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An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. 
is
hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life
parameters as constant values, and the changes in these parameters will be a�ecting directly the separated signals; also there is no
way to determine the best parameters.
e genetic algorithm is a suitable technique to overcome this problem by �nding randomly
the optimum half-life parameters in Stone’s BSS.
e proposed system is used to extract automatically the common artifacts such as
ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch �lter used in the proposed
system in order not to lose any useful information.

1. Introduction

Electrical activities of the brain are usually measured by
electroencephalogram (EEG) to describe the state of the
patient’s brain. 
e visual analysis for EEG activities by
the technicians is very dicult because these activities are
submerged with artifacts [1]. 
e artifacts are one of the
limitations in the EEG acquisition unit and maybe taken
mistakenly aswanted data in brain signal analysis or in a brain
computer interface (BCI) system [2].


e common artifacts in EEG signals are power line noise
interference (LN), electrocardiogram (ECG), and electroocu-
logram (EOG) [3]. Numerous approaches have been sophis-
ticated in time, frequency, and time-frequency domains to
remove or separate these artifacts [4].

Many researchers have been used blind source separa-
tion (BSS) techniques to separate the artifacts from brain
signals [5]. Automatic removal approach of EOG artifacts
from EEG data based on BSS is o�ered in [6]. Two ICA
algorithms, InfoMax (IICA) andExtended-InfoMax (EIICA),
were utilized to extract eye movements and power noise of

50Hz from EEG data is proposed in [7]; the EIICA can
isolate both super-Gaussian artifacts (eye blinks) and sub-
Gaussian signal (power line noise interference), but IICA
is only restricted to remove super-Gaussian artifacts (eye
blinks). BSS and parallel factor analysis (PFA) are integrated
to reject the EEG artifacts [8, 9]. Wavelet transforms (WT)
with independent component analysis (ICA) and statistical
autoregressivemoving averagemodel have been used to reject
the artifacts [10]. Pesin [11] demonstrates a novel approach
to recognize and reject eye blink artifacts from EEG system
based on an integration between wavelet technique and
FastICA to expose the temporal position of eye blink and
then remove it. In recent years, new studies are used to
extract the EEG data from EEG mixture based on modi�ed
BSS algorithms, such as in [2] which tries to propose a
complete artifact rejection system based on constrained
independent component analysis (cICA) to separate ECG
and EOG artifacts from EEG signals measured inside MRI.

ICA algorithms usually used in EEG signal processing
and the most widely used are Infomax [12], FastICA [13],
SOBI [14], and BGSEP [15]; the SOBI and BGSEP used
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Figure 1: Electrodes placement over scalp based on 10–20 international EEG electrode system: (a) side view; (b) top view.

second-order statistic but the InfoMax and FastICA used
high-order statistic [1]. A comparison study between ICA
algorithms was proposed in [16]. ICA algorithms have an
inherent disadvantage such as (i) source ambiguity, (ii)
undetermined variances of the components, and (iii) the
performance of ICA being decreased when the dataset is
small and with large dataset the redundancy case is not
sucient to recover the independent components [2].

Stone’s BSS is used instead of ICA due to these limitations
[17–19]; it was �rst motivated by Stone [20].Many researchers
try to discuss andmodify it to enhance the separation process
[17, 21–23]. Stone’s BSS was used successfully to extract the
ocular artifact from EEG mixture [19].

Stone’s BSS algorithm based on a temporal predictability
measure to recover the sources from the mixture. Short-
and long-term half-life parameters are used to calculate the
temporal predictability of the signal; these parameters are
taken as follows: the long-term half-life is 100 times longer
than corresponding short-term half-life. 
e changes in these
parameters will be a�ecting the output; also there is no
technique to calculate the best values.

Evolutionary algorithms such as genetic algorithm (GA)
and particle swarm optimization (PSO) are partly successful
used to solve BSS problem in some applications but there
are two issues addressed when using evolutionary algorithms
to solve the BSS problem: (i) generating random initial
coecients of separate matrix � maybe does not give the
candidate solutions; (ii) it is relatively slow due to large
population size.

Due to the limitations in both original Stone’s BSS and
the genetic algorithm, the proposed algorithm is used to
overcome these limitations by a hybridization technique of
Stone’s BSS with genetic algorithm.

Table 1: EEG frequency bands with brain state.

Name Freq. State of brain

Delta <4Hz Sleeping/unconscious


eta 4–8Hz Imagination

Alpha 8–13Hz Calm consciousness

Beta 13–35Hz Focused consciousness

Gamma >35Hz Peak performance

Simple ad hoc criterion called sparsity measure proposed
in [1] is used in the proposed system to classify the extracted
signal into artifact or not. 
is criterion imposes the high
amplitude and short duration artifact such as EOG and ECG.

In this paper, automatic artifact extraction system is
proposed to clean the brain mixtures from common artifacts.

is topic is identi�ed as being of importance to the workers
in brain signal analysis.

2. EEG Signals and Artifacts


e EEG system measures the brain signals by electrodes
placed on the head surface (scalp); these electrodes (chan-
nels) are commonly arranged based on 10–20 international
system as shown in Figure 1 [24].
is system has been incor-
porated by theAmerican Electroencephalographic Society. In
this system there are two reference points: nasion and inion
to de�ne the electrode location.
e channel name indicates a
speci�c brain regions, (��) frontal polar, (�) frontal, (�) cen-
tral region, (�) parietal, (��) nasopharyngeal, (�) occipital
area, and (�) ear lobe [24, 25].
e neurophysiological signals
measured by EEG have di�erent variation in amplitude,
frequency, and shapes [26]. 
e frequency of EEG signal can
be divided into 5 subbands as shown in Table 1 [11, 24, 27].
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(a) Clean EEG

(b) EEG contaminated by power line noise interference

(c) EEG contaminated by cardiac artifact

(d) EEG contaminated by eye blinks

(e) EEG contaminated by eye movement

Figure 2: Common EEG artifacts waveforms.

