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Abstract. A testbed for automatic face recognition shows an eigenface
coding of shape-free texture, with manually coded landmarks, was more
effective than correctly shaped faces, being dependent upon high-quality
representation of the facial variation by a shape-free ensemble. Configu-
ration also allowed recognition, these measures combine to improve per-
formance and allowed automatic measurement of the face-shape. Carica-
turing further increased performance. Correlation of contours of shape-
free images also increased recognition, suggesting extra information was
available. A natural model considers faces as in a manifold, linearly ap-
proximated by the two factors, with a separate system for local features.

1 Aims

In machine based face recognition, a gallery of faces is first enrolled in the system
and coded for subsequent searching. A probe face is then obtained and compared
with each face in the gallery; recognition is noted when a suitable match occurs.
The challenge of such a system is to perform recognition of the face despite
transformations, such as changes in angle of presentation and lighting, common
problems of machine vision, and changes also of expression and age which are
more special. The need is thus to find appropriate codings for a face which can
be derived from (one or more) images of it, and to determine in what way, and
how well two such codings match, before the faces are declared the same.

A number of face recognition systems have become available recently which
propose solutions to these problems, and a natural concern has been the sys-
tems’s overall performance [13, 7, 10, 3, 12, 11]. Although the choice of coding
and matching strategies differ significantly, the greatest source of variability is
probably the selection of the faces to test, and the choice of transformation be-
tween target and probe over which the system performs recognition. The FER-
RET database, a potential standard, is currently only available within the USA.

In this paper we seek to avoid some of these difficulties by fixing a matching
strategy and testing regime, and concentrating on the first of these problems; to
find effective codes for recognition. Our concern is then no longer how well we
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can recognise; indeed for our purposes, a testing regime with a low recognition
rate is of most interest: our interest is in comparing different coding strategies.

2 Coding via Principal Component Analysis

We contrast simple image-based codings with eigenface codings, derived from
Principal Component Analysis. Eigenface codings were used to demonstrate pat-
tern completion in a net based context [9, Page 124], to represent faces econom-
ically [8], and explicitly for recognition [13]. Much subsequent work has been
based on eigenfaces, either directly, or after preprocessing [5, 12, 11].

While undoubtedly successful in some circumstances, the theoretical founda-
tion for the use of eigenfaces is less clear. Formally, Principal Component Analy-
sis assumes that face images, usually normalised in some way, such as co-locating
eyes, are usefully considered as (raster) vectors. A given set of such faces (an
ensemble), is then analysed to find the “best” ordered basis for their span. Some
psychological theories of face recognition start from such a norm-based coding;
an appropriate model may be a “face manifold” [5], and the usual normalisation
is then seen as a local linear approximation, or chart, for this manifold. Since a
chart is a local diffeomorphism, and has its range in a linear space, the average
of two sufficiently close normalised faces should also be a face.

Clearly existing normalisation techniques approximate this property, but a
more elaborate one [14] has recently become prominent as the way to perform a
“morph” between two faces. Landmarks give a description of each face’s shape;
there is a natural way to average landmark positions, and then to map the face
texture onto the resulting shape. We describe this as a decomposition into shape
configuration and shape-free texture vectors. The main aim of our paper is to
show that this coding produces significantly better recognition results.

Our methodology starts with face images on which a collection of landmarks
have been located. Our first tests use manual location; automatic location, and
the corresponding results are discussed in Section 4. Eigenfaces are computed
from an ensemble of faces which have no further réle; the gallery and probe
faces are coded in these terms. Each probe face has one other image in the
gallery, the target; our interest is in when the target best matches the probe.

Fourteen images of each of 27 people were acquired under fairly standardised
conditions, referred to as Conditions 1 to 14. An initial set of 10 images was
acquired on a single occasion: those in Conditions 1 to 4 were lit with good flat
controlled lighting; later conditions have increasingly severe lighting and pose
variations. Four images were acquired between one and eight weeks later: the
first, Condition 11, in lighting conditions similar to Condition 1; subsequent ones
with increasing differences. Condition 14 is the only image lit with a significant
amount of natural, uncontrolled, light. Fig. 1 shows some of the variability.

