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ABSTRACT 

 
There is a need to automate terrain feature mapping so that to make the process more objective and less time 

consuming by using proper feature extraction techniques. The objective of this study was the use of object-oriented 

image analysis methods for the automatic extraction of physiographic regions and alluvial fan landform units. The 

study area was located in Nevada, USA. The data used included an ASTER L1 satellite image, the 1o
 Digital 

Elevation Model and the GTOPO30 Digital Elevation Model, available by USGS. At first, a multiresolution 

segmentation algorithm was applied for extracting image primitives. A class hierarchy was defined in order to 

classify these primitives into semantic image objects. A fuzzy classification then provided the first approximations 

of three physiographic feature types (basins, piedmont slopes and mountains). Further processing, by a segment 

fusion technique, resulted in the reclassification of these image semantics into the final physiographic feature units. 

For the extraction of alluvial fan units, a multiresolution segmentation technique was developed, delivering object 

primitives at several resolution levels. At the finest level, the physiographic feature types were extracted from the 

DEM. At a medium level, a knowledge base including definitions of Alluvial Materials, Sediments, Basin Materials 

and Rock-Mountain Materials was implemented. This level was classified through several iterations, using spectral 

information for the first iteration of the classification procedure and heuristics concerning contextual information 

for the second iteration. Finally, at the coarse level, a projection was made, classifying the data into two classes: 

Alluvial Fans and Other Objects. The results were compared to manually produced maps by an expert 

geomorphologist and to computer-produced maps and they were found satisfactory. 

 

 

INTRODUCTION 
 

In recent years, research has progressed in computer vision methods applied to remotely sensed images such as 

segmentation, object oriented and knowledge-based methods for classification of high-resolution imagery (Argialas and 

Harlow 1990, Kanellopoulos et al. 1997). In Computer Vision, image analysis is considered in three levels: low, 

medium and high (Argialas and Harlow 1990). Such approaches were implemented usually in separate software 

environments since low and medium level algorithms are procedural in nature, while high level is inferential and thus 

for the first one needs procedural languages while for the second an expert system environment is more appropriate. 

Only very recently however, a new methodology called Object Oriented Image Analysis was introduced, integrating 

low-level, knowledge-free segmentation with high-level, knowledge-based fuzzy classification methods. This new 

methodology was implemented through a commercial software, eCognition, which was made available with an object-

oriented environment, for the classification of satellite imagery (Baatz and Shape 2000, Benz et al. 2004). 

In the past, research has been done in building knowledge bases for the interpretation of landforms and in methods 

for automatic landform extraction from Digital Elevation Models and satellite images (Argialas and Miliaresis 1997, 

Miliaresis and Argialas 1999). It is not possible to separate the mountain ranges from the basins and piedmonts by 

thresholding the Digital Elevation Model (DEM) (Miliaresis and Argialas 1999). Therefore a segmentation procedure 

was required to define the mountain ranges and basins from a DEM. Miliaresis and Argialas (1999) developed 
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segmentation methods for geomorphological feature extraction from the GTOPO30 digital elevation model (DEM). At 

first, the gradient and the orientation were computed from the DEM, then, runoff simulation was used for determining 

the drainage network and the divides (mountain ridges). The points of the drainage network and the divides were used 

as seed points for region growing segmentation of the DEM into mountain ranges and basins, based on the slope 

gradient values. The area between these two types of regions was defined as piedmont slope. Also, work has been done 

for automatic extraction of Alluvial Fans from DEM and satellite images (Miliaresis and Argialas 2000). The study area 

was part of the Basin and Range Province and in particular the Death Valley region in Nevada, USA.  

The objective of this paper was the use of object oriented image analysis techniques for the extraction of 

geomorphological terrain features from digital elevation models and a comparison to results achieved with previous 

methods. This research included the design of an object-oriented representation and a fuzzy knowledge base as part of a 

high level image processing step for the identification and delineation of geomorphologic features. Also, a main 

objective of this research was the investigation and implementation of object oriented image analysis algorithms and 

fuzzy logic techniques for the recognition and classification of alluvial fans based on their spectral, topographic, 

topologic, geometric and contextual knowledge from digital elevation models and multispectral satellite data. Alluvial 

fans are best developed in arid areas of high mountain ranges such as those of the Southwest United States where 

approximately 30 percent of the land are covered by alluvial fans. In arid regions, alluvial fans are ground water 

indicators and their soils provide good foundation conditions for highways and buildings (Way, 1978). Therefore, 

alluvial fan mapping is of significance to the remote sensing, geologic and civil engineering community. 