EEG signal is highly nonstationary random weak signal
(Figure 2(a)). 
e amplitude of EEG brain signals is divided
into three divisions as shown in

Amplitude = {{{{{
Low < 20 �V
Medium 20 �V to 50 �V
High ≥ 50 �V. (1)


e artifacts represent one of the limitations in brain signal
analysis and may be taken mistakenly as a brain signal. 
e
common artifacts in EEG signal analysis are.

2.1. Power Line Noise Interference. Brain EEG signals are
o�en contaminated by power line noise interference signal
(50 or 60Hz/AC power supply). 
is signal is monomorphic
waveform and distributed in several electrodes. 
e power
line noise signal is generated from wires, light �uorescents,
and other tools in recording system. Usually the torch �uo-
rescents’ light produces an arti�cial spike in recorded signals
frombrain. Figure 2(b) shows the EEG signal submergedwith
power line noise waveform [3, 28].

2.2. Electrocardiography (ECG). 
e cardiac activity is a high
electrical energy explicit e�ect on EEG signals. 
e ECG
artifact is appear like regular spikes in EEG recording process
as shown in Figure 2(c). 
ese types of artifacts may be
clinically misleading [29]. ECG artifact or heartbeat artifacts

Positive (red)

electrode

Negative

(black)

Figure 3: Place of EOG electrodes over single eye.

are produced when an electrode is placed on or near a blood
vessel [27, 30].

2.3. Electrooculogram (EOG). 
e electrical activity pro-
duced by eye blinks or eye movement is known as the
electrooculogram (EOG) artifact or ocular artifact (OA).
e
electrical dipole is generated by positive cornea and negative
retina in the eye and the movements or blinks of human
eye will be changing this dipole to produce EOG artifacts
[19, 31]. Eye blink has spikes shape (Figure 2(d)) while the eye
movements have square shapes (Figure 2(e)). 
e frequency
of eye blink artifact is lower than 4Hz.
e eye blinks have low
propagation but the eye movements have high propagation
[32]. In the clinical interpretation these artifacts should be
removed from EEG data. 
e EOG signal is measured by
EOG electrodes placed above and under eye as shown in
Figure 3 [30].

3. Artifact Rejection Methods

During the recording process the data are contaminated by
di�erent types of artifacts. 
ese artifacts should be removed
before analyzing the EEG signal. 
ere are many techniques
used for this purpose.

3.1. Manual Method. 
is is very simple method to eliminate
the artifacts from EEG mixtures. 
e model for this method
is governed by this condition:

if artifact exists in epoch, then remove corrupted epoch.


e important data will be lost during the removing process,
particularly when limited amount of data are available or
many artifacts submerged in EEG signals [33].
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3.2. FilteringMethod. 
ismethod depends on the analysis of
frequency characteristic of EEG signal and artifacts. 
e fre-
quency features provide ecient information for identifying
the artifacts, but the spectra of artifacts are overlapped with
EEG signal spectra.
erefore, the important datamay be lost
during the �ltering process [34].

3.3. Regression Method. 
e regression method is based
on the subtraction process for removing the artifact from
contaminated EEG. 
e procedure for regression analysis to
remove the ocular artifact is de�ned in [31]. 
e recorded
EEG signal (EEG�) can be described as the sum of original
EEG signal (EEG�) and a fraction (�) of the EOG signal
[31, 35]:

EEG� (�) = EEG� (�) + �EOG (�) , � = 1, 2, . . . ,�.
(2)


e correlation (�) at zero lag between EOG signal and
observed EEG is given by

� = �∑
�=1

EEG� (�)EOG (�) . (3)

Substitute (2) in (3):

� = �∑
�=1

EEG� (�)EOG (�) + � �∑
�=1

EOG (�)EOG (�) . (4)

Equating (3) and (4) provides

�∑
�=1

EEG� (�)EOG (�)
= �∑
�=1

EEG� (�)EOG (�) + � �∑
�=1

EOG (�)2.
(5)

However, in the regression technique, it is assumed that there
is no correlation between the EEG� and EOG; therefore,

�∑
�=1

EEG� (�)EOG (�) = 0. (6)

Substitute (6) in (5):

�∑
�=1

EEG� (�)EOG (�) = � �∑
�=1

EOG (�)2. (7)

From (7) the value of the propagation factor (�) can be
calculated by

� = ∑��=1 EEG� (�)EOG (�)∑��=1 EOG (�)2 . (8)


e EEG� signal can be calculated by inserting the propaga-
tion factor � in (2):

EEG� (�) = EEG� (�) − �EOG (�) , � = 1, 2, . . . ,�.
(9)


e regression approach is very easy in implementation but
some of assumptions should be satis�ed [11, 33, 36].
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Figure 4: Brain signal analysis = BSS problem.
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Figure 5: BSS schematic diagram.

(i) EEG signal and artifacts are uncorrelated.

(ii) 
e EEG signal is a linear combination.

(iii) 
e artifacts must not have any brain activity in order
not to lose data at subtracting process.

(iv) Same propagation factors for di�erent artifacts.

3.4. Blind Source Separation Method. In EEG acquisition
unit, the electrodes are placed on the scalp at close distance
and each electrode sensing amixture of brain stimuli is based
on the distance from the sources as shown in Figure 4 [2].

Many sources (neurons) are stimulated for any action
in the brain and there is no information about the sources
and the mixing procedure which happened inside the brain.
Brain signal analysis is a blind source separation problem
as mentioned in [2]. Typical BSS mixing model is shown in
Figure 5 [18].


e mixing system without noise is

�(�) = �� (�) , (10)

where �(�) = [�1(�), . . . , ��(�)]	 are mixed signals from

sensor (known), �(�) = [�1(�), . . . , ��(�)]	 are source signals
(unknown), superscript � refers to transpose operator, � ∈��×� is a mixing matrix (unknown), and the symbol � is time
or sample index. 
e goal is to recover � from � without
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Table 2: Limitations of artifact removing methods.

