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Abstract. We propose a new approach for automatic road
extraction from aerial imagery with a model and a strat-
egy mainly based on the multi-scale detection of roads in
combination with geometry-constrained edge extraction us-
ing snakes. A main advantage of our approach is, that it
allows for the first time a bridging of shadows and par-
tially occluded areas using the heavily disturbed evidence
in the image. Additionally, it has only few parameters to
be adjusted. The road network is constructed after extract-
ing crossings with varying shape and topology. We show the
feasibility of the approach not only by presenting reasonable
results but also by evaluating them quantitatively based on
ground truth.

Key words: Automatic road extraction – Aerial imagery –
Snakes – Multi-scale – Evaluation

1 Introduction

Aerial imagery is one of the standard data sources for the
acquisition of topographic objects, like roads or buildings for
geographic information systems (GIS). Road data in GIS are
of major importance for applications such as car navigation
or guidance systems for police, fire services or forwarding
agencies. Since the manual extraction of road data is time
consuming, there is a need for automation.

In practical applications, human interaction will, at least
for some time, be needed as a complement, resulting in
semi-automatic methods. Vosselman and Knecht [36] and
McKeown and Denlinger [24] present approaches based on
road tracking which rely strongly on this interaction. They
start from a given point and a given direction after extract-
ing parallel edges or by extrapolating and matching profiles
in high-resolution images. Other semi-automatic approaches
search for an optimal path between a few given points. Grün
and Li [12] and Merlet and Zerubia [25] connect points using
dynamic programming. Fischler et al. [9] apply the F∗ algo-
rithm based on line extraction from low-resolution images.
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Neuenschwander et al. [26] use so-called “ziplock snakes”
which provide another means to connect given points in the
presence of obstacles. When more than one image is avail-
able, it is possible to track the line in 3D which constrains
the path of the road and renders it possible to handle oc-
clusions using robust optimization. In [10], Fua presents the
model-based optimization of ribbon snake networks to im-
prove coarsely digitized road networks.

Another way to tackle the problem is to start with fully
automatic extraction and manually edit the result afterwards.
This is the approach taken by us and many others. A survey
on this topic can be found in Mayer et al. [22]. Zlotnick
and Carnine [39] extend [24] to fully automatic extraction
by finding starting points. De Gunst and Vosselman [7] and
Bordes et al. [4] extract roads using a priori information in
the from of GIS data. One of the recent approaches that are
similar to the one proposed here is by Barzohar et al. [1]. It
complements a low-level Markov-Random-Field model for
the extraction of road seeds and the tracking of roads with a
simple clutter and occlusion model and a Kalman filter. An-
other recent approach by Ruskoné et al. [28, 29] improves
road extraction by modeling the context, i.e., other objects
like shadows, cars or trees hindering or supporting the ex-
traction of the road. A division of the context into spatially
more global and more local parts was proposed in Baum-
gartner et al. [2] and Steger et al. [33]. In [28, 29], roads
in urban areas are extracted by detecting and grouping of
cars. Baumgartner et al. [2] and Steger et al. [33] utilize the
scale-space behavior of roads; the road network is globally
optimized, crossings are modeled, and markings are used
to verify the existence of the road. Trinder and Wang [35]
are on the same line, exploiting the scale-space behavior
of roads as well as grouping of parallel segments. Related
works on detecting ridge-like descriptors using multi-scale
methods have been presented by Pizer et al. [27] and Lin-
deberg [20, 21]. Sing and Sowmya illustrate in [31] how
grouping parameters might be learned. Boichis et al.present
in [3] a more conceptual work for the extraction of cross-
ings based on the Hough transform. The tracking of roads
based on the A∗ algorithm is shown by B̈uckner [5]. In [34],
Tönjes and Growe give an idea how information from dif-
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ferent sensors, e.g., optical and radar, can be fused and help
to improve the results.

In this paper, we present an extension of [17]. Our main
idea is to take advantage of the scale-space behavior of roads
in combination with geometrically constrained edge extrac-
tion by means of snakes. From the scale-space behavior of
roads, we inferred to start by extracting lines at a coarse
scale. Such lines are less precise but also less disturbed by
cars, shadows, etc., than features at fine scales. The lines ini-
tialize ribbon snakes at fine scales, where roads often appear
as bright, more or less homogeneous elongated areas. Opti-
mized ribbons of constant width are accepted assalient roads
(defined below). The connections between adjacent ends of
salient roads are checked if they correspond tonon-salient
roads (defined below). As these roads are disturbed, the evi-
dence for the road in the image can only be exploited when
additional constraints and a special strategy focus the extrac-
tion. The constraints are low curvature and constant width
of roads as well as the connectivity of the road network,
i.e., the start and the end points are given. The strategy is to
optimize the center of the ribbon snake using the “ziplock”
method.

