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Motivation

Verification

Specification holds
Specification fails

Fault localization

Fault correction

Fault localization
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Related Work
Understandability of counterexamples

– Clarke et al 95: seminal work
– Ravi, Somenzi, Jin: decision points, “width” of 

counterexample 
Comparing good and bad traces to find suspicious 

statements
– Groce, Zeller, Ball and Rajamani

Localization and Correction for 
– Combinational circuits [various] or 
– Sequential circuits [Wahba&Borrione, Ali et al.] 
– Correction for sequential circuits with general fault models 

(computationally hard) [Jobstmann, Griesmayer, Staber, 
Bloem]
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Contents

• Basic idea of localization
• Approach
• Problems with precision with a solution
• Efficiency & specificity
• Fault location on HDL level
• Experimental results
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Localization

A counterexample shows a contradiction
between actual behavior and 
specification

The question: Can we find a component
responsible for the contradiction?

But: what is a component?
– Ideas presented here work for any 

component model!
– Gates or expressions are typical choices
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Localization
Identify components responsible for a failure

Input
– Faulty design
– Set of finite failure traces

• Liveness aspects are ignored
– Correct specification given in Linear Time Logic (LTL)

Output
– Set of fault candidates for the given traces

Simplifying assumptions for this presentation
– One faulty component
– One failure trace
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Localization with Model Checking

Given a failure trace
1. Modify circuit

– In first step it decides non-deterministically which 
component is faulty.

– From then on, the faulty component has nondeterministic 
output

2. Fix inputs to failure trace
3. Model check: is there a trace that fulfills the 

formula?
– I.e., is there a component and a behavior for the 

component so that the contradiction is resolved?
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Localization with BMC
Given a failure trace 
Approach

1. Unroll the circuit; introduce “abnormal predicates,” fix inputs 
to failure trace

2. Unroll LTL property using expansion rules                       
(e.g. G a = a � XG a)

3. Combine circuit & property
4. Call SAT-Solver and find valid assignment for the variables 

(notably abnormal predicates)

Mix of BMC [Biere et al.] and Model-Based Diagnosis 
[Reiter 87, De Kleer and Williams 87]

Unroll
circuit

Unroll
spec

Combine Call
SAT solver
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Localization: Arbiter

Property
G(req � (ack � X ack) � (ack � �X ack))

fails for two consecutive requests (failure trace: req = 1; req = 1)
(We get no acks; G2 should be G1 � �D1)

initial state
D0=0, D1=0
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1: Unroll, Introduce Predicates

Components: 
G1: not AB1 � (outG1t0 = in1G1t0 + in2G1t0),   

not AB1 � (outG1t1 = in1G1t1 + in2G1t1)
G2: not AB2 � (outG2t0 = in1G2t0 * in2G2t0),    

not AB2 � (outG2t1 = in1G2t1 * in2G2t1)

in1G1t0 = 1 (failure trace t0: req = 1), etc.
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Step 2: Unroll Property

G((req � (ack � X ack)) � (ack � �X ack))

Note: Free inputs on the right are left free: represent liveness part

�ack � X �ack



Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
12

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Step 3: Combine
unrolling of circuit

representation of property

ack

X ack

�

G �

X G �

r � ack � X ack

�ack � X �ack
property violated
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Step 4: SAT Solver
unrolling of circuit

representation of property

ack

X ack

�

G �

X G �

1

1

1

property satisfied

r � ack � X ack

�ack � X �ack
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Localization

Combine Call
SAT solver

Unroll
circuit

Unroll
spec
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Correctness & Completeness

Definition: Gate g is repairable for a set of 
counterexamples if you can correct the faulty circuit by 
replacing Gate g by some combinational logic in terms of 
inputs and state variables
– No new flip flops
– Is this a wise choice?
– Alternatives 

• keep same inputs to gate
• find any realizable function

Theorem: Only repairable gates are valid fault candidates 
Fault candidates may not be repairable.  Let’s fix that!
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Example: Incorrect Fault Candidate

Spec: (out=0) � X(out=1)
Fault candidates: G0, G1
Repairable: G0
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Example: Incorrect Fault Candidate

Spec: (out=0) � X(out=1)
Fault candidates: G0, G1
Repairable: G0
There is no combinational repair for G1!

