the variable
T

j
i denotes the jth iteration of task i in the following.
Constants like, e.g., a constant task creation overhead or a

communication multiplier can be adjusted in our framework

77

to support different target architectures. In addition, values
like execution time or the amount of communicated data
are extracted automatically by pre-processing tools of our
framework and are annotated to the augmented program
dependence graph of the loop to parallelize.

5.2.1 Objective 1: Execution time

To evaluate the objective value representing the execution
time of a parallelized loop, high-level models based on the
linear models of Sarkar [21] and our previous publication in
[7] are used. Both models were developed to evaluate task-
level parallelism so that we had to extend them to correctly
handle different loop iterations and their dependencies for
pipeline parallelism. The returned value of our proposed
model is equal to the cycles of the longest (or most criti-
cal) execution path of the loop to parallelize. The following
equations will describe the evaluation in a formal way.

The first component which is necessary to calculate the
overall execution time of the parallelized loop is the execu-
tion time of task Ti in iteration j. In our model, the exe-
cution time of a task Ti is uniformly dispersed over all loop
iterations of the task. Thus, the execution time ET (T j

i)
of task Ti in iteration j is equal to the sum of the execu-
tion times ETN(n) of the nodes n which are mapped to Ti,
divided by the number of loop iterations LI :

ET (T j
i) =

∑

n∈Nodes(Ti)

ETN(n)

LI

Based on the execution time of one iteration of a task, path
costs can be calculated which denote the time until the jth
iteration of a task Ti is executed, including all iterations
of its predecessors. The path costs PC(T j

i) of a task Ti

in its jth iteration are equal to the sum of Ti’s execution
costs of the iteration ET (T j

i) and the path costs of the most
expensive predecessor tasks T k

ℓ including the costs of the
communication CC(T k

ℓ , T
j
i) between T k

ℓ and T
j
i . The com-

munication costs can be adapted to different architectures
using a platform-dependent communication overhead. Due
to the recursive structure of this formula, the costs of all
indirect predecessors are also included:

PC(T j
i) = ET (T j

i) +

max{PC(T k
ℓ) + CC(T k

ℓ , T
j
i)|T

k
ℓ ∈ Pred(T j

i)}

The overall execution costs are composed of the platform-
dependent configurable task creation costs TCO, multiplied
by the number of created tasks NT plus the most expensive
path costs PC(TLI

i) of all tasks Ti in their last iterations
LI :

OverallET = TCO ∗NT +max{PC(TLI
i)|∀Ti ∈ Tasks}

The changes made to the original model presented in [7] are
mainly that the execution time of a task Ti is now dispersed
over its loop iterations j and that each iteration is consid-
ered on its own to make the models applicable for pipeline
parallelism. In addition, the task creation overhead is now
added once before the extracted tasks are executed.

5.2.2 Objective 2: Energy consumption

The objective value describing the energy consumption
consists of energy costs produced by task creation, communi-
cation overhead and the execution costs of statements which
are mapped to the tasks.

The incoming communication energy costs ICE(T j
i) for

task i in iteration j are equal to the sum of a constant incom-
ing communication energy overhead ICEO plus the number
of transferred bytes #Bytes(d) multiplied by a platform-
dependent communication energy factor ICM :

ICE(T j
i) =

∑

d∈InData(T
j

i
)

ICEO +#Bytes(d) ∗ ICM

The outgoing communication energy OCE(T j
i) is calculated

analogously to ICE(T j
i):

OCE(T j
i) =

∑

d∈OutData(T
j
i
)

OCEO +#Bytes(d) ∗ OCM

The energy E(T j
i) which is necessary to execute iteration j

of task i contains both, the incoming (ICE(T j
i)) and outgo-

ing (OCE(T j
i)) communication energy costs, increased by

the energy EN(n) which is necessary to execute the state-
ments mapped to task Ti. The energy consumption is also
dispersed in equal parts over all loop iterations of the task:

