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In this paper, a new methodology is presented for developing a diagnostic system using waveform
signals with limited or with no prior fault information. The key issues studied in this paper are
automatic fault detection, optimal feature extraction, optimal feature subset selection, and diagnostic
performance assessment. By using this methodology, a diagnostic system can be developed and its
performance is continuously improved as the knowledge of process faults is automatically
accumulated during production. As a real example, the tonnage signal analysis for stamping process
monitoring is provided to demonstrate the implementation of this methodology.
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1. Introduction

Monitoring and diagnostic systems have played an
important role in modern manufacturing process
control. Many intelligent or knowledge-based systems
have been successfully developed for different
application domains. However, the development of
such a system normally requires sufficient prior
knowledge or fault condition data, which is hard to
satisfy in manufacturing systems. This is especially
true for a new product or process launch. Thus, the
motivation of the research presented in this paper is to
address this important issue by developing a metho-
dology for monitoring and diagnostic system
development with limited or with no prior fault
information. Waveform signals are used as the
essential information for the diagnostic system
development.

Waveform signals represent a class of analog or
digital signals over time, which normally can be

measured using in-process sensors in a manufacturing
process. It has broad potential applications, such as
tonnage signals in stamping, torque signals in tapping,
and force signals in welding, which are shown in Fig.
1 (a)—(c), respectively. In general, those waveform
signals contain rich information that can be related to
both product quality and process variables. The
characteristics of those waveform signals studied in
this paper are summarized as follows:

e Non-stationary.

e Working cycle-based signals, meaning that each
cycle of a waveform signal covers a complete
cycle of an operation.

e Segmental signals, meaning that different seg-
ments represent different process stages, which
may have different potential process faults.

e Localized time and frequency components in
different segments.

e In-process automatic sensing.
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(c) A force signal in a welding process.

Fig. 1. Waveform signals measured in the different production
processes.

There are two basic approaches in diagnostic system
development by using waveform signals: a model-
based approach and a feature-based approach. In the
model-based approach, observations are considered as
a time-ordered stochastic process. The critical
concern of using this approach is to have an
appropriate process model which is sensitive to
process faults but robust to process noises (Deibert
and Holfling, 1992). In addition, fault models or fault
signal characteristics need to be known before making
fault detection. However, these types of information
are normally not available at the beginning of the
production due to the complex relationship between
waveform signals and the associated manufacturing
process. Thus, a model-based approach is generally
not effective when waveform signals are used for
diagnostic system development.

A feature-based approach is more suitable to a
complex process where waveform signals are used for
process diagnosis. In such a system, features are
considered as random variables or as a random set.
Feature extraction and feature subset selection are
critical steps to reduce the number of attributes or data
dimension considered in the decision-making step
(Kharin, 1992). The conventional procedure to
develop a feature-based diagnostic system is shown
in Fig. 2. The essential requirement, or precondition,
to use this conventional procedure is that sufficient
historical fault data or prior fault knowledge are
available before developing a diagnostic system. In

Classifier Design for Decision Making
v

Error Estimation for Diagnostic
Performance Assessment

v

Testing and Validation

Fig. 2. Procedures for a feature-based fault diagnosis system
development.

many applications, this precondition is not satisfied
especially during the new machine or process launch.
Therefore, it is a challenging problem to develop a
feature-based diagnostic system with limited or with
no prior fault information.

In this paper, we will propose an automatic feature
extraction methodology for the development of a
feature-based diagnostic system using waveform
signals. In this methodology, the wavelet analysis is
used as a basic tool for feature extraction. The wavelet
analysis is selected for this research due to its
multiresolution nature, its localized properties in
both time and frequency domains, its fast algorithms
ready for an on-line implementation, and its efficient
data compression for feature extraction. The Haar
transform is selected in the paper because it has an
explicit geometrical interpretation for a detected
change of a Haar coefficient. These interpretations
can be easily associated with the profile change of a
waveform signal due to process faults.