The 27 images in Condition 1 provide our fixed gallery. The remaining 13
conditions provide 351 probes. Using all faces as probes avoids that differences
in ease of recognition. An additional 50 faces were collected only in Condition 1
and are used as ensemble images, from which the eigenfaces are generated.
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Fig. 1. Conditions 1,4,8,12 and 14.

All the images are processed in the same way. Thirty-four landmarks are
found manually, giving a triangulation, or face model, part of which can be seen
in Fig. 2. A (uniformly) scaled Euclidean transformation is applied, minimising
the error between these and corresponding points on a reference face, giving nor-
malised images. The background is removed and the histogram of the remaining
pixel values flattened. When the face image includes the hair, featural informa-
tion in the hair can allow good short term recognition. To avoid this, the face
model is used to extract an image, containing “inner features” only, as in Fig. 2.
Essentially all the results reported are for such images of 2557 pixels.

Fig. 2. Inner face showing the facial locations. The mask is enlarged to show the points.

A Principal Component Analysis is performed on the resulting ensemble,
obtaining eigenvalues and unit eigenvectors (or eigenfaces) of the image cross-
correlation matrix. The orthonormality of the eigenfaces allows the computation
of the weight of any (normalised) face on each eigenface, giving an n-tuple or
code. A coded probe image and the gallery codes are then compared. One method
uses nearest neighbour matching in the ensemble span, and a natural metric is
the Euclidean distance, leading to template matching within the span Another
natural choice is the Mahalanobis distance, where d(x, y Z /\ (x; — u:)?,

where {A;} is the sequence of eigenvalues. This treats variations on each axis as
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equally significant, arguably better for discrimination.

A more robust scheme uses match strength to reduce false acceptances. One
such has a sequence of match scores {c;} between the gallery images and the
probe[10]. The best match gives the lowest score, cp; the next ¢;. The mean p
and standard deviation o of the sequence excluding ¢y are calculated and define
two inequalities, cp < ¢1 — t10 and ¢y < p ~ t10, for fixed thresholds ¢, and
tg, which must both be met to accept a match. A correct match is reported
as a clear hit if this criterion is met, and just a hit otherwise, similarly for
misses. The distances between the Condition 2 probes and the gallery (minus the
target) set ¢ and t; which were calculated for each probe and the largest values
independently chosen. This ensured that in the best, base, condition there were
no “clear misses”; although conservative, there are cases where these do occur.

3 Results

We group Conditions 2, 3 and 4, describing this as “Immediate” recognition.
Conditions 5, 6 and 7 form a similar set, called “Variant”, with small changes in
lighting and position. More fundamental lighting changes distinguish the “Light-
ing” group, Conditions 8, 9 and 10. Finally the four conditions with delayed im-
age acquisition, are called “Later”. A weighted average gives the “Overall” value;
since the latter conditions are more important, the “Lighting” group has twice
the weight of “Immediate” or “Variant”, and “Later” four times the weight.

Our main interest is the comparison between scaled Euclidean normalisation,
and the more intrusive shape-free form; and the contrast between these and a
pure correlation approach. Initial testing used the ensemble of 50 faces described
above. However, using the approximate vertical symmetry in individual faces by
creating 50 “mirror” faces, reflected about the vertical facial mid line [8] gave a
noticeable improvement in recognition, and all results use this “doubled” ensem-
ble. Table 1, Method ‘Mah’ gives results against which subsequent performance
is compared, obtained using all 99 eigenfaces from this ensemble.

Hit Miss
Clear Just Just Clear
Method: |Mah Euc Cor|Mah Euc Cor|Mah Euc Cor|Mah Euc Cor
Immediate:190.1 82.7 31.3) 9.9 148 74,00 25 1.210.0 0.0 Q.0
Variant: 67.9 34.6 55.6{22.2 45.7 35.8{ 9.9 19.5 86| 0.0 0.0 0.0
Lighting: [17.3 3.7 11.1}48.1 29.6 42.0|34.6 66.7 46.9/ 0.0 0.0 0.0
Later: 34.3 16.7 23.1{32.4 28.7 40.7133.3 54.9 36.1] 0.0 0.0 0.0
Overall: 40.2 22.9 31.3132.3 29.2 36.9|27.5 47.9 31.7, 0.0 0.0 0.0