E(T j
i) = ICE(T j

i) +OCE(T j
i) +

∑

n∈Nodes(Ti)

EN(n)

LI

Finally, the overall energy consumption OverallEnergy in-
cludes a constant energy overhead for task creation TCE

multiplied with the number of created tasks, increased by
the energy which is consumed by all tasks E(T j

i) in each
iteration:

OverallEnergy = TCE ∗NT +
∑

i∈Tasks

∑

j∈{0..LI}

E(T j
i)

Here, the main difference to the original model from [7] is
that the energy consumption is modeled for each loop iter-
ation separately.

5.2.3 Objective 3: Communication Overhead

The evaluation of the communication overhead is the sim-
plest one and is identical to the original model presented
in [7]. Here, all communicated data is summed up and mul-
tiplied with a platform-dependent communication factor:

CommOverhead =
∑

d∈Comm

#Bytes(d) ∗ Costs

5.3 Mutation and Recombination
Genetic algorithms generate new solution candidates (i.e.

new individuals) by modifying values of the genes of existing
individuals. This is done by a combination of mutation and
recombination. In the first case, one gene of the chromo-
some is modified with a given probability. In our case, one
statement is moved from one task to another – in case of a
horizontal-cut change – or the number of splits of a newly
created task is modified. Thus, dependencies between dif-
ferent tasks or at least between different iterations of one
task may change in such a mutation step which has to be
considered for the evaluation of the solution candidates.

In the second case, the recombination of individuals, also
known as cross-over, cuts the chromosomes of two individu-
als at a random position to combine the left-hand side of the
first chromosome with the right-hand side of the other side
and vice versa. This operation simulates the combination of
profitable individuals to new solution candidates.

78

Simple Node

In

Out

... ...

...

In

Out

...

In

Out

In

Out

Hierarchical Node

Communication Node

 Node Info:

 Iteration count: 16

 Execution cost: 200

 Energy consumption: 0.16 nJ

 Reference to Statement

 Edge Info:

 Edge type: RAW

 Communication cost: 64

 Communicated data: a[i]

 Iteration count: 8

Figure 5: Hierarchical Task Graph

Both, mutation and recombination are processed until a
given number of populations are evaluated so that a front
of Pareto-optimal solutions of the parallelized loop is re-
turned.

6. FRAMEWORK INTEGRATION
The task-level parallelization approach presented in [7]

is the first framework that extracts parallelism in a multi-
objective aware manner. The framework is able to automat-
ically extract dependencies and additional information like,
e.g., estimated execution times of statements of the appli-
cation which are necessary to define our high-level models.
In addition, our new multi-objective aware pipeline paral-
lelization approach perfectly complements the approach pre-
sented in [7], since the older approach has only very limited
support to parallelize loops of embedded applications.

The approach presented in [7] employs an annotated hier-
archical task graph as intermediate representation like shown
in Figure 5. The hierarchical structure of the graph is based
on the hierarchical structure of the application’s source code.
Thus, e.g., function bodies, loops, or conditional statements
create new hierarchical levels which can be parallelized in
isolation. Unfortunately, the hierarchical task graph hides
loop-carried dependencies which makes it unsuitable for the
extraction of pipeline parallelism. The approach starts to
extract task-level parallelism in a bottom-up search strat-
egy which means that it starts to parallelize the inner-most
hierarchical node. Each node is processed by a genetic al-
gorithm which extracts a front of Pareto-optimal solutions
which are added as solution candidates for the parallelized
node. As soon as all nodes on the same level of the hierarchy
are processed, the algorithm moves upwards in the hierar-
chy knowing that a Pareto-front of solution candidates is
attached to each child node. At the next hierarchical level,
the algorithm has the possibility to extract new tasks and
to recombine this solution with parallel solutions which were
found deeper in the hierarchy.