 

 

DATA USED – STUDY AREA 
 

The study area is part of the Great Basin section of the Basin and Range Physiographic Province and the Death 

Valley region in Nevada, USA. This region is characterized by large mountain ranges intervened by tectonic alluvial 

basins (Fenneman 1931, Peterson 1981). The data used was the GTOPO30 Digital Elevation Model available through 

the USGS with spacing of 30 arc seconds (Figure 1). 

Data used also included the 1-degree Digital Elevation Model with 75m grid size, and an ASTER Level 1 satellite 

image with 14 channels available through USGS (EOS-DIS) (http://edcimswww.cr.usgs.gov/pub/imswelcome/) both 

for the Death Valley region, USA. The ASTER L1 dataset included 14 channels: channels 1-3, 15m resolution in the 

visible and near infrared region of the spectrum, channels 4-9, 30m resolution in the short-wave infrared region and 

channels 10-14, 90m resolution in the thermal infrared region. 

On the ASTER L1 image the following land cover classes have been observed: alluvial fans (small and large), 

rocky mountains with absence of vegetation, bahadas, basin floor salt deposits, basin floor sediments and the road 

network (Figure 2). 

 

  
 

Figure 1. Left: The Digital Elevation Model GTOPO30 of the study area. Right: The slope gradient image computed 

from the DEM. 
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Figure 2.  Left: The 1-degree DEM provided by USGS for Death Valley. Right: The ASTER L1 Dataset of Death 

Valley in RGB composite 

 

 

METHODOLOGY 
 

Segmentation of the GTOPO30 DEM Data 
The segmentation procedure had the objective, to provide the primitive objects, in order to apply higher level 

knowledge in a later step and classify the primitives into semantic objects. Having a-priori knowledge of the heuristics 

to be used in later classification stages, it was of high importance to produce initial objects that would be appropriate for 

later steps. The later stages of classification were to use slope information in order to produce a first result and then to 

refine it. Thus, large size primitive objects, would not be the best choice in this case, in order to initialize classification. 

A large scale parameter would have the effect of large scale objects and coarse information for slope, as the means of 

slope information would be computed for each object. With smaller scale parameter, the segmentation algorithm was 

expected to provide smaller objects and those would keep a better initial representation for slope information. The basic 

idea was to merge the primitives in later stages using geomorphometric knowledge and production rules, rather than in 

a knowledge-free segmentation stage.   

The segmentation parameters were determined through a trial and error procedure. Large (50) and medium (12) 

scale parameters were used for testing purposes, but were found unsatisfactory and were dropped out. Taking into 

account the a-priori higher level knowledge of the extraction problem and that basic aim of segmentation was the 

minimization of loss of information from the DEM, in order to make the maximum use of slope gradient information, it 

became evident that the desirable segment size must be reduced almost to the level of the grid spacing of the DEM. 

After several trials, a scale parameter of 3 was selected. 

Regarding the parameters of color (elevation) and shape, since the shape parameter almost looses its meaning for 

very small size segments, it was given a small value (0.3) just in case some segments could grow to the degree to have a 

meaningful shape parameter. Compactness was set to 0.5, smoothness to 0.5, while color was set to 0.7. Figure 3 shows 

the final segmentation of GTOPO30 in magnification to make evident the size of the primitive objects which on the 

average did not exceed the size of the grid spacing of the GTOPO30. 

 

Knowledge Based Extraction of Geomorphological Features 
Following the implementation of the segmentation, the obtained primitive objects must be classified into specific 

terrain classes. The first step of classification is the determination of classes, their features, and their hierarchical 

structure. The desired terrain objects are mountains (most of these are mountain ranges), basins, and piedmont slopes. 