Our paper is organized as follows: In Sect. 2, we intro-
duce model and inherent strategy essentially based on the
scale-space behavior of roads and on ribbon snakes. Then,
we define the termssalient road,non-salient road, and cross-
ing. While Sect. 3 gives basic theory for ribbon snakes, we
present the main part of the paper in Sect. 4. The extraction
of salient roads supplies the information needed to extract
the non-salient roads. We linksalient as well asnon-salient
roads by crossings with varying shape and topology. Section
5 shows that the approach gives reasonable results for which
we have evaluated the performance based on ground truth.
We conclude the paper with a summary in Sect. 6.

2 Model and strategy

The appearance of roads in digital imagery depends on the
spectral sensitivity [34] as well as on the resolution of the
sensor. In this paper, we restrict ourselves to grey-scale im-
ages, and only scale dependencies are considered. Notably,
a road can appear in different ways depending on the scale
of observation. In images with coarse resolution (more than
2 m per pixel), roads appear mainly as lines, which establish
a more or less dense network. In contrast, in high-resolution
images (less than 0.50 m per pixel) roads are depicted as
bright, more or less homogeneous elongated areas with al-
most constant width and bounded curvature.

In this paper, we take advantage of results from Mayer
and Steger [23] and Lindeberg [18]. According to them,
coarser scale lines representing road axes can be extracted
in a stable manner from smoothed images1 even in the pres-
ence of background objects such as trees or cars. Since our
goal is to extract objects in the real world that have specific
sizes, the “scale” in object space is of utmost importance.
This scale depends on the resolution of the image, which
we assume to be given, the type of scale space and the scale
parameter. A typical order of magnitude for a descriptor at

1 Here a Gaussian scale space [14,19,38] was used.

a coarse scale is 2 m. This is equivalent to aσ of the Gaus-
sian of 4 pixels at a ground resolution of 0.5 m. Seen from
a symbolic point of view, finer scale substructures of the
road, i.e., cars on the road or markings, as well as distur-
bances, like shadows or partial occlusions, are eliminated
by considering representations at coarse scales. This can be
interpreted as anabstraction, i.e., an increase of the level of
simplification of the road. In contrast to the approach by Lin-
deberg [21] involving automatic scale selection, we assume
that the width of the road is known, and that we can thereby
determine the scale levels from given a priori information.
Whereas coarse scales give global information which is es-
pecially suited for initial detection of the road, fine scales
add detailed information which can be used to verify and
complete the road network. If the information at both lev-
els is fused, wrong hypotheses for roads can be eliminated
by using the abstract coarse-scale information, while details
can simultaneously be integrated from finer scales (for ex-
ample, the correct width and precise position of the roads).
In this way, relative advantages of using both scales can be
combined.

For line extraction at coarse scales, we use the method
of Steger [32], which builds upon previous works on multi-
scale ridge detection [8, 15, 16, 20, 27], and is specifically
adapted to road extraction, including an analysis of the scale-
space behavior of roads. Baumgartner et al. [2] combine this
framework with the following idea: the elongated areas of
constant width describing roads at fine scales are extracted
as parallel edges in the image using a local edge detector,
such as the Canny operator [6], in combination with group-
ing (Sarkar and Boyer [30]). We found the following prob-
lems: the quality of edges varies due to noise, changes in
radiometry of the road surface and its background, occlu-
sions, etc. [11]. Therefore, the extraction of edges based on
purely local photometric criteria often results in an incom-
plete detection of few significant edges or in the detection of
many irrelevant edges. When these edges are grouped into
parallelograms, they tend to be fragmented, even when lines
from coarse scales are used in the grouping process and help
to eliminate many wrong hypotheses. When parallel edges
are linked based on purely geometric criteria, the precision
is poor and wrong hypotheses are common [2].

