
Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
1

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Automatic Fault Localization
for Property Checking

Stefan Staber, Roderick Bloem
Graz University of Technology

Görschwin Fey, Rolf Drechsler
University of Bremen

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
2

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Motivation

Verification

Specification holds
Specification fails

Fault localization

Fault correction

Fault localization

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
3

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Related Work
Understandability of counterexamples

– Clarke et al 95: seminal work
– Ravi, Somenzi, Jin: decision points, “width” of

counterexample
Comparing good and bad traces to find suspicious

statements
– Groce, Zeller, Ball and Rajamani

Localization and Correction for
– Combinational circuits [various] or
– Sequential circuits [Wahba&Borrione, Ali et al.]
– Correction for sequential circuits with general fault models

(computationally hard) [Jobstmann, Griesmayer, Staber,
Bloem]

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
4

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Contents

• Basic idea of localization
• Approach
• Problems with precision with a solution
• Efficiency & specificity
• Fault location on HDL level
• Experimental results

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
5

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Localization

A counterexample shows a contradiction
between actual behavior and
specification

The question: Can we find a component
responsible for the contradiction?

But: what is a component?
– Ideas presented here work for any

component model!
– Gates or expressions are typical choices

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
6

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Localization
Identify components responsible for a failure

Input
– Faulty design
– Set of finite failure traces

• Liveness aspects are ignored
– Correct specification given in Linear Time Logic (LTL)

Output
– Set of fault candidates for the given traces

Simplifying assumptions for this presentation
– One faulty component
– One failure trace

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
7

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Localization with Model Checking

Given a failure trace
1. Modify circuit

– In first step it decides non-deterministically which
component is faulty.

– From then on, the faulty component has nondeterministic
output

2. Fix inputs to failure trace
3. Model check: is there a trace that fulfills the

formula?
– I.e., is there a component and a behavior for the

component so that the contradiction is resolved?

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
8

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Localization with BMC
Given a failure trace
Approach

1. Unroll the circuit; introduce “abnormal predicates,” fix inputs
to failure trace

2. Unroll LTL property using expansion rules
(e.g. G a = a � XG a)

3. Combine circuit & property
4. Call SAT-Solver and find valid assignment for the variables

(notably abnormal predicates)

Mix of BMC [Biere et al.] and Model-Based Diagnosis
[Reiter 87, De Kleer and Williams 87]

Unroll
circuit

Unroll
spec

Combine Call
SAT solver

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
9

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Localization: Arbiter

Property
G(req � (ack � X ack) � (ack � �X ack))

fails for two consecutive requests (failure trace: req = 1; req = 1)
(We get no acks; G2 should be G1 � �D1)

initial state
D0=0, D1=0

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
10

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

1: Unroll, Introduce Predicates

Components:
G1: not AB1 � (outG1t0 = in1G1t0 + in2G1t0),

not AB1 � (outG1t1 = in1G1t1 + in2G1t1)
G2: not AB2 � (outG2t0 = in1G2t0 * in2G2t0),

not AB2 � (outG2t1 = in1G2t1 * in2G2t1)

in1G1t0 = 1 (failure trace t0: req = 1), etc.

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
11

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Step 2: Unroll Property

G((req � (ack � X ack)) � (ack � �X ack))

Note: Free inputs on the right are left free: represent liveness part

�ack � X �ack

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
12

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Step 3: Combine
unrolling of circuit

representation of property

ack

X ack

�

G �

X G �

r � ack � X ack

�ack � X �ack
property violated

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
13

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Step 4: SAT Solver
unrolling of circuit

representation of property

ack

X ack

�

G �

X G �

1

1

1

property satisfied

r � ack � X ack

�ack � X �ack

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
14

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Localization

Combine Call
SAT solver

Unroll
circuit

Unroll
spec

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
15

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Correctness & Completeness

Definition: Gate g is repairable for a set of
counterexamples if you can correct the faulty circuit by
replacing Gate g by some combinational logic in terms of
inputs and state variables
– No new flip flops
– Is this a wise choice?
– Alternatives

• keep same inputs to gate
• find any realizable function

Theorem: Only repairable gates are valid fault candidates
Fault candidates may not be repairable. Let’s fix that!

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
16

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Example: Incorrect Fault Candidate

Spec: (out=0) � X(out=1)
Fault candidates: G0, G1
Repairable: G0

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
17

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Example: Incorrect Fault Candidate

Spec: (out=0) � X(out=1)
Fault candidates: G0, G1
Repairable: G0
There is no combinational repair for G1!

0 1

? ?