Method Limitations

Manual
(i) Lose important data
(ii) Dicult to control on eye blinks and maybe
impossible to avoid it

Filtering
(i) Artifacts are overlapped with EEG
(ii) Lose important data

Regression
(i) Dicult to obtain free reference
(ii) Many assumptions must be satis�ed

BSS

e separation is dicult or cannot if the
amplitudes of the mixtures are comparable

Evolutionary
Stone’s BSS 

Raw 
EEG

data (ESBSS)

Preprocessing

(centring and

whitening)  

Artifact 

detection

Independent 
separated 

component 

Figure 6: Schematic diagram of the automatic artifact extraction
system.

knowing �; to solve this problem the separating matrix �
should be founded to calculate the recovered signals by

� (�) = �� (�) , (11)

where � is a permutation of source signal � up to scaling
factor.

Finally, the limitations summary for each method is
shown in Table 2.

4. Proposed Work

Automatic artifact extraction system is proposed based on
modi�ed Stone’s BSS (called evolutionary Stone’s BSS algo-
rithm (ESBSS)) and artifact detection measure to clean EEG-
brain signals from common artifacts. ESBSS based on the
joint between original Stone’s BSS and genetic algorithms
(GA). For easy reference, the outline of the proposed work
is summarized in Figure 6.

Each block will be explained below.

(i) Raw EEG. Almost the brain electrical activities are
measured by electroencephalography (EEG) device and the
main characteristics of EEG signals are as follows: being
easily recorded by electrodes, being complex-spatiotemporal
signals, being very good in temporal regulation, being
poor in spatial resolution, and depending on the number
of electrodes [37]. 
ese signals are submerged by artifact
signals. Di�erent raw EEG data are taken to test the proposed
system as shown in the result section.

(ii) Preprocessing. 
e raw EEG data are preprocessed by
centering andwhitening techniques tomake the BSS problem

simple and better conditioned [38]. 
e centering process
is very necessary to simplify the BSS estimation; it refers to
centering the received variables by subtracting their sample
mean (12); that is, remove the sample mean from received
vectors and add it a�er recovering the original sources [27]:

� = �́ − � [�́] , (12)

where � is the centered signal; �́ is the received signal; and�[�́] is the expectation of �́.

e whitening process is a linear transformation used to

simplify the calculation by transforming the received vector

(�) to another vector (�̃), whereby thewhitened components
are uncorrelated and their variance equals unity:

� [�̃�̃] =  . (13)

Usually, the eigenvalue decomposition technique of the
covariance matrix is used to obtain the whitening matrix:

�
 = � [�̃�̃	] = �!�	, (14)

where�
 is the covariancematrix, � is the orthogonal matrix
of eigenvector, and! is the diagonal matrix of eigenvalue.


emixingmatrix� is transformed to orthogonalmixing

matrix �̃:
�̃ = �!−1/2�	� = �!−1/2�	�� = �̃�, (15)

where

�̃ = !−1/2�	��. (16)


e calculation of estimate #2 parameters in� is reduced

to # (# − 1)/2 parameters in �̃ [39].

(iii) Evolutionary Stone’s BSSAlgorithm (ESBSS).Evolutionary
Stone’s BSS algorithm is a joint between original Stone’s
BSS and genetic algorithm. 
e half-life parameters (ℎshort,ℎlong) values are generated randomly and tuned by genetic
algorithm to enhance the separation process in original
Stone’s BSS.

Stone’s BSS is based on the temporal predictability mea-
sure (TP) to separate the original sources from their mixture
and its conjecture. 
e conjecture of Stone is as follows: the
TP of any signal mixture %� ≤ 'ℎ*' of any of its components.

is conjecture is used to �nd the weight vector which gives
an orthogonal projection of mixtures [20]. Stone’s measure of
temporal predictability of signal -(�) is de�ned as [20]

� (-) = log
6�7� = log

∑�=1(-long (�) − -(�))2
∑�=1(-short (�) − -(�))2 ,

-short (�) = 8�-short (� − 1) + (1 − 8�) - (� − 1) ,
-long (�) = 8�-long (� − 1) + (1 − 8�) - (� − 1) ,

(17)

where9 is the number of samples of -(�), 8� = 2−1/ℎshort , 8� =2−1/ℎLong , and ℎshort, ℎlong are half-life parameters. 
e half-
life ℎlong of 8� is 100 times longer than corresponding half-
life ℎshort of 8� according to Stone [20], but this limitation
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hshort hlong

Figure 7: 
e chromosome representation.

maybe does not give the optimal solution; therefore the
proposed work used genetic algorithm to �nd the optimum
parameters which satis�ed the better separation between the
components.

GA is used to generate randomly half-life parameters(ℎlong, ℎshort) and tune these values until stopping criteria are
satis�ed instead of �xed values in original Stone’s measure.
Each chromosome consists of two real genes, where the �rst
gene represents short-term half-life parameter ℎshort and the
second gene represents long-term half parameter ℎlong as
shown in Figure 7.


e parameters of the genetic algorithm are

(i) maximum number of generations = 20,

(ii) population size (pop.) = 40,

(iii) length of chromosome = 2,

(iv) probability of crossover = 0.95,

(v) probability of mutation = 0.05,

(vi) �tness function:

Fit (-) = 1 (-) + : = 1∑��=1;(-�) − ; (-1, -2, . . . , -�) ,
(18)

where -1, . . . , -� are separated signals, ; is the entropy of
the signals,  (-) represent the mutual information calculated
using the concept of di�erential entropy between # signals,
and : is a constant value (0.0001).


e mutual information is always nonnegative and zero
if the components (-1, . . . , -�) are statistically independent.

e epsilon (:) constant is added to  (-) in the denominator
of the �tness function to avoid the in�nity case.
ede�nition
of the �tness function parameter (Fit) is the key point in the
performance of genetic algorithm [40].

GA attempts to maximize the �tness function by min-
imizing the mutual information  (-) between the compo-
nents and is signi�cantly successful at this task. 
erefore
the inverse of the mutual information will be taken as a
�tness function (18). 
e dependence among the separated
components isminimizedwhen the �tness ismaximized [41].