Given that a proper segmentation – delivering optimal terrain objects – was difficult to be achieved based on the 

tested homogeneity criteria and that the best segmentation resulted into very small primitive segments of minimal 

semantic meaning, there was a need to also build a knowledge base as a method of terrain object extraction. The 

knowledge base should work on the classification of object primitives provided by the segmentation algorithm, not 
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based on a homogeneity criterion, but instead on merging heterogeneous class segments into super objects representing 

the desirable terrain classes. For this procedure, the classification-based segmentation feature was used. The 

formulation of knowledge-based rules for the so-called classification-based segmentation or object fusion was carried 

out by defining structure groups. A structure group was defined as a collection of classes representing the same 

structure in an image and consisted of classes defined for different levels in the terrain object hierarchy. The basic 

principle is that a sub-object (such as the “noise” within a mountain object) which was assigned to a class (such as the 

piedmont slope class) other than the class of its super-object (mountain class) is treated as heterogeneous or as “not 

belonging” to this super object. Object fusion aims at the regrouping of this sub-object (piedmont slopes segment) to 

the proper super-object (mountain object). 

In the following, each class will be re-defined through an iterative approach in three stages. Through each iterative 

stage, the previously classified terrain objects will be reclassified, regrouped, or refined through knowledge-based 

procedures involving redefinition of the terrain classes, so that to better determine the desirable terrain objects at each 

stage. Due to the iterative redefinition of each class, at each level of the process, a symbol after the name of each class 

will be used to define the level at which the class was defined, e.g. mountains (L1) for mountains of Level 1. Each class 

was described by a set of features. Feature selection was carried out by taking into account the a priori known attributes 

of the classes (Fenneman 1931, Peterson 1981) and inspection of the statistical properties of the objects.  

 

 

  
 

Figure 3. Left: Zoom-in view of the GTOPO30 DEM. Right: The final segmentation result with scale parameter 3. 

 

At the first stage, the following terrain classes were defined  

a) Mountains like (L1) aiming at defining terrain objects which correspond to mountain ranges, 

b) Basins like (L1) aiming at defining objects which correspond to basins, and 

c) Piedmont slopes like (L1) aiming at defining objects corresponding to piedmont slopes. 

At this stage, these classes were defined based on their slope gradient. Miliaresis and Argialas (1999) in their 

approach of region growing segmentation used two slope gradient thresholds. In the present approach, those two 

thresholds were used as first approximations for defining fuzzy membership functions for the slope gradient to 

discriminate the mountains from the basins. The initial mountains like (L1) class constraint was: slope gradient > 6 and 

the initial basins like (L1) class constraint was: slope gradient <2.5. However, the slope gradient constraints were 

converted to fuzzy membership functions. The piedmont slopes like (L1) class was defined as the complementary fuzzy 

membership function of the above two functions for the mountains like (L1) and basins like (L1) objects. 

Following the feature definition for each of the terrain classes, classification of the segments took place. The results 

of this first stage classification are shown in Figure 4a. An implementation of object fusion resulted into grouping of 

neighboring initial object primitives into larger objects.  

The basic aim of the second stage was to identify which mountains like (L1) objects were correctly classified and 

which were not, since the subsequent knowledge based procedures should take into account spatial neighborhood 

relations between the extracted mountain objects. To check the status of the classified mountains, a constraint was 

applied using a fuzzy membership function: if the minimum area of a mountains like (L1) object was at least 180 pixels 

in size then it was indeed a mountain object (Fenneman 1931). Therefore, two subclasses of the mountains like (L1) 
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class were defined:  

(a) mountains (L1) (tentatively-correct classified mountains) and  

(b) wrong classified mountains (L1). 

Given that mountains like objects have high slope gradient values, if a misclassified mountain object is near a 

mountain (L1) object, it is safe to assume that it is a piedmont slope object instead of a basin object.  

Class piedmont slopes like (L1) was subdivided into two subclasses: 

(a) Wrong classified piedmonts (L1) and 

(b) Piedmont slopes (L1) (tentatively-correct classified piedmonts). 

The feature used to distinguish the two subclasses was the distance of the objects of each subclass from the 

correctly classified mountains. If the distance was “just a few pixels”, then it was assigned to the piedmont slopes (L1) 

subclass, otherwise to the wrong classified piedmonts (L1) subclass. 