Contrary to this, the framework of snakes introduced in
Kass et al. [13] gives us the possibility to focus the extraction
of edges by their known geometric properties. We do this
by linking two edges into a “ribbon” defined by its center
and its width. The ribbon is optimized using the “snake”
concept [13] which leads to the so-called “ribbon snakes”.
Based on the scale-space behavior and the ribbon snakes,
our model and the inherent strategy for the extraction of the
road network can be summarized as follows:

– Salient roads have a distinct appearance in the image.
A line at a coarse scale initializes the center of a rib-
bon snake at a finer scale. Criteria for the verification
of a salient road are the constancy of the width and the
homogeneity of the corresponding image region. Since
man-made objects such as buildings have similar prop-
erties, the extraction ofsalient roads is restricted to ho-
mogeneous rural areas, given by a GIS or segmented by
means of texture features. This is similar to [2], where the
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Fig. 1. a Parametric representation of the ribbon snake. Each slice of the
ribbonv(s0, t0) is characterized by its center (x(s0, t0), y(s0, t0)) and width
w(s0, t0). Center and width define pointsvL(s0, t0) and vR(s0, t0) corre-
sponding to the left and right side of the ribbon.b Image gradients for the
left and the right side and their projection to the unit normal vector of the
ribbon n(s0, t0)

“context regions”suburb urban, forest, and open rural
are introduced and the extraction of roads is restricted to
the latter ones.

– Non-salient roads correspond to parts of the road net-
work that are more or less disturbed in the image by
shadows or partial occlusions. They can only be ex-
tracted in a top-down manner, when the start and end
points are available. Thereby, we exploit the fact that all
roads are connected into a global network. Taking ad-
jacent ends ofsalient roads as start and end points, we
connect them by ribbon snakes and optimize only the po-
sition of the center with the “ziplock” method. Finally,
the width of the ribbon is optimized for the purpose of
verification.

– Crossings link the road network together. At coarse
scales, they correspond to junctions from the line ex-
traction step [32]. We verify these hypotheses at a fine
scale by expanding a closed snake around each junction
and checking the connections between the outline of the
crossing and its adjacent roads.

3 Ribbon snakes

The original snake concept introduced by Kass et al. [13]
consists of curves with a parametric representation, where
the position of the snake is optimized under a number of
constraints. On one hand, the photometric constraints evoke
the image forces that “pull” the snake to features in the
image. On the other hand, the geometric constraints give
rise tointernal forces that control the shape of the snake and
guarantee its piecewise smoothness. During optimization, the
snake evolves from its initial position to a position where the
forces compensate each other and the energy of the snake is
minimized. This state implies that the snake is located in a
way that best satisfies the desired properties.

For road extraction, we extended the original snakes with
a width component analogously to Fua [10], leading to a
ribbon snake defined as

v(s, t) = (x(s, t), y(s, t), w(s, t)), (0 ≤ s ≤ 1), (1)

wheres is proportional to the length of the ribbon,t is the
current time,x andy are the coordinates of the centerline of
the ribbon, andw is the half width of the ribbon measured
perpendicular to the centerline. As shown in Fig. 1a, the cen-
terline (x(s, t), y(s, t)) and the widthw(s, t) define the sides
of the ribbonvL(s, t) andvR(s, t). Using this representation,
the original expression for theinternal energy of the snake
still holds and the width is constrained by the same “tension”
and “rigidity” forces as the two coordinate components. Dif-
ferently from the original snake concept, however, the image
forces for ribbon snakes are applied along the sides. When
optimizing a ribbon to a bright road on a dark background,
the image functionP can be re-defined as the sum of the
magnitudes of the image gradient along the curvesvL(s, t)
andvR(s, t). An even better way is to project image gradient
onto the ribbon’s normaln(s, t) and to constrain the projec-
tion to be positive at the left side of the ribbon and negative
at its right side (cf. Fig. 1b). In this way, a correspondence
between road sides and the sides of the ribbon is obtained.
Using

P (v(s, t)) = (∇I(vL(s, t)) − ∇I(vR(s, t))) · n(s, t) (2)

for the image function, the expression for the total energy of
the ribbon snake remains identical with the corresponding
formula for the energy of the original snake:

E(v) = −
1∫

0

P (v(s, t))ds +

+
1
2

1∫

0

α(s)
∣∣∣∂v(s, t)

∂s

∣∣∣2
+ β(s)

∣∣∣∂2v(s, t)
∂s2

∣∣∣2
ds. (3)

The first term in Eq. 3 represents theimage energy and the
second corresponds to theinternal energy.α(s) and β(s)
are arbitrary functions which determine the influence of the
geometric constraints on the optimization.