For easy reference, the �owchart of the ESBSS is depicted
in Figure 8.


e separated signals are calculated by -(�) = ?	� �(�),� = [?1, ?2, . . . , ?�]; then (17) is rewritten as

� (-�) = log
?��long


 ?	�?��short


 ?	� , (19)

End

Start

Original Stone’s BSS

Obtain the separated signals 

Initialization: 

Generate randomly 

parameters

Calculate the �tness function (18) 

Produce new population by 

selection; crossover; mutation and update it

Stopping 

criterion?

Get optimum solution 

Yes

No

Rearrange �tness and corresponding solution

Max. no. of gen. = 20, pop. size = 40, length of
chromosome = 2, PC = 0.95, PM = 0.05

short-term and long-term half-life (hshort ; hlong)

Gen. > 20

Figure 8: Evolutionary Stone’s BSS Algorithm.

where�long


 is a long-term covariancematrix (9×9) between

signal mixtures;�short


 is a short-term covariance matrix (9×9) between signal mixtures; �long


�
� and �short

�
� between %th and@th mixtures:

�short

�
� = ∑

�
(��� − �short

�� ) (��� − �short
�� ) ,

�long

�
� = ∑

�
(��� − �long

�� ) (��� − �long
�� ) .

(20)


e main aim is to maximize Rayleigh’s quotient (�(-�))
to yield unmixing vectors; thereby generalized eigenvectors

of �long


 [�short



 ]−1 are considered to solve this problem [20,
21, 42]; to �nd the eigenvectors (�1,�2,�3, . . . ,��) of
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matrix (�short−1�long)which are orthogonal in the covariance
matrices,

���short ��� = 0,
���long ��� = 0, (21)

where

���short��� = ∑
�
(-�� − -short

�� ) (-�� − -short
�� ) ,

���long��� = ∑
�
(-�� − -long

�� ) (-�� − -long
�� ) . (22)

When short-term half-life parameter ℎshort is toward zero
value (ℎshort → 0):

-short
� ≈ -�−1,

(-� − -short
� ) ≈ E��EF = ́-�. (23)

Also when long-term half-life parameter ℎlong is toward
in�nity (ℎlong → ∞) and - has zero mean, the long-term
mean is

-long ≈ 0,
(-� − -long

� ) ≈ -�. (24)

Now under these conditions the expectation for -� and -� is
equal to zero:

� [-�-�] = 0. (25)


erefore, this indicates that each recovered signal -�
which can be calculated by -� = ��� is uncorrelated with
every other signal -� which is also calculated by -� = ���;
also if-� and-� are independent, then the expectation value is
also zero.
ismethod is powerful for any linearmixture with
statistically independent signals and is guaranteed to separate
the independent components. Also the temporal derivative of
each recovered signal is uncorrelated with every one and the
expectation value equals zero:

� [ ́-� ́-�] = 0. (26)


e separating matrix � is calculated by Matlab eigenvalue
function as

� = eig (�long�short) . (27)

One of the advantages of Stone’s BSS is to simplify the
BSS problem into generalized eigenproblem [22].

(i) Artifact Detection. 
e artifact detection process is
based on simple ad hoc criterion called sparsity measure (28)
which is implemented by [1].

(ii) Consider

Sparsity (-(�)) = max [IIIIII-(�)� IIIIII]
std [-(�)� ] log( std [-(�)� ]

median [IIIIII-(�)� IIIIII]) ,
(28)

where -(�) = [-(�)1 , . . . , -(�)� ] is the @th components, 9 is the
number of samples in the frame, std is the standard deviation,
and % is the time index.


is criterion imposes that the artifacts with high ampli-
tude have short duration compared with selected frame
length; this is called sparse in a time domain [1]. 
e sparsity
value equals 2.5 for super-Gaussian artifact (i.e., EOG and
ECG) as mentioned in [1] but for sub-Gaussian signal (i.e.,
power line noise interference) it is less than 1 as concluded
from the simulation and experimental results.

5. Results

Simulated and real EEG data are tested by the proposed
system.
e performance of the simulated and semisimulated
data is evaluated by interference signal ratio ISR (29) and a
cross-correlationmeasure between the original and estimated
artifacts:

ISR� = 10 log
� [(�� (�) − -� (�))2]� [(�� (�))2] , (29)

where �(�) is the original signals,-(�) is the recovered signals,
and � is the time or sample index.


e result of the separating process is better whenever
the ISR measure is less. For real EEG data the ISR measure
is not applicable because there is no information about
the original sources. 
erefore, EOG electrodes (vEOG and
hEOG) are used to measure the face activity (artifacts)
and then compare these artifacts with extracted artifacts.

e results are compared with the di�erent BSS algorithms
(EFICA [43], original Stone’s BSS [20], FICA, SOBI, and
JADE). 
e power line noise interference 50 Hz is separated
as a biological artifact; that is, there is no notch �lter used
during the recording process in order not to lose any useful
information around 50Hz, where the gamma band (25–
100Hz) lies within the notch �lter range.

5.1. Simulation Results. Simulated EEG signal and common
artifacts (LN, EOG, and ECG) are generated in Matlab
program based on [2, 44, 45].

For easy reference, the procedure is divided into four
steps.

Step 1 (generate arti�cial sources.) EEG signal is very weak
compared with artifacts. It is highly nonstationary random
signal and notable in the frequency domain characteristics.
Almost the artifacts have high amplitude and are localized in
the time and/or in frequency domains [46]. 
e simulation
of EEG signal and di�erent types of artifacts is implemented
based on the characteristics of each signal. Predominantly
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Figure 9: Arti�cial sources: (a) EEG, (b) line noise, (c) eye blink
artifact, and (d) heartbeat artifact.

two theories are widely used to generate simulated EEG
signals: classical and phase-resetting theories [2, 44, 45]. In
classical theory, the peaks in event-related potential (ERP)
waveforms re�ect phasic bursts of activity in one or more
brain regions that are triggered by experimental events of
interest. Speci�cally, it is assumed that an ERP-like waveform
is evoked by each event, the ERP “signal” is buried in ongoing
EEG signal “noise.”