Table 1. Match percentages from 351 trials per method. Scaled Euclidean normalised
in all cases . Method ‘Mah’: matching with Mahalancbis distance. Method ‘Euc’: match-
ing with Euclidean distance. Method ‘Cor’: matching by correlation of the images. Hair
has been ezcluded from the match.
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Our first comparisons are between the Mahalanobis distance and identi-
cal tests using Euclidean distance or thirdly a correlation of the whole of the
(masked) face images, all shown in Table 1. The Mahalanobis distance is clearly
most effective, confirming that the eigenface formulation, with its variance prop-
erties, is worthwhile here. The advantage is smallest in the “Immediate” group,
where simple template matching is expected to perform well; but even here,
the effect on the “Clear Hits” is noticeable. The alternative baseline uses the
whole of the relevant image information, including that lost when the images
are projected onto the span of the ensemble. It is clear that this projection
looses significant information. Matching using the Mahalanobis distance more
than makes up for this loss and we thus adopt this as our baseline.

The theoretical considerations in Section 2 suggest that the distortion of a
face into a shape-free or texture vector may provide more effective coding. The
normalisation texture-maps each face to a standard shape, here the average of
the ensemble images. We used linear interpolation based on the model in Fig. 2;
although simpler than Bookstein’s thin plate spline warps [11], the procedure was
more effective. The results given in Table 2, Method ‘T, are directly comparable
to Table 1 and suggest that shape-free normalisation is slightly better than the
scaled Euclidean version, despite deliberately ignoring the shape information.

Hit Miss
Clear Just Just Clear
Method: T S STyT S ST|T S S-T|T S S-T
Immediate:[95.1 39.5 90.1] 4.9 46.9 9.9{0.0 13.6 0.0/0.0 0.0 0.0
Variant: {64.2 23.5 71.6(/29.6 58.0 25.9/ 6.2 17.3 2.5(0.0 1.2 0.0
Lighting: [18.0 27.2 40.7|51.9 54.3 50.6{29.6 18.5 8.6 0.0 0.0 0.0
Later: 28.7 19.4 42.6(46.5 59.3 46.3]25.0 21.3 11.1{0.0 0.0 0.0
Overall: 28.7 23.7 50.4(41.3 56.7 41.1{21.3 19.4 8.5]0.0 0.1 0.0

Table 2. Match percentages from 351 trials per method. Matching with Mahalanobis
distance in all cases . Method ‘I’: using shape-free texture. Method ‘S’: using shape
or configuration (20 most variable eigenshapes). Method ‘S—T": combining shape and
texture. Hair has been ezcluded from the match.

The shape-free advantage may reflect superior matching of the distorted im-
ages, rather than superior coding. A shape-free normalisation was used on the
ensemble and a scaled Euclidean normalisation on the gallery and probes, and
vice versa. The results in Fig. 3 show that the determining factor is the en-
semble standardisation method, suggesting the advantage for shape-free-faces
reflects superior representation of the faces, not just better matching.

The data discarded by shape-free normalisation can also be used for recog-
nition, performing Principal Component Analysis on the landmark locations.
This was done as already described, applying a scaled Euclidean transformation
to remove position effects, and then, if necessary, removing the points relating
to the hair. The shapes of the ensemble images then provided suitable principal
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components (eigenshapes). The data are highly correlated; after the first 15 or 20
eigenshapes the eigenvalues become small. The number of principal components
used to code the shape was varied and the hit rates are shown in Fig. 4. Both
with and without hair, recognition peaks when 20 components are included; the
peak results for the configuration without hair are given in Table 2, Method ‘S’.
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Fig. 3. Recognition using different nor-  Fig. 4. Recognition using shape or con-
malisations for ensemble and test images:  figuration: hit rates for variable numbers
hit rates for Euclidean and shape-free. of initial principal components.