This encapsulated parallelization technique is the key which
enables to integrate different parallelization approaches into
one framework. Each approach is executed to return solu-
tion candidates representing beneficial parallelized versions

of the statement represented by the node. The only require-
ment is that each solution can be evaluated for all consid-
ered objectives. Thus, a front of Pareto-optimal points from
different approaches can be combined to be used in the fol-
lowing parallelization steps upwards in the hierarchy of the
graph.

Here, we combined the multi-objective aware pipeline par-
allelization approach with the existing task-level technique.
While the task-level parallelization approach can be applied
to each hierarchical node of the graph, the pipeline paral-
lelization approach is limited to loops. Thus, as soon as
a node representing a loop is reached in the parallelization
process, the corresponding program dependence graph is ex-
tracted and the genetic pipeline parallelization approach is
executed. Afterwards, the results are added to the Pareto
front. Due to the encapsulated technique, it is also possible
to use only a subset of the parallelization approaches offered,
like, e.g., only the pipeline parallelization approach.

As soon as the top node of the hierarchical graph is reached,
the final front of Pareto-optimal solutions is returned to the
application designer, who can choose the solution which rep-
resents the best trade-off for the given application scenario.

7. EXPERIMENTAL RESULTS
To evaluate the efficiency of our multi-objective aware par-

allelization framework we present results achieved from the
UTDSP benchmark suite [14] containing representative real-
world embedded applications. In addition, we also evaluated
other meaningful embedded applications like, e.g., a JPEG
encoder. As target platform we used the cycle-accurate
MPARM simulator [1] which provides up to four single-core
ARM processors. The simulator is also equipped with a de-
tailed energy model called MEMSIM [28] which makes it
most suitable for our purposes.

Figure 6(a-d) shows detailed results for four of the consid-
ered benchmarks. As explained in Section 5.2, our current
framework is optimizing for the three objectives of speedup
(execution time), energy consumption of the system and the
communication overhead introduced by the extracted par-
allelism. These objectives are arranged on the x-, y- and
z-axes in three dimensional diagrams. All axes are relative
to the sequential solution which is located at the bottom-left
point of the diagrams with a speedup of 1×, 100% energy
consumption and zero communication overhead. For better
readability we projected the points of the 3D-diagrams to
the x-y-plane. Thus, the communication overhead of differ-
ent solutions can be compared by the height of the verti-
cal bars. Each diagram contains both, Pareto-optimal and
Pareto-dominated points of the final solutions generated by
our framework. Of course, only the Pareto-optimal ones
are returned to the application designer. To compare the
efficiency of the new multi-objective aware pipeline paral-
lelization approach presented in this paper with the previ-
ously published multi-objective aware task-level paralleliza-
tion technique contained in the framework presented in Sec-
tion 6, different shapes are used for both types. In addition,
the diagram also shows points which contain some parallel
sections produced by task-level and some sections produced
by pipeline parallelism. Thus, these points are produced
by a combination of both approaches and are labeled as a
MIXED solution.

By analyzing the results for the different benchmarks one
can see that the number of Pareto-optimal solutions re-

79

�� ���� ���� ���� ���� �� ����
���	

���	

���	

��	

���	

��

��

���

���

���

�
�
�
�
�
�
��
�
��
�
�
	

��
�
��
�	
��
�
��
�
�

� ��!� 	��	"����	#���	����$���

"
�
�
�%
�
	��
&�

'�������!	(� �$���
'�������!	#��)*+�,�$
'�������!	-./"'
(�����*0 ����$	(� �$���
(�����*0 ����$	#��)*+�,�$
(�����*0 ����$	-./"'

(a) spectral

�� ���� ���� ���� ���� �� ����

���	

���	

���	

���	

���	

��

��

��

��

���

���

�
�
�
�
�
��
�
��
�
�
	

��
�
��
�	
��
�
��
�
�

���� ��	��	!����	"���	����#���

!
�
�
�$
�
	��
%�

&������� 	'���#���
&������� 	"��()*�+�#
&������� 	,-.!&
'�����)/�����#	'���#���
'�����)/�����#	,-.!&