In the phase-resetting theory, the experimental events
reset the phase of ongoing oscillations [44]. 
e phase-
resetting method which is proposed in [44] is used
here to generate the data. Figure 9 shows the simulated
original arti�cial signals (�) for EEG and di�erent types of
artifacts EOG, ECG, and LN. Eye blink artifact is simulated
using Sinc function [45, 47], ECG artifact is simulated
using ecg function in Matlab, and the power line noise
interference is simulated based on sinusoidal function
(50Hz). Figure 10 shows the signals with zero mean and unit
variance.

Step 2 (mixing process). 
e signals are mixed randomly by
mixing matrix � to produce mixture �. All the possibilities
of the mixing process are taken as shown in the schematic
diagram of the mixing (Figure 11) in order to cover all the
expected mixtures and to produce di�erent types of mixtures
(Figures 12, 13, 14, 15, and 16).
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Figure 10: Arti�cial source with zero mean and unit variance.

Step 3 (extraction process.) 
e EEG signals considered a
projection of a group of mixed signals from brain data
and artifact. 
e main challenge in the human brain signal
analysis is to clean the EEG data from common artifacts by
separating themixture into its individual components. ESBSS
algorithm is used to extract the artifact signals from brain
mixture. Very good extraction results are obtained by ESBSS
as shown in Figures 17, 18, 19, 20, and 21. In these �gures the
extracted signals are shi�ed vertically for display purposes.


e comparison of ISR value for di�erent BSS algorithms
is shown in Tables 3, 4, 5, 6, and 7. ESBSS algorithm is
surpassed signi�cantly for other BSS algorithms as shown in
Tables 8, 9, 10, 11, and 12.

Step 4 artifact Detection. Sparsity measure is used to detect
the artifacts as mentioned in the proposed work section.
Table 13 classi�es the separated components based on sparsity
value. For power line noise the sparsity value is very low (less
than 1) but for EOG or ECG artifacts the sparsity value is high
(more than 2.5) [1].

5.2. Semisimulated Data. Real EEG signals are apparently
artifact-free signals recorded from a newborn individual
with active sleep (Figures 22(a1) and 22(a2)). 
ese signals
are mixed randomly (Figure 23) with simulated artifacts to
produce contaminated data (Figure 24). 
e real EEG data
are available in http://sisec2010.wiki.irisa.fr/. Sinc function
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Figure 11: Schematic diagram of mixing process.

0 500 1000 1500 2000 2500
−5

0

5

Time (s)

0 500 1000 1500 2000 2500
−4

−2

0

2

4

Time (s)

A
m

p
li

tu
d

e 
(�

V
)

A
m

p
li

tu
d

e 
(�

V
)

Figure 12: Mixture 1 (EEG + LN).

is used to produce the shape of eye blinking artifact [45].
Heartbeat artifact is simulated by ecg function in Matlab; the
power line noise interference is simulated by sin function.

Figure 25 shows the original source signals and corre-
sponding recorded signals using the ESBSS algorithm shi�ing
vertically for display purposes.

0 500 1000 1500 2000 2500
−4

−2

0

2

4

6

Time (s)

0 500 1000 1500 2000 2500
−10

0

10

Time (s)

A
m

p
li

tu
d

e 
(�

V
)

A
m

p
li

tu
d

e 
(�

V
)

Figure 13: Mixture 2 (EEG + EOG).
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Figure 14: Mixture 3 (EEG + ECG).
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Figure 15: Mixture 4 (EEG + LN + EOG).
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Figure 16: Mixture 5 (EEG + LN + ECG).
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Figure 17: Source with its recovered signal using ESBSS shi�ed
vertically for display purposes: (a) EEG signal; (b) LN.
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Figure 18: Source with its recovered signal using ESBSS shi�ed
vertically for display purposes: (a) EEG signal; (b) EOG artifact.
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Figure 19: Source with its recovered signal using ESBSS shi�ed
vertically for display purposes: (a) EEG signal; (b) ECG artifact.


e performance of the ESBSS algorithm is evaluated
by interference to signal ratio ISR as shown in Table 14.
Another performance evaluation measure based on cross-
correlation between original and the estimated artifact is
shown in Table 15.


e sparsity value is used to indicate the artifact com-
ponents; for short-duration artifacts (i.e., eye blinking and
heartbeat) the sparsity value should exceed 2.5 [1], but for
line noise interference it should not exceed 1.
erefore, if the
sparsity value for any separated component lies within this
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Figure 20: Source with its recovered signal using ESBSS shi�ed
vertically for display purposes: (a) EEG signal; (b) LN; (c) EOG
artifact.
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Figure 21: Source with its recovered signal using ESBSS shi�ed
vertically for display purposes: (a) EEG signal; (b) LN; (c) ECG
artifact.

limitation (2.5 ≤ SP ≤ 1), then the separated component is
artifacts as shown in Table 16.

5.3. Real Data with 8 Channels. Real EEGdata are taken from
computerized EEGdevice. Two studies are implementedwith
the main goal being to extract the artifact as independent
components. 
e brain signals are recorded from six elec-
trodes (��1, ��2, �3, �4, �1, and �2) placed on the scalp
according to 10–20 system with a ground placed at �� as
shown in Figure 26; the sampling rate is 256Hz. Furthermore,
the EOG electrodes (vEOG and hEOG) are used to measure
EOG activity from eyes; these electrodes are placed above
and on the side of the le� eye socket. 
e EOG channels
(vEOG and hEOG) are used to assess the performance of the
proposed system.
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Table 3: ISR measure for separating Mixture 1.

BSS methods
ISR ISR

meanLN EEG

EBSS −34.8361 −86.3115 −60.5738
EFICA −35.2846 −60.5163 −47.9005
Stone −34.0042 −52.2436 −43.1239
FICA −33.8766 −55.8967 −44.8867
SOBI −33.3401 −50.8478 −42.094
JADE −33.3296 −50.7693 −42.0495

Table 4: ISR measure for separating Mixture 2.