 

  

(a) (b) 

 

Figure 4. Basins appear black, mountains appear white and piedmonts appear gray. (a) The first classification result 

of terrain objects. (b) The final classification result of terrain objects. 

 

Finally, the class basins like (L1) was divided into two subclasses : 

(a) Basins (L1) (tentatively-correct classified basins) and 

(b) wrong classified basins (L1). 

The feature used to distinguish these two subclasses was a constraint on the area of the segments: the area of the 

objects of the second subclass should be “relatively small”. The proper fuzzy membership function was defined for the 

class wrong classified basins, while the subclass basins was defined as complementary to the other. A classification 

was made and object fusion was applied to group the objects of these classes in the structure hierarchy. 

From the fusion of the classes of the second stage, three new categories were generated: mountains (L2), basins 

(L2) and piedmont slopes like (L2). By this fusing, the wrong classified basins (L1) and the piedmont slopes (L1) of the 

second phase were merged into the category piedmont slopes like (L2), and thus the noise in the interior of the mountain 

objects was added to the new category piedmont slopes like (L2). In order to get rid of this noise, remaining on the 

mountain objects, the class piedmont slopes like (L2) was further subdivided into: 

(a) piedmont slopes (L2) and 

(b) wrong classified piedmont slopes (L2). 

The definition of the class piedmont slopes (L2), took place with the criterion that piedmonts should have 

neighborhood relationships not only with the mountains (L2) objects, but also with the basins (L2) objects. A 

classification of the third stage knowledge base was implemented for the extraction of terrain objects. At this time, took 

place a fusion of the classes wrong classified piedmonts (L2) and mountains (L2), which led to the final extraction of 

the terrain objects (piedmont slopes (L3), mountains (L3) and basins (L3)), since the noise has been removed from all 

objects by refinement and regrouping to proper super-objects. The finally classified terrain objects appear in Figure 4b. 
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Segmentation of 1-degree DEM and Geomorphological Feature Extraction 
After extracting the geomorphologic features from the GTOPO30 DEM, followed the extraction of alluvial fans 

step. For this purpose, the above procedure provided extra information to be used in classification steps as described 

bellow. For the alluvial fan extraction, the ASTER image and the 1 degree DEM and the slope image were used. The 

first step involved multiresolution segmentation. Three segmentation levels were developed in a top down approach 

starting from the coarser level and ending at the finer level.  

At the first segmentation level, the objective was again the automatic extraction of the largest in size physiographic 

features (mountain ranges, basins and piedmonts), so that to use them at the later levels of classification for the 

extraction of finer geomorphological features (e.g. landforms). Segmentation of Level 1 was followed by classification 

of the primitives into semantic objects. A similar classification approach was followed as before. Since the present 

DEM resolution was 75m, while the GTOPO30 resolution was 1 km, certain parameters of the segmentation as well as 

of the limits of the membership functions for the slope image, had to be modified to take into account this resolution 

change. The change of the limits of the slope fuzzy membership functions was necessary due to the microrelief 

presence within the DEM of finer resolution, which caused more noise to appear. 

The overall purpose for the extraction of physiographic features was their use in the classification of alluvial fans 

since they provided the contextual framework to create logical rules which would constrain the classification of alluvial 

fans in this higher physiographic level and thus optimize their border. The classification hierarchy appears in Figure 5, 

together with the results of the classification of the physiographic features. 

 

Segmentation of Satellite Image Data 
At the second level, the ASTER image data with the larger resolution of 15m (channels 1 to 3) were segmented 

with a scale parameter of 10 and almost exclusive spectral criteria since for this level a Nearest Neighbor classification 

was desired. The final selections for the color and shape criteria were 0.9 and 0.1 correspondingly. The shape criteria 

were set equal to 0.5. The results of the second level segmentation are shown in Figure 6. 