(b) edge detect

�� ���� ���� ���� ���� ����
�		
�

���
�

��	
�

���
�

��	
�

���

���

���

��

�	�

�
�
�
�
�
�
��
�
��
�
�

��
�
��
�

��
�
��
�
�

� ��!�
��
"����
#���
����$���

"
�
�
�%
�

��
&�

'�������!
(� �$���
'�������!
#��)*+�,�$
'�������!
-./"'
(�����*0 ����$
(� �$���
(�����*0 ����$
#��)*+�,�$
(�����*0 ����$
-./"'

(c) filterbank

�� ���� ���� ���� ���� ����
�		
�

���
�

��	
�

���
�

�	
�

��

���

��

���

�	�

�
�
�
�
�
�
��
�
��
�
�

��
�
��
�

��
�
��
�
�

� ��!�
��
"����
#���
����$���

"
�
�
�%
�

��
&�

'�������!
(� �$���
'�������!
)*+"'
(�����,- ����$
(� �$���
(�����,- ����$
)*+"'

(d) mult 10 10

Figure 6: Final parallel solutions returned by the parallelization framework

turned to the application designer ranges from 4 up to 25
solutions which show huge optimization potential for dif-
ferent objectives. The solution with the highest speedup
for, e.g., the filterbank benchmark (cf. Figure 6(c)) reduces
the execution time by a factor of nearly 2.7×. Even if this
solution drastically reduces the execution time of the ap-
plication, it requires the highest communication overhead.
In addition, all cores of the platform are executing threads
in parallel which increases the energy consumption of the
system to around 320% compared to the sequential solu-
tion. If the application designer knows that, e.g., a speedup
of 1.9× is sufficient to meet his timing requirements he can
choose a solution with less extracted parallelism. Thus, some
of the cores can be switched into idle mode for some time
and a platform with less processing units can be chosen.
This reduces the energy consumption to less than 270% for
this solution of the filterbank benchmark which is very ef-
ficient compared to 320% energy consumption for the solu-
tion with the highest speedup. In addition, the amount of
inserted communication is also reduced. The solution with
a speedup of 1.7× even reduces the energy consumption to
less than 200% which highlights the optimization potential
of our multi-objective aware approach. These observations
can be made for the other evaluated benchmarks as well.

As already observed in [6], pipeline parallelism is able

to generate solutions with a higher speedup compared to
solutions which are extracted by task-level parallelism for
many embedded applications. When looking at the results
of our multi-objective aware framework, this observation is
also confirmed, here. The solutions of Figure 6(a-d), which
are extracting the highest speedup for the considered appli-
cations, are always generated by pure pipeline parallelism.
However, these solutions also consume the highest amount
of energy. This trade-off can be seen best in Figure 6(a)
which shows the solutions of the spectral benchmark. This
application was also used as the motiving example in Sec-
tion 3. Here, 3 of 4 solutions with a speedup of less than
1.2x are generated by the already published coarse-grained
task-level extraction approach. Even if the speedup is not
as high as the speedup of the other approaches, only a small
increase in energy consumption was observed. Nevertheless,
a high amount of communication has to be inserted for this
kind of parallelism depending on the structure of the appli-
cation. 14 solutions with speedups between 1.2× and 1.7×
are created by a combination of task-level and pipeline par-
allelism. Thus, the energy consumption is slightly increased
but is at least lower than for solutions generated by pure
pipeline parallelism. Finally, the solution candidates with
more than 1.7× speedup are extracted by the pipeline par-
allelization approach presented in this paper. As can be