BSS methods
ISR ISR

meanEOG EEG

EBSS −28.9238 −74.2053 −51.5646
EFICA −26.7285 −73.1821 −49.9553
Stone −48.3132 −67.3195 −57.8164
FICA −32.3676 −31.2014 −31.7845
SOBI −30.7037 −29.4485 −30.0761
JADE −30.7178 −29.4607 −30.0893

Table 5: ISR measure for separating Mixture 3.

BSS methods
ISR ISR

meanECG EEG

EBSS −19.3825 −47.0354 −33.209
EFICA −19.1334 −45.2645 −32.199
Stone −13.6593 −19.2579 −16.4586
FICA −26.0624 −26.2457 −26.1541
SOBI −29.4528 −23.7752 −26.614
JADE −29.4542 −23.7745 −26.6144

Table 6: ISR measure for separating Mixture 4.

BSS methods
ISR ISR

meanLN EOG EEG

EBSS −27.9257 −66.5205 −72.5359 −55.6607
EFICA −26.1559 −60.1094 −71.5945 −52.6199
Stone −33.9812 −52.7812 −64.4604 −50.4076
FICA −30.3523 −55.9096 −31.3082 −39.19
SOBI −28.7800 −49.5674 −29.4057 −35.9177
JADE −30.6898 −34.2503 −29.4202 −31.4534

Table 7: ISR measure for separating Mixture 5.

BSS methods
ISR ISR

meanLN ECG EEG

EBSS −19.2476 −74.9845 −31.2020 −41.8114
EFICA −19.0203 −59.8420 −31.1511 −36.6711
Stone −22.0368 −51.4257 −29.6362 −34.3662
FICA −24.5847 −55.4876 −23.1855 −34.4193
SOBI −27.6806 −17.7063 −18.3194 −21.2354
JADE −28.9144 −17.9272 −18.5233 −21.7883
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Table 8: Correlation measure (Mixture 1).

BSS methods

LN with:

Mixture 1 Estimated sources

M1 M2 LN EEG

EBSS 0.9579 0.9994 1.0000 0.0321

EFICA 0.9579 0.9994 1.0000 0.0319

Stone 0.9579 0.9994 1.0000 0.0324

FICA 0.9579 0.9994 1.0000 0.0324

SOBI 0.9579 0.9994 1.0000 0.0327

JADE 0.9579 0.9994 1.0000 0.0327

Table 9: Correlation measure (Mixture 2).

BSS methods

EOG with:

Mixture 2 Estimated sources

M1 M2 EOG EEG

EBSS 0.9579 0.9994 1.0000 0.0319

EFICA 0.9579 0.9994 1.0000 0.0321

Stone 0.9579 0.9994 1.0000 0.0324

FICA 0.9579 0.9994 1.0000 0.0324

SOBI 0.9579 0.9994 1.0000 0.0327

JADE 0.9579 0.9994 1.0000 0.0327

Table 10: Correlation measure (Mixture 3).

BSS methods

ECG with:

Mixture 3 Estimated sources

M1 M2 ECG EEG

EBSS 0.9579 0.9994 1.0000 0.0321

EFICA 0.9579 0.9994 1.0000 0.0319

Stone 0.9579 0.9994 1.0000 0.0324

FICA 0.9579 0.9994 1.0000 0.0324

SOBI 0.9579 0.9994 1.0000 0.0327

JADE 0.9579 0.9994 1.0000 0.0327

Table 11: Correlation measure (Mixture 4).

BSS methods

LN with: EOG with:

Mixture 4 estimated sources Mixture 4 Estimated sources

M1 M2 M3 LN EOG EEG M1 M2 M3 LN EOG EEG

EBSS 0.1628 0.3007 0.8638 1.0000 0.0321 0.0093 0.8342 0.3167 0.3555 0.3339 1.0000 0.0092

EFICA 0.1628 0.3007 0.8638 1.0000 0.0319 0.0093 0.8342 0.3167 0.3555 0.3336 1.0000 0.0093

Stone 0.1628 0.3007 0.8638 1.0000 0.0323 0.0093 0.8342 0.3167 0.3555 0.0092 1.0000 0.3348

FICA 0.1628 0.3007 0.8638 1.0000 0.0097 0.0324 0.8342 0.3167 0.3555 0.9996 1.0000 0.0092

SOBI 0.1628 0.3007 0.8638 1.0000 0.0103 0.0327 0.8342 0.3167 0.3555 0.9994 1.0000 0.0093

JADE 0.1628 0.3007 0.8638 1.0000 0.0344 0.0103 0.8342 0.3167 0.3555 0.3341 1.0000 0.0107


e ISR index is not applicable for real EEG data because
the mixing process is unknown. 
erefore, the correlation
measure is used to calculate the correlation between extracted
artifacts and the recorded artifacts (i.e., EOG channels).

e sparsity measure is used to classify the separated com-
ponents signal into artifact or not [48].

5.3.1. Data Set I. 
e EEG signals are contaminated by eye
blink artifact and power line noise 50Hz. Eye blinking artifact
is clearly in the frontal channels (��1, ��2) and decreased
in the distance of the electrodes from the eye. All the EEG
channels are contaminated by power line noise 50 Hz but
with strongly di�erent contamination. Power line noise is
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Table 12: Correlation measure (Mixture 5).

BSS methods

LN with: ECG with:

Mixture 5 estimated sources Mixture 5 Estimated sources

M1 M2 M3 LN ECG EEG M1 M2 M3 LN ECG EEG

EBSS 0.7835 0.0980 0.8406 1.0000 0.0329 0.0203 0.6273 0.5379 0.3951 0.1200 1.0000 0.0365

EFICA 0.7835 0.0980 0.8406 1.0000 0.0328 0.0203 0.6273 0.5379 0.3951 0.1199 1.0000 0.0366

Stone 0.7835 0.0980 0.8406 1.0000 0.0574 0.0331 0.6273 0.5379 0.3951 0.1215 1.0000 0.0365

FICA 0.7835 0.0980 0.8406 1.0000 0.0329 0.0839 0.6273 0.5379 0.3951 0.1225 1.0000 0.0365

SOBI 0.7835 0.0980 0.8406 1.0000 0.1304 0.0331 0.6273 0.5379 0.3951 0.1233 1.0000 0.1232

JADE 0.7835 0.0980 0.8406 1.0000 0.0316 0.1270 0.6273 0.5379 0.3951 0.1235 1.0000 0.1202

Table 13: Types of separated signals from simulated mixtures of the proposed algorithm using sparsity measure.