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
18

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Ackermann Constraints
Let same(i,j) be true if state and inputs are the same in time i and

time j.
for all gates g, for all time steps i, j:

same(i,j) � g(ti)=g(tj)

#Ackermann constraints ~ (#gates � k² � #counterexamples²)
Does not not add decision variables

Theorem:
For every fault candidate there is a repair that works for all

counterexamples in the set

One can construct a repair suggestion from the satisfying
assignments

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
19

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Ackermann Constraints

Combine Call
SAT solver

Ackermann
Constraints

Unroll
circuit

Unroll
spec

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
20

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Efficiency: the SAT solver

Decide, in this order
1. Which component is incorrect
2. The value of this component in time step 1, 2, …
3. Rest is Boolean Constraint Propagation

Combine Call
SAT solver

Decision
heuristic

Unroll
circuit

Unroll
spec

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
21

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Efficiency: Simulation Based Preprocessing

Back-propagation constrains the area that contains
the fault.

��should be �
�

�

Combine Call
SAT solver

Unroll
circuit

Unroll
spec

Preprocessing

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
22

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Combine Call
SAT solver

Unroll
circuit

Unroll
spec

Preprocessing

Decision
heuristic

Ackermann
Constraints

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
23

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Source Level

Original Program

…

L5: a = b + 1;

Annotated Program
abnormal = nondet;

…

if(abnormal != L5)

a = b + 1;

else

a = nondet;

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
24

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Experimental Results

Speed
– Localization time comparable to BMC time
– SAT techniques cause up to 40x speedup
– Speed depends on counterexample length
– Preprocessing:

• saves runtime in cases where number of components can be
reduced

• otherwise overhead is low

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
25

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Specificity: Weak & Strong Spec

�

��

��

��

��

��

��

��

	�

�

���

b�� b�� b�� b�
 b�� b�� b�� VsaR

slice
weak
strong

%

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
26

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Specificity: One & Four Counterexamples

�

��

��

��

��

��

��

��

	�

�

am�
�� bpbs counter FPMult gcd

slice
single
four
Ackermann

%

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
27

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Experimental Results

Specificity (fault candidates/total components)
– Multiple counterexamples improve specificity from 31% to

25% (79% static slice)
– Ackermann constraints improve specificity from 25% to 23%
– Strong specification improves specificity from 26% to 15%

(86% static slice)
– Specificity varies by example (3-25% for strong specs)

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
28

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Conclusion

• Localization finds fault candidates
• Based on BMC (with one extra variable per

component)
• Flexible when it comes to input language
• Simple to implement

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
29

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
30

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Automatic Fault Localization
for Property Checking

Stefan Staber, Roderick Bloem
Graz University of Technology

Görschwin Fey, Rolf Drechsler
University of Bremen

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
31

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Specificity: The Specification

A more complete spec yields a better diagnosis
– This is an important factor in specificity!
– more properties may mean less efficiency

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
32

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Motivation

Debugging:
1. Detect failure
2. Localize fault
3. Correct fault

Manual Localization & Correction takes significant time
– Bugs fixes at very end of design cycle (high risk)

Important problem, but little research!

Time

Design CorrectSpecify Localize

Debug

Detect

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
33

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Extensions: QBF

Can we find a fix that works for all inputs?
Alternating quantifiers:

– � diagnosis s.t.� inputs in t0 � output in t0 s.t. � inputs in t1 �
output in t1

Quantified Boolean Formula
Can we extract a repair from a QBF solver?

Much like [Jobstmann, CAV’05], where we use BDDs
– Faster than BDDs?

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
34

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Bremen Implementation

Uses hierarchical structure from source to gate level
Modified synthesis tool
Advantage of hierarchical information
Diagnosis granularity
Ask Görschwin for more details!

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
35

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Graz Verilog Implementation
Requires minimal modifications to VIS-BMC package, easy adaptable

Introduce abnormal predicates
– Simple annotation of source code by Perl script

We negate LTL formula when computing diagnosis, because BMC looks
for counterexample

Fix counterexample
– Add to LTL formula

One abnormal predicate
– Add to LTL formula

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
36

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Simulation Based Preprocessing

Back-propagation constrains the
area that contains the fault.

�

�

�

��should be ��

�

�

�

�
��should be ��

�

�

��should be �
��should be �

�

�
�

Three examples in which
back-propagation is not perfect.

��should be �
�

�

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
37

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

The Formula
With a SAT solver:
Single fault:

SAT(cex(k) � circuit(k) � property(k) � oneAbnormal � valid=1)
Two faults:

SAT(cex(k) � circuit(k) � property(k) � twoAbnormal � valid=1)

0/1 ILP (PBS): Minimize |abnormal| subject to
cex(k) � SAT(circuit(k) � property(k) � valid=1

Multiple diagnoses: add blocking clauses containing only ab signals.

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
38

Stefan Staber Haifa, 23.10.06 Automatic Fault Localization

Example: Unrealizable

Spec: out � X in
Diagnosis: G1
Repairable: -

in

out

G1