The application of ribbon snakes to fully automatic ex-
traction requires that the balance between theirimage and
internal energies has to be achieved automatically. When
we assume that the initial estimate of the ribbon is close to
the final solution, this can be enforced by substituting the
functionsα(s) andβ(s) in Eq. 3 with a factorλ [11]:

λ =
|δEimg(v)|
|δEint(v)| , (4)

whereδ is the variational operator. This simplification avoids
the manual adjustment ofα(s) andβ(s).

What is also important for the extraction is the abil-
ity to restrict and control the motion of the ribbon during
optimization. For this reason, we “embed” the ribbon in a
viscous medium and obtain the solution by minimizing the
term

∫
E(v) +D(v)dt, whereD is the dissipation functional

D(v) = 1
2

1∫
0

γ(s)|vt|2ds with the damping coefficientγ. For

the discretized version of a ribbon withn vertices,γ can be
derived from

γ =

√
2n

∆

∣∣∣∣∂E(v)
∂v

∣∣∣∣ . (5)
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Active vertices

Passive vertices

Force boundaries

Fig. 2. Force boundaries divide the ziplock snake into two active parts and
one passive part. During optimization the force boundaries are gradually
propagated from the ends towards the center of the snake. Each time the
force boundaries move, the snake is re-optimized

a b c
Fig. 3a–c. Extraction ofsalient roads.a Extraction of lines.b Optimization
of ribbons’ boundaries.c Selection of ribbon parts with constant width.
Only the ribbon drawn withthick lines is accepted as a correct hypothesis
for a salient road

As shown in [11] this ensures that the displacement of each
vertex of the ribbon during one optimization step is on aver-
age of magnitude∆. We choose a large value for∆ (20–30
pixels) at the beginning of optimization and then gradually
decrease it toward the end of optimization in order to reduce
the search space of the ribbon.

One well-known limitation of snakes is their sensitivity
to initialization. Obstacles between the initial and the de-
sired position of a snake often attract it and hinder a correct
extraction. Neuenschwander et al. [26] address this problem
and present a complementary optimization strategy called
“ziplock snakes”. Its idea is to divide the snake (or the rib-
bon snake) into two active parts and one passive part, as
shown in Fig. 2. During optimization the force boundaries
are gradually propagated from the ends toward the center
of the snake. Image forces are only applied at active parts
while the passive part is optimized with respect to purely
geometric constraints. Given a correct initialization of the
end points, the strategy ensures that the active parts stay al-
ways close to their desired positions, while irrelevant image
structures around the passive part do not influence the ex-
traction. We use the “ziplock” strategy for the optimization
of the ribbon snakes while extractingnon-salient roads in
the next section.

a b c d
Fig. 4a–d. Extraction ofnon-salient roads.a Ends of extractedsalient roads.
b Extraction of optimal path.c Verification by optimization of width.d
Acception of a hypothesis with low variation of width

a b c d
Fig. 5a–d. Steps of the optimization of a “ziplock” ribbon.a–c Black lines
in the middle of the ribbon indicate its passive part.White parts are currently
optimized.Black ends indicate the result of the optimization so far.d Final
result

4 Road extraction

4.1 Extraction of salient roads

According to the model and the strategy presented in Sect. 2
we start road extraction by detecting lines at a coarse scale
[32]. As shown in Fig. 3a, line extraction often gives re-
sponse to irrelevant image features. In order to separate them
from the roads, i.e., to verify the roads, more evidence is re-
quired. At a fine scale, it is possible to determine the precise
width of the structure corresponding to the line at a coarse
scale. By evaluating the variation of the width along each
hypothesis, we can mostly discriminate irrelevant structures,
since their width is much more unstable than the width of
roads.

Following this idea, we determine the width of image
structures at fine scales by optimization of ribbon snakes.
For each detected line, a ribbon is initialized such that its
centerline coincides with the line and its width is zero. In
order to obtain a rough approximation of the sought bound-
aries, we first optimize ribbons on images at coarse scales.
We then re-optimize ribbons at fine scales in order to delin-
eate the details of boundaries. During optimization, the width
of ribbons is expanded to ensure the correct delineation of
wide structures.