Wavelet analysis has been widely used in image
and speech processing for decades. Much research has
been focused on the data shrinkage and signal noise
filtering (Coifman and Yale, 1992; Donoho and
Johnstone, 1994). The wavelet transform used as a
feature extraction method has recently received more
and more attention for process monitoring in
manufacturing processes, such as drill condition
monitoring (Tansel et al., 1993), face milling failure
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detection (Kasashima er al., 1995), and spalling
detection on ball bearings (Mori et al., 1996). In
these applications, the feature extraction method or
wavelet coefficient (or a function of them) selection is
mostly based on engineering knowledge, or based on
the use of conventional trial-and-error approaches
when sufficient prior fault data are available. The
relevant coefficients associated with characteristic
frequencies of a dynamic system are usually selected
as features. However, for a complex manufacturing
process, there is no sufficient prior knowledge to
describe the complex relationship between waveform
signals and process faults. Thus, it is very difficult to
pre-determine the process characteristic frequencies,
and the trial-and-error approach cannot be imple-
mented.

This paper presents a new methodology for
developing a diagnostic system with limited or with
no prior fault information. In this methodology, a
monitoring decision for detecting process faults is
made first based on normal production condition.
Then, the detected fault is further classified, and the
knowledge of process faults is continuously accumu-
lated during the use of this diagnostic system in
production. When a new process fault is found, the
optimal feature subset is adaptively updated to include
the new characteristics of the newly detected fault.
Thus, the diagnostic capability could be continuously
improved as new fault data are automatically
accumulated and classified.

As can be seen, the proposed methodology is to
emphasize how to continuously improve diagnostic
ability through machine learning. The major research
issues discussed in the paper show the common
research problems of applying artificial intelligence to
machine learning for the process monitoring and fault
diagnosis purpose. An adaptive supervisory learning
method is used in this paper for feature extraction and
fault classification. The capability of adaptive
learning of process fault knowledge during routine
manufacturing production can be seen from the
following two aspects: (1) The increase of the fault
samples in the known fault clusters can fine-tune the
parameters of an existing classifier to improve its
diagnostic accuracy; and (2) The addition of the newly
identified fault patterns can enhance its diagnostic
ability for more process fault diagosis. More
discussions on these features will be given in
Section 3.

The outline of this paper is listed as follows. An
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overview of the new methodology is given in Section
2. Then, Section 3 provides detailed research
procedures for the methodology development. After
that, a real example of stamping processes is provided
in Section 4. Finally, a summary and information
about future work are given in Section 5.

2. Methodology overview

The novel idea of this paper is to develop a
methodology for developing a diagnostic system by
using waveform signals with limited or with no prior
fault information. The basic principles and generic
procedures are shown in Fig. 3. In this methodology,
there is no requirement of prior knowledge of process
faults. Thus, in-process information assessment, fault
classification, and fault knowledge accumulation are
very critical. The essential idea of this method is that
more and more knowledge about process faults can be
accumulated during the use of the process monitoring
system. That knowledge is then used to further
improve the diagnostic performance. For this purpose,
in-process information assessment needs to be
addressed in step 1 to judge whether the current
measurement reflects a normal working condition, a
known fault, or a new fault. If the current measure-
ment represents a normal working condition or a
known fault condition, it will be added into the cluster
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Fig. 3. The framework of diagnostic system development with
adaptive learning.
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of the normal working conditions or the known fault
conditions respectively. The inclusion of this new
sample will increase the sample size in the associated
cluster, thus improving its parameter estimation
accuracy. If it is a new fault, it will form a new fault
cluster and get into step 2 of the development. In order
to represent the knowledge of process faults effec-
tively, automatic feature extraction and optimal
feature subset selection will be implemented by
maximizing the separability of all known fault
clusters. Finally, classification errors obtained from
decision making are analyzed in step 3 by using the
cross-validation method based on the selected feature
subset. This classification error will be used as a
criterion to determine the optimal dimension of a
feature subset in terms of the improved in-process
diagnostic performance.

In order to develop this new methodology, the
following issues will be discussed in the paper: (1)
Wavelet Haar transform used for effective feature
extraction in terms of signal characteristic representa-
tion (Section 3.1); (2) In-process sensing data
assessment, which detects whether the process is
normal, and if it is abnormal, whether it is a new fault
or a known fault (Section 3.2); (3) Classifier design
and decision-making for multiple fault classification
(Section 3.3); (4) Optimal feature subset selection by
maximizing fault cluster separability for diagnostic
performance improvement (Section 3.4); (5)
Classification error estimation via cross validation
for diagnostic performance assessment (Section 3.5).
The detailed procedures and algorithms will be
discussed in the following sections.