0 1

? ?
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Ackermann Constraints
Let same(i,j) be true if state and inputs are the same in time i and 

time j.  
for all gates g, for all time steps i, j: 

same(i,j) � g(ti)=g(tj)

#Ackermann constraints ~ (#gates � k² � #counterexamples²)  
Does not not add decision variables

Theorem:
For every fault candidate there is a repair that works for all 

counterexamples in the set

One can construct a repair suggestion from the satisfying 
assignments
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Ackermann Constraints

Combine Call
SAT solver

Ackermann
Constraints

Unroll
circuit

Unroll
spec
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Efficiency: the SAT solver

Decide, in this order
1. Which component is incorrect
2. The value of this component in time step 1, 2, …
3. Rest is Boolean Constraint Propagation

Combine Call
SAT solver

Decision
heuristic

Unroll
circuit

Unroll
spec
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Efficiency: Simulation Based Preprocessing

Back-propagation constrains the area that contains 
the fault.

��should be �
�

�

Combine Call
SAT solver

Unroll
circuit

Unroll
spec

Preprocessing
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Combine Call
SAT solver

Unroll
circuit

Unroll
spec

Preprocessing

Decision
heuristic

Ackermann
Constraints
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Source Level

Original Program

…

L5: a = b + 1;

Annotated Program
abnormal = nondet;

…

if(abnormal != L5)

a = b + 1;

else

a = nondet;
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Experimental Results

Speed
– Localization time comparable to BMC time
– SAT techniques cause up to 40x speedup
– Speed depends on counterexample length
– Preprocessing:

• saves runtime in cases where number of components can be 
reduced

• otherwise overhead is low
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Specificity: Weak & Strong Spec

�
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Specificity: One & Four Counterexamples
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Experimental Results

Specificity (fault candidates/total components) 
– Multiple counterexamples improve specificity from 31% to 

25% (79% static slice)
– Ackermann constraints improve specificity from 25% to 23%
– Strong specification improves specificity from 26% to 15% 

(86% static slice)
– Specificity varies by example (3-25% for strong specs)
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Conclusion

• Localization finds fault candidates
• Based on BMC (with one extra variable per 

component)
• Flexible when it comes to input language
• Simple to implement
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Specificity: The Specification

A more complete spec yields a better diagnosis
– This is an important factor in specificity!
– more properties may mean less efficiency
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Motivation

Debugging:  
1. Detect failure 
2. Localize fault 
3. Correct fault 

Manual Localization & Correction takes significant time
– Bugs fixes at very end of design cycle (high risk)

Important problem, but little research!

Time

Design CorrectSpecify Localize

Debug

Detect
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Extensions: QBF

Can we find a fix that works for all inputs?
Alternating quantifiers:

– � diagnosis s.t.� inputs in t0 � output in t0 s.t. � inputs in t1 �
output in t1

Quantified Boolean Formula
Can we extract a repair from a QBF solver?

Much like [Jobstmann, CAV’05], where we use BDDs
– Faster than BDDs?
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Bremen Implementation

Uses hierarchical structure from source to gate level
Modified synthesis tool
Advantage of hierarchical information
Diagnosis granularity
Ask Görschwin for more details! 
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Graz Verilog Implementation
Requires minimal modifications to VIS-BMC package, easy adaptable

Introduce abnormal predicates
– Simple annotation of source code by Perl script

We negate LTL formula when computing diagnosis, because BMC looks 
for counterexample

Fix counterexample
– Add to LTL formula

One abnormal predicate
– Add to LTL formula
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Simulation Based Preprocessing

Back-propagation constrains the 
area that contains the fault.

�
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Three examples in which
back-propagation is not perfect.
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�
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The Formula
With a SAT solver:
Single fault: 

SAT(cex(k) � circuit(k) � property(k) � oneAbnormal � valid=1)
Two faults: 

SAT(cex(k) � circuit(k) � property(k) � twoAbnormal � valid=1)

0/1 ILP (PBS): Minimize |abnormal| subject to 
cex(k) � SAT(circuit(k) � property(k) � valid=1

Multiple diagnoses: add blocking clauses containing only ab signals. 
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Example: Unrealizable

Spec: out � X in
Diagnosis: G1
Repairable: -

in

out

G1