At the third segmentation level, both the spectral and elevation data were used. Because of the different nature and 

resolution of these data, different weights were assigned to each. To the three channels of ASTER data, with a 

resolution of 15 m, the weight of 1 was assigned. The low resolution ASTER channels (4-14) were not used. The 

weight of 0.3 was assigned to the DEM and slope data sets. The aim for the segmentation of this level was to obtain 

primitive objects similar in size to the small alluvial fans and this was achieved with a scale parameter of 80. The color 

and shape parameters were set through trial and error procedure to 0.7 and 0.3 correspondingly, while the compactness 

and smoothness were set to 0.5 each. The result of the third level segmentation appears in Figure 6. 

 

 

 

 

Figure 5. Left: The physiographic map produced from the automatic feature extraction technique as applied to the 

DEM of Figure 2. Right: The final class hierarchy of the knowledge base. 

 

Extraction of Alluvial Fans 
The second level classification had as basic objective the best possible spectral classification of third order 

landforms such as alluvial fans and subsequently the development of spatial and contextual rules (class related features) 

between the spectral classes towards the optimal final classification. Following the segmentation of the second level, 
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which was based on the ASTER image, the following classes were initially defined: Alluvial materials, Mountains, 

Basin floor salt deposits and Basin floor sediments. Representative training samples were defined for each category 

within the spectral pattern space and the Nearest Neighbor operator was applied. Spectral classification was 

implemented without class related features which was to be further refined bellow. 

Furthermore, in order to get rid of misclassifications resulting from isolated objects of each group which were 

spectrally confused and thus classified into another class, a spatial neighborhood relationship rule was added to each of 

the categories Alluvial materials and Basin floor sediments  and classification  took place with class related features in 

five iterations so that to obtain classification stability. 

Even after the last classification, there was one more heuristic which could be used towards better classification. 

As a rule, alluvial fans are deposits of the piedmont plain and the head of an alluvial fan is located right at the 

downstream end of the drainage network (where a stream pours abruptly into a basin at the startup of the creation of an 

alluvial fan) (Bull 1977, Hunt  1975, Rachocki 1981, Fenneman 1931, Pandey 1987). Generalizing this rule, it can be 

reasonably assumed the heuristic that all alluvial fans should be located on the piedmont plain, perhaps extending 

slightly downslope of the piedmont plains into the basin. As a reminder, in the first level, the piedmont plains have 

already been extracted, therefore this heuristic needs to check if all alluvial fans are almost complete super-objects of 

piedmont plain objects extracted in Level 1. 

To implement this heuristic, first two new subclasses of the Alluvial materials class were identified: Alluvial 

materials on piedmonts and Alluvial materials not on piedmonts. For the definition of the first subclass, the feature 

“existence of piedmont subobject” was used to compute the existence of piedmont plain objects existing exactly bellow 

each processed object of the second level, and only those Alluvial materials objects were post classified as Alluvial 

materials on piedmonts. 

The above described features and rules were applied after the projection of the piedmont plains from the first to the 

second level and resulted into the definition of the Alluvial materials on piedmonts subclass. What was left to be further 

defined was the subclass Alluvial materials not on piedmonts, which was further refined into two subclasses: Alluvial 

materials near piedmonts and wrong classified alluvial materials. Wrong classified alluvial materials were considered 

those located further away from the piedmonts, through a fuzzy membership function S type. With the implementation 

of classification with class related features, the final results were obtained as shown in Figure 7. 

The objective of the third level classification was the final border definition of alluvial fans with emphasis on the 

larger fans. Towards this purpose the classes alluvial fans and not alluvial fans were defined as following. For the class 

of alluvial fans, two features “relative area of Alluvial materials on piedmonts subobjects” and “relative area of Alluvial 

materials near piedmonts” of the second level were used, in order to project two different classes of the second level , 

into a new class in level 3. Class Not alluvial fans was defined as opposite to the Alluvial fans class. Figure 7 shows the 

result of the final interpretation of alluvial fans. 

 

  
 

Figure 6.   Left: The second level of the multiresolution segmentation applied to the ASTER dataset. Right: The third 

level of the multiresolution segmentation applied to the ASTER and 1 degree DEM dataset. 
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DISCUSSION OF RESULTS  
 

The present approach shows satisfactory results both as it concerns the cartographic value of the final map but also 

as it concerns the new approach to the solution of the specific image interpretation problem provided through low 

(multiresolution segmentation) and high level (knowledge-based fuzzy classification) image analysis modeling in an 

object-oriented image analysis environment. 