3. Automatic feature extraction and classification

3.1. Harr transform for feature extraction

The first step in the methodology development is data
transformation for feature extraction. A wavelet
transform is chosen as an effective tool for the
applications where a signal profile change is a major
concern. When a signal is non-stationary and has
localized frequency components, the wavelet multi-
resolution analysis (MRA) can be used to decompose
the signal into different resolutions. Moreover, the
orthogonality and compactness of wavelets will
ensure an efficient data compression to remove the
noise and other process irrelevant signals from a

Jin and Shi

waveform signal. As a result, the number of features,
i.e., the number of compressed wavelet coefficients, is
much less than that of the original data point.

The Haar transform is chosen as a data transform
here because Haar coefficients have an explicit
interpretation of the changes in a waveform profile.
A brief review of the Haar transform is given as
follows.

The Haar transform h(r,q,t) is the first order
Daubechies wavelet function (Daubechies, 1992).
h(0,0,7) is a Haar scale function defined in [0, 1] by

h(0,0,1) =1, tel0,1] (1)
and h(r,q,t) (r,q > 1) is a Haar wavelet function
which is obtained through the dilation and translation
of the Haar mother wavelet function A(1, 1,¢) by

25 1 <t< "27,1,/2
h(rq,0) = 4 2", 212 <pc a0, (2)
0, elsewhere, Vre[0, 1]

where r represents the decomposition scale, ¢ is the
number of functions within scale r.

When a discrete Haar transform H is used for a
discrete waveform signal Y (Y is a vector with N data
point, i.e., Y eRY*1), the Haar coefficients C can be
obtained by

C =HY (3)
where HeRY*" is a matrix representing a discrete
Haar transform function. N = 2" and n is a positive
integer representing the maximum decomposition
scale. Each row of H is a discrete Haar function
obtained by sampling the continuous Haar function
h(r,q,t) as shown in Equation 2. There are 2"~ ! rows
for a given decomposition scale r(1 <r <n).
h; (1 <j <2")is the ith row of H, which is generated
by Strang and Nguyen (1996):

__n—n/2 f.h—n
hi,]'*z /h(r7Q7] 2 ) (4)

whereifi=1,thenr=0and ¢g=0;if2 <i < 2", then
j=2"1 +gwithl<r<nand1<g<2"! The
coefficient 2~ "/2 is used to normalize each row of H.
The explicit relationship between Haar coefficients
C=[dcl el 3, el ... 2 '] and the mean values
of the subset data over Y = [y, y,,... ,yzn}T can be
seen as follows:

For r=0, ) =2"2y(1,2") (5)



Automatic feature extraction

Forr>1,

C;’ _ 2”121{Y|:(6[ . l)z(n—rfl) + 1,

(o
q2<nl‘+l):| } (6)

where Y[i,j] is the mean within data region [, ], that
is: Y[isj] = 1/(j—i+1) 20 e

The explicit geometrical interpretation of Haar
coefficients is that ¢?, except for cg, is proportional to
the mean difference between two adjacent intervals.
Moreover, the higher the decomposition scale r, the
higher the frequency component the Haar function
represents. Therefore, Haar coefficients obtained at
the different scales can represent the mean differ-
ences under the different decomposition resolutions.
In the following study, the Haar coefficients cf
remaining after data denoising (Donoho and
Johnstone, 1994) will be considered as the whole
feature space to be used for process monitoring and
fault classification.