These tests show a real advantage in representing faces by shape-free tex-
ture. This may extend to matches between the images themselves. Because the
normalisation uses a relatively small number of points, the match may be un-
derestimated; to compensate, the correlation between a probe and each gallery
image was optimized by varying a scaled Euclidean transform of the normalised
probe. There was a very noticeable advantage for preprocessing using a laplacian
transformation, a 3 x 3 matrix often thought of as a sharpening operator. The
results for the shape-free laplacian images are given in Table 3, showing very
good and constant recognition. However, this is very slow even with the small
gallery here; optimizing the match required comparing each image with each
gallery member 50 times. These results again show the advantages of a shape-
free representation; it ensures that all sections of the laplacian-processed images
can be aligned at once. In contrast, when shape is still in the images, different
sections of the probe face compete to match sections of the gallery images.

Coding using either texture or face shape gives reasonable recognition. If
these measures are relatively independent, a combination may be effective. Prin-
cipal Component Analysis was performed separately on the shape and shape-free
images. Independence was assessed by rank correlations of distances between
each probe and the other gallery images (reducing outlier effects). The average
Spearman rank correlations are positive but modest with a maximum value (for
the “Immediate” images) of 0.267. This suggests that shape and texture describe
dis-similar properties; the positive correlation may reflect landmark location er-
rors. The shape and texture distances for each probe were combined using a root
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Hit Miss
Clear Just Just Clear
Method: Cor Car Com|Cor Car Com|Cor Car Com|Cor Car Com
Immediate:[85.1 95.1 97.5(14.8 4.9 25100 0.0 0.0|0.0 0.0 0.0
Variant: 67.9 80.2 88.9{30.9 185 11.1{1.2 1.2 0.0(0.0 0.0 0.0
Lighting: |38.3 48.1 67.9(50.6 46.9 29.6{11.1 49 25 |0.0 0.0 0.0
Later: 28.7 58.3 66.7{62.0 34.3 32.4{9.3 74 09100 0.0 0.0
Overall: 41.0 62.4 72.6{51.2 32.1 26.3{ 78 54 1.1]0.0 0.0 0.0

Table 3. Match percentages from 351 trials per method. Method ‘Cor’: shape-free nor-
malised, matching by full correlation of laplacian images. Method ‘Car’: shape and tex-
ture, matching with Mahalanobis distance with the images 156 % caricatures. Method
‘Com’: shape and texture, matching with Mahalanobis distance combined with full
correlation of laplacian images. Hair has been ezcluded from the match.

mean square, after rescaling the individual distances so the sum of each set was
unity. The results in Table 2, Method ‘S-T°, are thus comparable with Table 1,
but combine locally linearised shape with (shape-free) texture information.

The distinct shape and texture components of the face allow it to be carica-
tured. Face shape is coded as a set of position vectors, each the displacement of a
landmark from its position in the average face. Scaling the displacements by an
amount k gives a caricatured shape, with & = 100% representing the veridical;
the face image is then texture-mapped to this shape. In humans, familiar faces
are recognised better with modest caricatures (about 110 %) [1]. Image texture
can also be caricatured by displacing the grey levels in a shape-free face away
from the mean for each pixel; an example is shown in Fig. 5. Similar modest cari-
catures are extracted by a Radial Basis Function network using feature-distances
[2], as RBFs extract distinctive sets of features. However, a Principal Compo-
nents Analysis technique, with veridical coding, has greater freedom as it allows
investigation of the coding giving the most effective caricatures.

Fig. 5. An image caricatured on shape and texture at 41, 64, 100, 156 and 244 percent.

The faces were caricatured on shape and texture before recognition using the
inner face and deriving ¢; and ¢, from the veridical images. The tests show the
effects of recognizing the images with a scaled Euclidean normalised Principal
Components Analysis. This yields the notably small caricature effect shown by
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Fig. 6, while independent shape and shape-free Principal Components Analysis,
as shown in Fig. 7, give a strong effect with peak recognition at about 150 %.
The peak recognition rates are shown in Table 3. This difference in the carica-
ture effect is only seen if the images are caricatured against independent shape
and texture averages. Caricaturing images against the average of the Principal
Components Analysis, regardless of the type of normalisation used, gives ap-
proximately equal effects. The advantage of the shape-free manipulation is that
it allows equivalent transformations in both image-space (as evidenced by the
human data) and also in the Principal Components Analysis linearisation.
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Fig.6. Confident and total hit rates
for shape-and-texture caricatured faces,
recognised as Euclidean-normalised. Hair
has been ezcluded from the match.