Signals
Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5-1 -2 -1 -2 -1 -2 -1 -2 -3 -1 -2 -3

Sparsity value 0.2731 1.7983 10.5601 1.9832 11.9361 1.7809 0.5172 9.6739 2.1691 0.3871 8.6791 2.1479

Type of signal
based on sparsity

LN
Brain
signal

Artifact
Brain
signal

Artifact
Brain
signal

LN Artifact
Brain
signal

LN Artifact
Brain
signal
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Figure 22: EEG and artifact signals.

pronounced on the central and occipital channels (i.e., �3,�4, �1, and �2) [48] as shown in Figure 27(a). By very
good extraction of the line noise interference and eye blink
artifact by the ESBSS algorithm, the line noise is concentrated

EEG Random 

mixing 
model A

EEG

LN

EOG

ECG

X1
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X5

Figure 23: Schematic diagram of the mixing process.
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Figure 24: Contaminated signals (mixtures).
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Figure 25: Recorded and corresponding recovered signals by EBSS shi�ed vertically for display purposes.
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Figure 26: Placement of electrodes.

and separated in IC1 (Figure 28) and the eye blink artifact
is clearly isolated in IC6 as shown in Figure 28. Table 17
shows the correlation between vEOG channel (Figure 27(b))
and extracted eye blink artifact component (IC1) (Figure 28).

e correlation result illustrates that the ESBSS algorithm
is more powerful than other BSS algorithms to extract
the eye blinking artifact. Table 18 shows type of separated
components based on sparsity value, where IC1 is a power
line noise because its value is very low (less than 1), and the
IC6 is classi�ed as the artifact signal due to high sparsity value
(more than 2.5).


e result is also con�rmed by power spectra of the
mixture signals and extracted components. As mentioned
above, all channels are interference with line noise 50 Hz,

particularly �1, �2, �3, and �4 as shown in Figure 29. 
e
frequency components of the extracted signals showed that
the power line noise was successfully extracted by ESBSS as
shown in Figure 30.

5.3.2. Data Set II. 
e EEG channels are contaminated
by eye movement (eye muscle artifact) and eye blinking
artifact as well as by power line noise interference during
the recording process. Eye muscle artifacts present in all
channels; eye blink artifacts appear strongly in the frontal
channels and the power line noise 50 Hz strongly appears
on the central and occipital channels as shown in Figure 31.
Good extraction of the artifacts by EBSS algorithm is shown
in Figure 32. 
e line noise is concentrated and separated in
IC1, and the eye muscle artifact is isolated in IC5 and the
eye blink artifact is clearly isolated in IC6. 
e performance
of the proposed system is tested by the correlation between
EOG channels (Figure 31(b)) with the extracted artifacts as
shown in Table 19. 
e sparsity value is used to indicate the
artifact components as shown in Table 20. 
e frequency
components of the EEG data and extracted components
around 50 Hz range showed that the power line noise is
successfully isolated as shown in Figures 33 and 34.

5.4. Real EEGwith 19 Channels. Real EEG data contaminated
by power line noise interference and EOG artifact (eye
blink) are measured by computerized EEG device in Ibn-
Rushd Hospital, Baghdad, Iraq. 
e computerized EEG is
a computer with a PCI card of data acquisition unit that
acquires the signals from the scalp through macroelectrodes
as shown in Figure 35.
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Table 14: Compression of ISR.

BSS methods
Interference signal ratio (ISR) for estimating signals (-1, -2, -3, -4, and -5) ISR mean-1 -2 -3 -4 -5

EBSS −5.5877 −11.8889 −33.9764 −21.9881 −21.3926 −18.9667
EFICA −4.9921 −9.9699 −28.9281 −21.9773 −18.8879 −16.9511
Stone −4.1781 −10.3881 −33.8844 −13.1918 −21.1616 −16.5608
FICA −4.5967 −9.6643 −16.427 −21.0723 −15.8339 −15.7494
SOBI −3.9981 −13.891 −16.1158 −20.7612 −18.1621 −14.5856
JADE −3.8818 −13.743 −16.7134 −20.8741 −17.8801 −14.6185

Table 15: Comparison of correlation measure.

BSS
Correlation between original and estimated artifact

Line noise
LNEstimated

Eye blink
EOGEstimated

Heartbeat
ECGEstimated

EBSS 0.9999 0.9980 0.9992

EFICA 0.9948 0.9971 0.9971

Stone 0.9998 0.9877 0.9962

FICA 0.9547 0.9961 0.9870

SOBI 0.9331 0.9851 0.9934

JADE 0.9893 0.9959 0.9927

Table 16: Types of separated signals from semi simulated mixtures of the proposed algorithm using sparsity measure.

Signals
Recovered signals-1 -2 -3 -4 -5

Sparsity value 1.9871 1.8872 0.3411 8.98321 12.9712

Type of signal
based on sparsity

Brain
signal

Brain
signal

LN Artifact Artifact

One healthy subject, male, 24 years old, participated in
this study. EEG signals were measured using 19 electrodes
used to measure the brain signals placed on the scalp
according to 10–20 system and referenced against forehead
[27]. According to the speci�cation of computerized EEG
device the recorded signals were digitized at 256Hz, and trail
length is 10 Sec (10 sec × 256Hz = 2560 sampls), during
which the subject was allowed to perform eyes blink artifacts.


eblock diagramof the proposed procedure is explained
in Figure 36.

A�er the EEG trace has been �nished, it can be saved as
an ASCII code from

File > Export >.

is ASCII �le can be opened using the Notepad program.
Figure 37 shows the EEG trace arranged in columns (the
sequences of channels are prede�ned). 
e data is imported
into Microso� Excel program to delete the �rst column that
contains the timing information and to delete the channel’s
names as shown in Figure 38, and then the data is imported
into Matlab.