3.2. In-process sensing data assessment

3.2.1. Hotelling T? control limits for process normal
condition monitoring

The waveform signal studied in this paper is a
working cycle-based signal. Each cycle corresponds
to a complete manufacturing operation, which
contains p-correlated random variables x; =
[Xi1s Xins - - - ,x,»p}T. x;; represents the ith cycle measure-
ment at time j (j = 1,...,p). Under normal working
conditions, the baseline of waveform signals is
assumed to follow a p-dimensional multivariate
normal distribution N(p(0),%(0)), where £(0) is a
p X p covariance matrix of p random variables for
class 0 (class O is referred as a normal working
condition), and p(0) is a mean vector of class 0. In
order to simplify the notation, the class notation O is
ignored in this subsection. Generally, the class
parameters p and ¥ and unknown and need to be
estimated from normal working conditions (or in-
control conditions).

Alt (1985) has pointed out that there are two
distinct phases in constructing Hotelling T2 control
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limits. The objective of phase 1 is to obtain a set of
observations which are in-control, and then y and X
are estimated using these in-control data. For this
purpose, a set of preliminary samples is analyzed to
establish a phase-1 control limit. This control limit is
then used to check whether the preliminary samples
are in-control. After eliminating all out-of-control
samples from the preliminary samples, the obtained ji
and = will be used to establish phase-2 control limits
for process monitoring.

Phase 1: Establish a control limit based on
preliminary data

Hotelling (1947) provided the first solution to the
multivariate detection problem by suggesting the use
of the statistic T2. For a single observation, the
statistic is defined as

T’ =(x,—%)'S7!(x, — %) (7)
where X is the estimated mean vector,
_ - - T
X = [X], X, ..., %) (8)

and X; = (1/m) 3 /L | x;; is the estimate of mean for
variable j (j=1,...,p), and m is the number of
subgroups. S is the estimated covariance matrix given
by

1 m

S:m; (x; —X)(x; —x)" 9)

At phase 1, X and S need to be estimated for phase 2
based on the preliminary in-control data. In order to
obtain these in-control data from the preliminary data,
the respective phase-1 control limit needs to be
established. It has been proven that statistic 72 follows
an F distribution, which is provided by the Appendix in
the paper. Thus, under a given Type 1 error o, the
phase-1 upper control limit UCL, can be established by

p(m—1)*

m(m — p)
where F,(p,m — p) is the 1 —o percentile of the F
distribution with p and m — p degrees of freedom. In
the paper, it is assumed that the change of statistic 72
is mainly due to a process mean shift. So, the lower
control limit is set to zero because any mean shift will
lead to an increase in the statistic 72.

Based on the established phase-1 control limit, the
outliers due to assignable causes can be removed from

UCL[ = Fa(Pvm_p) (10)
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the preliminary data set if they are out of the phase-1
upper control limit. Afterward, a re-estimation of the
control limit is performed, and the remained data are
rechecked by the revised control limit. This iterative
checking procedure is continuously repeated until all
remained preliminary data are in-control according to
the phase-1 control limit.

Phase 2: Establish control limits for process normal
condition monitoring

At phase 2, statistic 7> of a waveform signal Xx; is
calculated based on X and S estimated at phase 1.
Although statistic T2 still follows an F distribution, it
is multiplied by a different constant because x; at
phase 2 is always independent of the estimates of X
and S (Tracy et al., 1992). Thus, for a given Type 1
error o, the phase-2 upper control limit UCL, can be
calculated by

pim—1)(m+1)
m(m —p)
Based on this control limit, a process fault can be
detected if statistic 72 of a waveform signal exceeds
the control limit UCL,; otherwise, the process is
concluded under a normal working condition.

For a new process, the in-control data identified at
phase 2 can be added into the preliminary in-control
data identified at phase 1. Increasing the sample size
can improve the estimation accuracy of X and S at
phase 1. This iterative process monitoring while
simultaneously updating the estimate of class para-
meters can continuously improve the monitoring
performance.

UCL, = F,(p,m—p) (1)

3.2.2. New fault identification

In order to accumulate knowledge of process faults,
new fault classes should be formed and continuously
accumulated whenever a new process fault is
identified. In this study, fault waveform signals are
assumed to follow a p-dimensional multivariate
normal distribution. u(k) and X(k) represent para-
meters of fault cluster k. In a fault cluster, the number
of fault samples and the dimension of variables will
influence the accuracy of parameter estimates.
Therefore, increasing the sample size in a fault
cluster, through continuously accumulating fault
samples during production monitoring, can improve
the estimation accuracy. Moreover, the reduction of
variable dimension via feature subset selection can
also improve the estimation and diagnosis accuracy.
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After initially detecting a fault using UCL, in step 1
as shown in Fig. 3, a test will be conducted to
determine whether this fault belongs to a known fault
cluster or a new fault cluster. Two step analyses,
called fault information assessment, are proposed for
this purpose.