As shown in Fig. 3b, the optimized ribbons that corre-
spond to wrong road hypotheses have a much stronger vari-
ation of width than the ribbon optimized at thesalient road.
Thus, thresholding the variance of width for short pieces of
ribbons enables the selection of ribbon parts that correspond
to roads with high probability (cf. Fig. 3c).

4.2 Extraction of non-salient roads

Typical reasons for gaps betweensalient roads are shadows
or partial occlusions (cf. Sect. 2). To bridge the gaps, we
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a b c d
Fig. 6a–d. Verification of hypotheses by expanding the width.a, b Verifi-
cation of correct hypothesis. Since the centerline of the ribbon inb is fixed,
the contrast at only one side is enough to stop the expansion.c, d Verifi-
cation of wrong hypothesis. Random features result in a big variation of
the widthd

a b c d
Fig. 7a–d. Extraction of crossings.a Selection of initial hypothesis.b Ap-
proximation of the outline of the crossing.c Verification of connections to
adjacent roads.d Construction and connection of the crossing

connect two adjacent ends ofsalient roads with a road hy-
pothesis, which is then verified based on homogeneity and
the constancy of width (cf. Fig. 4). Regions corresponding to
gaps show in many cases at least one traceable road side, al-
though they may contain many other irrelevant edges which
potentially disturb the road extraction. However, as can be
seen from Fig. 4a, the curvature of these edges is mostly
much higher than the curvature of road sides. We use this
observation and apply low curvature constraint to discrimi-
nate irrelevant edges and to find correct sides of the road.

Each hypothesis for anon-salient road is initialized with
the ends of previously extractedsalient roads (cf. Figs. 4a,
5a). Note that the initial position of the ribbon can be far
off from the correct position of a road. As mentioned in
Sect. 3, this may cause the ribbon to lock to irrelevant image
structures. To avoid this effect, we apply “ziplock” strategy
and propagate the correct road extraction from the end to the
middle of of the ribbon (cf. Fig. 5). At this point, we optimize

a b c d
Fig. 8a–d. Steps of the optimization of the outline of a crossing.a Initial
state of the closed snake.b andc 10th and 20th step.d Final result

a b

Fig. 9a,b. Road extraction for a complicated scene.a Line extraction.
b Final result

a b
Fig. 10a,b. Centerlines of roads corresponding to the result of automatic
road extraction (thick lines) compared to manually extracted reference data
(thin lines). Manually and automatically extracted centerlines coincide out-
side the crossings except the left upper part ofb where an approach road
was not included to the reference data

only the centerline of the ribbon. The width of the ribbon is
fixed and equals the width of the adjacentsalient roads. Note,
that due to the choice of the image functionP in Eq. 2, the
ribbon is insensitive to edges that cross perpendicular to its
direction. This property is important because shadows and
occlusions often result in this type of edges. At the same
time, even a weak contrast of road sides attracts the ribbon
and supports correct road extraction.

The procedure described so far connectssalient roads,
but does not really verify whether the detected connections
correspond to roads or not. In order to verify hypothesized
connections, we consider the following two steps. First, we
evaluate the homogeneity of the region in the image which
corresponds to the ribbon and accept ribbons with low vari-
ation of the image intensity asnon-salient roads. This, how-
ever, will reject most of the shadowed and occluded roads
and therefore we take a second step. The centerlines of the
ribbons are fixed and only the width is expanded and opti-
mized. As shown in Fig. 6a,b, given a correctly located road
hypothesis, the fixed centerline together with the contrast on
at least one road side stops the expansion of the width at
the right place. On the contrary, random features localized
close to wrong hypotheses will in most cases result in a large
variation of a ribbon’s width (cf. Fig. 6c,d). This observation
implies that many wrong hypotheses can be rejected based
on their large variation of width.

4.3 Extraction of crossings

The extraction of crossings is complicated since the variabil-
ity of their shape makes it difficult to distinguish them from
other objects. However, as shown below, thesalient and
non-salient roads greatly help to reduce the search space.
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Fig. 11. Road extraction in larger image

Fig. 12. Road extraction in image “Erquy” (centerlines only)

In order to generate initial hypotheses for crossings, we
take advantage of two observations:

– During the extraction ofnon-salient roads most of the
gaps insalient roads caused by crossings will be bridged
(cf. Figs. 5d and 7a).