Fig.7. Confident and total hit rates
for shape-and-texture caricatured faces,
recognised as separate shape and texture.
Hair has been ezcluded from the match.

In a final result, all three matching methods; shape, texture and shape-free
correlation, are combined using a root mean square. The results, in Table 3,
Method "Com’, suggest there remains relevant information which has not been
coded using caricature techniques; but we again emphasize that the optimized
correlation takes impractically long, and does not scale well for larger galleries.

4 Facial shape-finding

If our coding process is to operate automatically the landmarks must be lo-
cated. Given the location of enough landmarks to provide a scaled Euclidean
normalisation of a new face, we sequentially generate refined shape estimates.
A development of an earlier program, FindFace [6], provides the initial loca-
tions, and initialises a bootstrapping procedure to locate the remainder given
the ensemble. Each set of landmark locations on a face defines a correspond-
ing shape-free face; we choose those locations on our new face for which the
shape-free version has the highest correlation with the average shape-free face.

To optimize efficiently needs the Principal Components Analysis orthogonal
decomposition of face shape. Fitting these components successively gives an ef-
fective means of navigating in shape space. Starting with the average model,
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new models were built by varying the shape on the first Principal Component
over a range of up to two standard deviations, so applying an active shape
model [4]. The resulting model was used to distort the probe to shape-free form;
this was then correlated with the shape-free average texture to measure the ap-
propriateness of the model. A simple hill-climbing algorithm sequentially derived
the 20 most variable component. The fitting was performed upon the whole,
masked, face, including the hair; this gave the most accurate and consistent
point-definitions.

When the points so found were used as the input to the complete system,
including a caricature of 156 %, it gave the values shown in Table 4. There was
a significant caricature effect, suggesting location consistency on the same face;
the recognition rate for veridical images was 65.7 %, with 34.7 % clear hits.

Hit Miss
Clear Just Just Clear
Immediate:| 86.4 12.3 1.2 0.0
Variant: 67.9 24.7 74 0.0
Lighting: |37.0 34.6 24.2 1.2
Later: 30.6 37.0 324 0.0
Overall: 419 325253 0.3

Table 4. Match percentages from 351 trials. Automatic shape and texture, matching
with Mahalanobis distance on 156 % caricatures. Hair has been ezcluded from the match

5 Conclusions

We have attempted to show that a greater consideration of the nature of Princi-
pal Component Analysis yields advantages in recognition. Doing so, moving from
scaled Euclidean normalised images to the combined configuration and texture
images reduces misses three-fold without adding extra information. Caricaturing
the images can improve this, by distorting them to emphasize their already atyp-
ical aspects. This may not change the ordering of matches, but does increase the
separation. This advantage for shape-free Principal Components remains even if
the probe is not itself shape-free, again suggesting that this is a representational
advance. This decomposition of the face into configuration and texture, and then
into Principal Components also allows the efficient location of facial features.
The clear advantage for Mahalanobis over Euclidean distance provides evi-
dence that Principal Component Analysis is a more appropriate coding of faces
than raw images; and that something more sophisticated than simple template
matching is occurring. Since the Mahalanobis distance pays equal attention to all
components, no particular band of eigenfaces should best code the images; once
variability is accounted for, the eigenfaces should be equally important. Within
limits, this was found; thus we used all the eigenfaces in the tests described here.



513

Overall we believe we have shown that Principal Component Analysis, im-
plemented under the influence of a manifold model of “face space”, separating
configural and textural information, has proved of value in coding for recogni-
tion; this could be of relevance when constructing psychological models of face
recognition. We do not advocate it as a universal code; the observations of very
high levels of recognition with shape-free contour matching and when this is com-
bined with the shape-and-texture output show that not all the facial information
has been captured. This suggests that psychological implications of this work are
late in the processing chain, when the face is being considered as a whole. One
model selects a small group of possible matches with local chart-based shape
and texture, and uses contour correlation for the final decision.
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