80

Benchmark Time1 #N #Pop #Ind #Mut #Cross #S(TL,PL,MI)

adpcm encoder 01:04 36 1,520 151,049 28,154 98,766 5(2,2,1)
boundary value 01:11 12 644 83,331 15,804 54,032 4(0,3,1)
compress 14:31 336 10,444 821,854 161,617 608,250 5(0,4,1)
edge detect 04:48 105 2,872 196,720 38,125 137,788 9(0,8,1)
filterbank 02:39 7 412 51,035 15,005 136,485 8(1,6,1)
fir 256 00:39 13 388 29,607 5,863 22,317 4(0,3,1)
h264 ldecode block 01:40 115 3,520 251,166 49,943 179,088 6(5,0,1)
h264 ldecode macroblock 02:30 51 2,168 238,007 45,870 170,351 5(2,1,2)
iir 4 14:35 13 852 103,294 21,298 92,830 4(0,3,1)
jpeg2000 04:49 62 2,868 313,047 62,630 231,390 45(0,27,18)
latnrm 32 01:34 17 636 53,462 11,931 46,358 4(0,3,1)
mult 10 10 02:45 36 1,060 70,442 14,984 60,399 4(0,3,1)
spectral 03:04 51 2,260 211,023 41,667 160,477 25(3,7,15)

Table 1: Evaluation of Genetic Parallelization Algorithm

seen in the figure, other Pareto-dominated solutions with
task-level parallelism, pipeline parallelism and also a mix-
ture of both techniques were generated but not returned to
the application designer. Other benchmarks like, e.g., the
edge detect benchmark in Figure 6(b) or the matrix multi-
plication application (mult 10 10) in Figure 6(d) profit even
more from the new pipeline parallelization approach.

7.1 Genetic Algorithm Statistics
Due to limited space it is not possible to give results for all

evaluated benchmarks in a graphical representation. There-
fore, we sum up the results and statistics of the genetic al-
gorithm of the other evaluated benchmarks in Table 1. The
columns contain information about the time in minutes1

which was necessary to parallelize the applications with the
combination of the task-level and pipeline parallelization ap-
proach (Time), the number of processed nodes (#N), the
number of generated populations (#Pop), the overall num-
ber of generated and evaluated individuals (#Ind), the num-
ber of mutated (#Mut) and recombined (#Cross) individu-
als and the number of offered Pareto-optimal solutions (#S)
returned to the designer. The numbers shown in brackets
in the last column show how many Pareto-optimal solutions
were generated by the task-level- (TL) and pipeline par-
allelization (PL) approach as well as the number of solu-
tions generated by combining both approaches (MI). The
number of individuals and populations used to parallelize
a node is determined dynamically, based on the number of
child nodes. Thus, nodes with a smaller search space are
processed much faster. The numbers of populations, in-
dividuals, mutations, etc., shown are summed up over all
parallelized nodes and may marginally differ between differ-
ent tool flow executions due to random decisions taken by
genetic algorithms.

As can be seen in the last column of Table 1, most Pareto-
optimal solutions are created by the new multi-objective
aware pipeline parallelization approach presented in this pa-
per. Nevertheless, some benchmarks also profit from the
previously published task-level parallelization approach and
also from the combination of both approaches. For example,
25 Pareto-optimal solutions are returned to the application
designer for the spectral benchmark, which was used in the
motivating example in Section 3. Three of these 25 so-
lutions were generated by the task-level approach, while 7
solutions are purely based on extracted pipeline parallelism.
Nevertheless, 15 solutions were generated by the combined

1Measured on a system with two AMD Opteron quad-cores
running at 2.4GHz

approach containing parallel sections with both, task-level
and pipeline parallelism. Thus, both approaches and also
their combination are adding meaningful solutions which op-
timize at least one dimension of the Pareto-space. There are
also benchmarks which profit either from the task-level par-
allelization approach, like, e.g., the block decoding of the
h264 decoder, or from the pipeline parallelization approach,
like, e.g., the latnrm benchmark. However, most bench-
marks have shown that they profit from both approaches
and their combination.