Step 1: Identify the closest cluster for a newly detected
fault

When a process fault is detected, a multiclass
classification will be conducted to identify the
known fault cluster, to which the detected fault is
most likely to belong. This identified cluster is c*alled
the closest cluster and noted as cluster £k . A
piecewise classifier is designed for this task, and
will be discussed in detail in next subsection.

Step 2: Perform acceptance testing for the identified
cluster

For cluster k*, the mean and variance are calculated
using its samples. Then, Hotelling T2 control limits
respective to phase 1 and phase 2 are calculated using
Equations 10 and 11. The control chart at phase 2 is
used to test, whether the newly detected fault belongs
to cluster £ under a given Type 1 error. If the control
chart indicates that 72 of the new detected fault is
within the control limit, it is conclud*ed that the newly
detected fault belongs to cluster k£ ; otherwise, the
newly detected fault is concluded to be a “‘new’’ fault
(i.e., not in the current known fault clusters). Thus, a
new fault cluster needs to be formed.

It should be emphasized that only a selected subset
of features are used to calculate the 72 control limit in
the fault information assessment; this is different from
previous normal working condition monitoring where
all features are considered. The main reason of
selecting a subset of features is that the number of
fault samples is generally very small at the beginning
of monitoring system development, and less than the
number of all features. In this situation, the estimation
of fault cluster parameters is an ill-posed problem.
Thus, it is impossible to obtain an accurate estimate
for the cluster parameters if the number of features
used is larger than the number of samples. As a result,
the method of how to select the subset of features
needs to be investigated to represent the fault
characteristics in the fault information assessment.
The optimal selection of the feature subset will be
discussed in Section 3.4.
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3.3. Piecewise classifiers

When a fault is detected, fault classification will be
performed to identify the closest known fault cluster.
In this study, it is assumed that the process fault is
mainly due to the mean shift, thus, a linear piecewise
linear classifier is recommended (Fukunaga, 1990):

. -1

Class k = max { a)S xS a0 T k)

N —

+1n Pk} (12)

where P, is the prior probability of fault cluster k. It
can be assumed that P, is the same for all clusters if
there is no prior knowledge available. The closest
cluster & is identified from all known fault classes. 3
is considered as a pooling variance of all fault
samples, and is estimated by

S S S (- R)).
(Z nk) Ik
k

(g — (k)" (13)

where x;; is sample 7 in cluster &, and ;. is the number
of samples in cluster k.

3.4. Optimal feature subset selection

3.4.1. Optimal feature selection under a given
dimension of subset features

The reduction of feature space dimension can avoid an
ill-posed decision-making problem when the number
of fault samples is less than the dimension of a feature
space. A subset of features is selected from the whole
feature space for this purpose. Under the given
dimension of a feature subset, the optimal features
are selected based on a criterion of class separability
defined as Fukunaga (1990):

J = trace(S,,'S,) (14)

where S,, = E[(x — jt)(x — 1)’ ] is a mixture scatter
matrix representing the covariance matrix of all
samples regardless of their class assigments; Ji is
the estimated mean of all fault samples. S, =
Do Pr(p(k) — ) (p(k) — )’ is a between-class
scatter matrix representing the scatter of the estimated
cluster mean around the estimated mean of all
samples. Ji(k) is equal to the estimated mean of
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cluster k. The optimal feature subset is selected for a
given dimension of a feature subset by maximizing J
from all combinations of feature subsets.