– As exemplified in Figs. 3a and 9a, line extraction often
results in junctions inside crossings. However, a large
number of these junctions correspond to irrelevant fea-
tures.

Combining these two observations, we hypothesize cross-
ings at junctions that are adjacent with previously extracted
roads (cf. Fig. 7a). Next, we approximate the outline of cross-
ings by blowing up and optimizing closed snakes around
the junctions (cf. Figs. 8a–c, 7b). We than establish con-
nections between crossings and adjacent ends of previously

Fig. 13. Road extraction in image “Marchetsreut” (centerlines only)

extracted roads (cf. Fig. 7c) and verify such connections us-
ing the method described in Sect. 4.2. Finally, we accept the
crossing if at least one of the considered connections has
been verified (cf. Figs. 7d, 8d).

The present strategy does not make any restricting as-
sumptions on the shape and the topology of crossings. There-
fore, crossings with different sizes and geometry and with
varying numbers of adjacent roads can be extracted in a
uniform way.

5 Results and their evaluation

Although the approach was developed for rural areas, in
some cases, a successful recognition is also possible in built-
up areas (cf. Fig. 9). As shown in Fig. 9a, line extraction
alone does not detect some parts of roads and at the same
time may result in more erroneous hypotheses than correct
ones. Using the proposed approach, all wrong hypotheses
are eliminated and additionally gaps caused by shadows are
bridged (cf. Fig. 9b). Figures 11, 12 and 13 show the re-
sults for larger scenes. As can be seen, most of the roads
are correctly delineated and connected into a network by
the crossings. Typical failures occurred at roads that violate
the assumption of constant width. This is common in urban
areas, e.g., in the upper part of Fig. 11. However, the extrac-
tion fails even for some roads in rural areas. For instance,
the main road running at the lower right corner of Fig. 12
could not be extracted since its width appears to be very
unstable when examining it at a fine scale.

An evaluation of the results according to [37] is shown
in Table 1. The evaluation is based on the comparison of
the extracted road centerlines to ground truth, i.e., manually
plotted road axes used as reference (cf. Fig. 10). Figure 11
is a part of the image “Erquy”, i.e., Fig. 12, which can be
described as “flat, agricultural, difficult”, whereas the image
“Marchetsreut” (Fig. 13) is “flat, agricultural, easy”.
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Table 1. Evaluation of results obtained by snake-based road extraction in
images with a resolution of 0.5 m

Fig. 11 Erquy Marchetsreut

(Fig. 12) (Fig. 13)

Correctness 0.97 0.95 0.99

Completeness 0.83 0.72 0.84

RMS [m] 0.46 0.46 0.37

Image size [pixel] 1800× 1600 45002 20002

Time [min] 18 80 15

The “correctness” in Table 1 represents the ratio of the
length of correctly extracted roads to the length of all ex-
tracted roads. The values prove that only a small number
of false roads is extracted. “Completeness” corresponds to
the ratio of the length of the correctly extracted roads and
the length of the reference roads. Although the values for
completeness are quite high for an automatic approach, they
could have been even higher if forest and urban areas, where
contrast on both road sides is weak, had been excluded from
evaluation. The RMS values show that the precision is high
and, more importantly, much better than demanded in most
standards for topographic objects in GIS. For all three ex-
amples, they are better than one pixel and close to the value
that arises from the fuzzy definition of the road sides. The
time for the extraction (Sun Sparc 20) is reasonable. It is
mostly proportional to the size of the image. However, it
also depends on the scene and the number of roads, or more
specifically, lines in it. The more gaps there are due to shad-
ows and other disturbances in thesalient roads, the more
time it takes to verify all possible connections during the
extraction of thenon-salient roads.

6 Conclusions

In this paper, we have shown how it is possible to use rib-
bon snakes to take advantage of the little evidence that is
available in shadowed parts of the road or when one side
of the road is occluded. Thereby, we overcome some of the
problems with other recent approaches for road extraction.
Nevertheless, our approach is mostly intended for rural ar-
eas. Therefore, the best idea would be to combine it with the
assets of other approaches. These are particularly the mod-
eling of the context [2,28], the extraction of groups of cars
to extract roads in urban areas [29], the use of GIS informa-
tion [4, 5], and the exploitation of images from more than
one sensor [34].
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