The table also presents some statistics of the genetic al-
gorithm and the time which was necessary to parallelize the
application. For the jpeg2000 application, for example, more
than 300,000 individuals were created by mutation and re-
combination of old solutions. The whole parallelization ap-
proach took less than 5 minutes which correlates to less than
a microsecond to mutate or recombine and also evaluate one
of the individuals. Otherwise it would not be possible to
generate a huge amount of solution candidates which would
drastically reduce the quality of the solutions generated by
the genetic algorithm.

7.2 Summary
To summarize, the following results could be confirmed by

the evaluation:

1. A huge optimization potential exists if multiple objec-
tives are considered at the same time in the paralleliza-
tion process.

2. The new multi-objective aware pipeline parallelization
approach presented in this paper extracts, in general,
the most efficient parallelism regarding speedup of exe-
cution time for the considered embedded applications.

3. Solutions generated by the task-level parallelization
approach are less efficient regarding speedup for many
embedded applications, but they use less energy at the
expense of more communication overhead.

4. The combination of task-level and pipeline parallelism
produces highly beneficial solutions which find a good
trade-off between the high speedup of pipeline paral-
lelism and less energy consumption of task-level paral-
lelism.

Thus, the results have shown that the multi-objective
aware extraction of pipeline parallelism highly improves the
quality of the solutions returned by the existing framework.
In addition, the combination with task-level parallelism also
extends the space of Pareto-optimal solutions.

81

8. CONCLUSIONS AND FUTURE WORK
To the best of our knowledge, this paper presents the first

pipeline parallelization approach which uses genetic algo-
rithms to divide loops of embedded applications horizon-
tally and vertically into concurrently executed tasks in a
multi-objective aware manner. In addition, we combined
this approach with an existing multi-objective aware task-
level parallelization technique to benefit from both types of
parallelism. The evaluation was performed using real-world
embedded applications and it could be shown that each ap-
proach and also their combination are able to add Pareto-
optimal solution candidates to the final results. Compared
to the state-of-the-art, our framework enables the possibil-
ity to select the parallel solution which perfectly matches to
a specific application scenario instead of just returning the
solution with the highest speedup on cost of other resources.

In the future, we would like to extend our framework and
the models used to be aware of static or dynamic voltage
frequency scaling to further optimize the energy consump-
tion of the embedded device. Even if this might lead to a
decrease of the application’s speedup, the trade-off can be
perfectly integrated into our framework. In addition, we
would also like to evaluate the influence of other objectives
(e.g., code size) and adapt the tool flow to be also aware of
heterogeneous architectures.

9. REFERENCES
[1] L. Benini, D. Bertozzi, A. Bogliolo, et al. MPARM:

Exploring the Multi-Processor SoC Design Space with
SystemC. Journal of VLSI Signal Processing Systems,
2005.

[2] U. Bondhugula, A. Hartono, J. Ramanujam, et al. A
practical automatic polyhedral parallelizer and locality
optimizer. In Proc. of PLDI, 2008.

[3] J. Ceng, J. Castrillon, W. Sheng, et al. MAPS: an
integrated framework for MPSoC application
parallelization. In Proc. of DAC, 2008.

[4] R. Chandra, D.-K. Chen, et al. Data distribution
support on distributed shared memory
multiprocessors. ACM SIGPLAN Notices, 1997.

[5] S. Cho and R. G. Melhem. On the Interplay of
Parallelization, Program Performance, and Energy
Consumption. IEEE Trans. Parallel Distrib. Syst.,
2010.

[6] D. Cordes, A. Heinig, P. Marwedel, et al. Automatic
Extraction of Pipeline Parallelism for Embedded
Software Using Linear Programming. In Proc. of
ICPADS, 2011.

[7] D. Cordes and P. Marwedel. Multi-Objective Aware
Extraction of Task-Level Parallelism Using Genetic
Algorithms. In Proc. of DATE, 2012.