Figure 39 shows the contaminated signals; these signals
are preprocessed for simpli�cation as shown in Figure 40.
ESBSS and di�erent BSS algorithms were applied to 19

Table 17: Correlation measure between vEOG and eye blinking
artifact for di�erent types of BSS.

BSS Correlation between vEOG and estimated eye blink
artifact

EBSS 0.9997

EFICA 0.9981

Stone 0.9767

FICA 0.9554

SOBI 0.9555

JADE 0.9777

channels of 10-second data to extract the power line noise
50Hz and eye blink artifact. Figure 41 represents the extracted
components by ESBSS algorithms. 
e eye blink artifact
is separated successfully in IC1 and the power line noise
interference is separated in IC7 without using notch �lter.

e performance of the proposed system is evaluated by the
correlationmeasure between EOG channel and the estimated
artifact as shown in Table 21. 
e separated signals are
classi�ed based on sparsity measure as shown in Table 22.
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Figure 27: Data set I with zero mean and unit variance: (a) EEG electrodes; (b) EOG electrodes.
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Figure 28: Separated components for Data set I by ESBSS.
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Figure 29: Frequency components of the recorded EEG channels (Data set I) around 50 Hz frequency.
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Figure 30: Frequency components of the extracted components for Data set I around 50 Hz frequency.

Table 18: Types of separated signals from data set I of the proposed
algorithm using sparsity measure.

IC Sparsity Type of IC

IC1 0.1641 Line noise

IC2 1.5678 Brain signal

IC3 1.4921 Brain signal

IC4 1.7374 Brain signal

IC5 1.9785 Brain signal

IC6 11.5523 Artifact

6. Conclusion

Automatic artifact extraction system is proposed based on
evolutionary Stone’s BSS algorithm ESBSS. 
e system has
been proven to be a powerful technique for extracting
both super-Gaussian signal and sub-Gaussian signal from
brain EEGmixtures automatically and simultaneously. ESBSS
was shown to perform better than di�erent types of blind
source separation algorithms as demonstrated in simulated
and experimental results. 
e proposed system solves many
problems by the hybridization process between the original
BSS and genetic algorithm. Almost the previous works in
the artifact extraction �eld used notch �lter as a preprocess-
ing step to remove power line noise but, in the proposed
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Table 19: Correlation measure between EOG channels and the extracted artifacts for di�erent BSS.

BSS algorithms
Correlation between vEOG and
estimated eye blink artifact

Correlation between hEOG and
estimated eye muscle artifact

EBSS 0.9953 0.9899

EFICA 0.9844 0.9811

Stone 0.9759 0.9801

FICA 0.9713 0.9759

SOBI 0.9704 0.9788

BGSEP 0.9901 0.9789

JADE 0.9622 0.9721

Table 20: Types of separated signals from data set II of the proposed algorithm using sparsity measure.

Components Sparsity Type of IC

IC1 0.1521 Line noise

IC2 1.4997 Brain signal

IC3 1.2434 Brain signal

IC4 1.7249 Brain signal

IC5 4.9024 Artifact

IC6 5.4787 Artifact

Table 21: Performance measure based on cross-correlation measurement.

BSS methods Correlation between vEOG and estimated eye blink (IC1)

EBSS 0.9956

EFICA 0.9511

Stone 0.9134

FICA 0.8926

SOBI 0.8819

JADE 0.8001

Table 22: Types of separated signals from real EEG data (19 channels) of the proposed algorithm using sparsity measure.

IC Sparsity Type of IC

IC1 11.476 Artifact

IC2 2.0036 Brain signal

IC3 2.1521 Brain signal

IC4 1.9057 Brain signal

IC5 2.1731 Brain signal

IC6 1.9003 Brain signal

IC7 0.2426 LN

IC8 2.1129 Brain signal

IC9 1.3741 Brain signal

IC10 2.2244 Brain signal

IC11 1.5671 Brain signal

IC12 1.9621 Brain signal

IC13 1.2986 Brain signal

IC14 1.0013 Brain signal

IC15 1.1021 Brain signal

IC16 1.0318 Brain signal

IC17 1.0119 Brain signal

IC18 1.0093 Brain signal

IC19 1.0014 Brain signal
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Figure 31: Data set II with zero mean and unit variance: (a) EEG electrodes; (b) EOG electrodes.

0 500 1000 1500 2000 2500
−2

0

2

Time (s)

0 500 1000 1500 2000 2500
−5

0

5

Time (s)

0 500 1000 1500 2000 2500
−5

0

5

Time (s)

0 500 1000 1500 2000 2500
−5

0

5

Time (s)

0 500 1000 1500 2000 2500
−5

0

5

Time (s)
0 500 1000 1500 2000 2500

−5

0

5

Time (s)

A
m

p
li

tu
d

e 
(�

V
)

A
m

p
li

tu
d

e 
(�

V
)

A
m

p
li

tu
d

e 
(�

V
)

A
m

p
li

tu
d

e 
(�

V
)

A
m

p
li

tu
d

e 
(�

V
)

A
m

p
li

tu
d

e 
(�

V
) (IC1) (IC2)

(IC3) (IC4)

(IC5) (IC6)

Figure 32: Separated components by ESBSS.
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Figure 33: Frequency components of the recorded EEG channels (Data set II) around 50 Hz frequency.
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Figure 34: Frequency components of the extracted components for Data set II around 50 Hz frequency.

Figure 35: Computerized EEG system (Ibn-Rushd Hospital, Baghdad, Iraq).
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Figure 36: Flowchart of the overall system process.
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Figure 38: 
e Excel window that contains the EEG trace.

system, there is no �lter used in order not to lose any
information. 
e results obtained by the ESBSS algorithm
are encouraging and can be used to extract other types of
artifacts.
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Figure 39: Signals measured by a computerized EEG device, �-axis represent signal amplitude in microvolt and --axis represent time in
second.
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Figure 40: Measured signals with unite mean and unite variance, �-axis represent signal amplitude in microvolt and --axis represent time
in second.
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Figure 41: Separated signals by ESBSS algorithm.
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