The extraction of terrain objects (Figure 4) was quite satisfactory in comparison to the physiographic map (Figure 

8b) of Atwood. Measures of comparison can be the number and location of mountain ranges, their overall border 

outline, and the degree of generalization. As it concerns the number and location of the mountain ranges it appears that 

there is a great resemblance between the automatic extraction results and the physiographic map. The overall mountain 

border outline is almost the same except in certain cases where some discrepancies are present, but it is hard to advocate 

in support of the one or the other approach. At any rate the major mountain ranges are separable and distinct. The 

extracted mountain objects seem to be comparable to the results of the previous study of Miliaresis and Argialas (1999) 

(Figure 8c). 

 During the classification process of the mountain objects from the GTOPO30 DEM, there was severe presence of 

noise within the mountain objects as well as within the basins and the piedmont slopes. This problem was controlled by 

checking neighborhood relations between the objects that appeared as noise, and the tentatively-correctly classified 

objects. For example, some objects that were classified originally as piedmont slopes, and they were not located near a 

mountain object, they were classified in the category of basins since they could not theoretically stand alone. In order to 

eliminate the noise, the approach followed was an iterative method where at different stages the noise was eliminated 

by proper checks on neighborhood relationships, and repeated reclassifications and object fusions. 

 

 

 

 

 

 

Figure 7. Left: The classification results of the second level and the class hierarchy used in the knowledge base. Right: 

The final classification of alluvial fans in level 4 and the class hierarchy used. 
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(a) (b)  (c) 

 

Figure 8.   (a) The GTOPO30 DEM with the extracted mountain borders overlaid. (b) The physiographic map of Atwood. 

(c) The GTOPO30 DEM with the extracted mountain borders from Miliaresis and Argialas (1999). 

 

This is the first time that a remote sensing software, eCognition, permits the use of so many image interpretation 

elements – spectral, shape, site, association, and context – within a uniform object oriented environment and offers the 

tools for modeling semantic relations towards an effective terrain object classification. It is also noteworthy that the 

present approach does not require seed points in contrast to the region growing algorithm used for terrain segmentation 

up to now (Miliaresis and Argialas 1999), since segmentation took place by region merging. 

The alluvial fan extraction from ASTER images and the DEM, gave satisfactory results as it concerns the large size 

alluvial fans. Smaller size alluvial fans were delineated correctly, however, were not isolated, but appeared connected. 

Despite these problems, the delineation of alluvial fans with photointerpretation of the ASTER image could have had 

the same ambiguities as the alluvial fans are spatially coalesced. 

Comparing the present object oriented classification with fuzzy logic to an older effort by the authors (Miliaresis 

and Argialas 2000), it appears compatibility of results (Figures 9). One of the advantages of the object oriented 

classification in eCognition for alluvial fans extraction is the simultaneous processing of digital data of various 

resolutions and types. 

 

  
 

Figure 9. Left: The final borders of the alluvial fans of Level 3, displayed on top of the ASTER L1 RGB composite. 

Right: The results of a previous method for automatic extraction of alluvial fans from DEM and Landsat TM satellite 

data (Miliaresis and Argialas 2000). 
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CONCLUSIONS AND PROSPECT 
 

In this paper an effort was made to test the low and high level object oriented image analysis techniques for the 

extraction of geomorphological features from the GTOPO30 DEM. In this effort, the results are satisfactory. It appears 

promising that such procedures could also be expanded in order to model not only terrain features at the physiographic 

level, but also on different landscape scales.  

The object oriented image analysis approach for automatic extraction of alluvial fans, through eCognition, has set 

new prospects to the geomorphologic/physiographic feature extraction problem. New techniques and methodologies 

can be implemented, using knowledge based approaches, in order to provide more complex and effective results. 

Concerning the functionality of the software, the methods provided for knowledge based classification (class 

hierarchies, fuzzy logic, spectral, geometric and spatial features) offer flexibility and assist in the creation of relatively 

complicated semantic descriptions, concerning the thematic classes of interest. 
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