[8] D. Cordes, P. Marwedel, and A. Mallik. Automatic
parallelization of embedded software using hierarchical
task graphs and integer linear programming. In Proc.
of CODES/ISSS. ACM, 2010.

[9] B. Franke and M. O’Boyle. Compiler parallelization of
C programs for multi-core DSPs with multiple address
spaces. In Proc. of CODES+ISSS. ACM, 2003.

[10] M. I. Gordon, W. Thies, and S. Amarasinghe.
Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In Proc. of
ASPLOS-XII. ACM, 2006.

[11] M. H. Hall, S. P. Amarasinghe, B. R. Murphy, et al.
Detecting coarse-grain parallelism using an
interprocedural parallelizing compiler. In Proc. of
Supercomputing, 1995.

[12] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, et al.
Maximizing Multiprocessor Performance with the
SUIF Compiler. IEEE Computer, 29(12), 1996.

[13] M. S. Lam and R. P. Wilson. Limits of Control Flow
on Parallelism. In ISCA, 1992.

[14] C. G. Lee. UTDSP Benchmark Suite.
http://www.eecg.toronto.edu/
˜corinna/DSP/infrastructure/UTDSP.html, April
2012.

[15] C. Lengauer. Loop Parallelization in the Polytope
Model. In CONCUR ’93, Lecture Notes in Computer
Science 715. Springer-Verlag, 1993.

[16] D. Liu, Z. Shao, M. Wang, et al. Optimal loop
parallelization for maximizing iteration-level
parallelism. In Proc. of CASES, 2009.

[17] H. Nikolov, M. Thompson, T. Stefanov, et al.
Daedalus: Toward composable multimedia MP-SoC
design. In Proc. of DAC, 2008.

[18] G. Ottoni, R. Rangan, A. Stoler, et al. Automatic
Thread Extraction with Decoupled Software
Pipelining. In Proc. of MICRO 38, 2005.

[19] M. Qiu, J.-W. Niu, L. T. Yang, et al. Energy-Aware
Loop Parallelism Maximization for Multi-core DSP
Architectures. In Proc. of GreenCom, 2010.

[20] E. Raman, G. Ottoni, A. Raman, et al. Parallel-stage
decoupled software pipelining. In Proc. of CGO.
ACM, 2008.

[21] V. Sarkar. Partitioning and Scheduling Parallel
Programs for Multiprocessors. MIT Press, 1989.

[22] V. Sarkar. Automatic partitioning of a program
dependence graph into parallel tasks. IBM Journal of
Research and Development, 1991.

[23] W. Thies, M. Karczmarek, and S. P. Amarasinghe.
StreamIt: A Language for Streaming Applications. In
Proc. of CC. Springer, 2002.

[24] G. Tournavitis and B. Franke. Semi-automatic
extraction and exploitation of hierarchical pipeline
parallelism using profiling information. In Proc. of
PACT. ACM, 2010.

[25] G. Tournavitis, Z. Wang, B. Franke, et al. Towards a
holistic approach to auto-parallelization: integrating
profile-driven parallelism detection and machine-
learning based mapping. In Proc. of PLDI, 2009.

[26] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: A
Tool for Improved Derivation of Process Networks.
EURASIP Journal on Embedded Systems, 2007.

[27] Y. Wang, H. Liu, D. Liu, et al. Overhead-aware
energy optimization for real-time streaming
applications on multiprocessor System-on-Chip. ACM
Trans. Des. Autom. Electron. Syst., 16, 2011.

[28] L. Wehmeyer and P. Marwedel. Fast, Efficient and
Predictable Memory Accesses. Springer-Verlag New
York, Inc., 2006.

[29] M. E. Wolf and M. S. Lam. A Loop Transformation
Theory and an Algorithm to Maximize Parallelism.
IEEE Trans. Parallel Distrib. Syst., 2(4), 1991.

82