3.4.2. Optimal dimension of a feature subset in terms
of classification errors

For a multiclass classification problem, the classifica-
tion error of class k is defined by

Bi = probD;|H,]

JEk

= Z prob[x; — lij)TS_ Hx; - R;) < UCL,(})]
J#k

= Z prob[(x; — fi, + Ap)'S ™! (x; — i + Ap)
i

< UCL, (/)] (15)

where prob D;|H, means the probability of the
classified class for data x; is class j but its true class is
class k, which can also be noted as ;. The UCL, ()
is the phase-2 control limit, which is constructed
based on the available fault samples in class j.
Ap = Jy, — Jy; is the mean difference between class k
and class Jj- It is known that
0 (x; —hy + Ap)'S(x, — li, + Ap) follows a non-
central F distribution (Pearson and Hartley, 1972).

In terms of the classicification performance, the
optimal number of features in a feature subset needs to
be considered because it has two opposing effects on
error f;:

(1) The decrease of the number of features p can
monotonically decrease 6. A smaller ¢ results in a
smaller change of statistic 72, which has a tendency to
increase the error 8, for a noncentral F' statistic.

(2) For ULG, in Equation 11, it can be easily seen
that for a given m, the constant multiplier of
p(m—1)(m+1)/[m(m —p)] is proportional to
p/(m—p)=—1+m/(m—p). Thus, this constant
multiplier is monotonically decrease as the value of p
decreasing under the condition of m > p. Moreover,
F,(p,m — p) also decreases with a decreased value of
p. As a result, UCL, will be tighter with a decreased
value of p, which will have a tendency to reduce the
error of ;.

Considering the above two opposite tendencies on
error f3,, the optimal dimension of feature subsets
needs to be considered to obtain a minimum
classification error.
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3.5. Classification error estimation

It is known that the number of samples can affect the
estimation of a classification error. The bias of the
classification error comes entirely from a finite design
sample set which is used to estimate the cluster
parameters. The variance comes predominantly from
a finite test sample set that is used to test the
classification performance.

The cross-validation method (Fukunaga, 1990) can
provide an upper boundary of the Bayes error. In
addition, it can provide a better performance than the
holdout method when the number of samples is
limited. In the cross-validation method, one sample is
excluded from a cluster. Then, the respective classifier
is redesigned based on the remaining n;, — 1 samples,
which is used for testing this excluded sample. This
procedure is repeated 7, times for testing all n,
samples, and the number of misclassified samples is
counted in order to obtain the estimate of the
classification error. The expectation of this error
gives the upper boundary of the Bayes error.
Obviously, the advantage of the cross-validation
method, also called leave-one-out method, is that it
fully utilizes all sample information for the classifier
performance evaluation.

In order to reduce classifier computation time when
a sample is excluded, the re-estimation of parameters
can be conducted simply by using the following
perturbation equations:

where Ji;(k) and ii(k) are the updated estimates of
mean and variance for classifier ¥ when sample x; is
excluded.

This classification error is used as an assessment of
the diagnostic performance of a system, which will
also serve as the feedback to determine the optimal
dimension of a feature subset as discussed in Section
34.2.
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4. Example: Automatic feature extraction from
tonnage signals in a stamping process

4.1. Process description

A tonnage signal representing a stamping force has
played an important role in stamping process
monitoring and fault diagnosis. Analysis of waveform
changes of a tonnage signal can assess the stamping
process conditions and also has the potential to predict
part quality. Generally, in order to reduce process
variations in production, a consistent tonnage wave-
form signal is required; it is expected to be the same as
that found under the normal working conditions. If a
tonnage signal is detected beyond the boundary of the
normal working condition, a process fault is detected.

Figure 4 shows three typical process variables in a
stamping press, which are blank thickness, shut
height, and punch speed. The changes of those
process variables are considered as process faults in
the paper. The tonnage sensors mounted on the press
uprights are used to measure the tonnage force. Figure
5 shows the major portion of one cycle of a tonnage
signal in a double-action process. The press crank
angle in the X axis is generally used as a reference to
divide one cycle of operation into different working
stages (Jin and Shi, 1999). The inner and outer
tonnage signals are measured by the same strain gage
sensors mounted on the press columns. The inner
tonnage signal, which corresponds to the crank angle
region of [159.29°, 184.78°] as shown in Fig. 5, is
used to demonstrate the developed methodology. In

Tie Rod —&= Stamping Press ===

Flywheel

Punch ° Linkage
unc o .
Gib
Speed W
¥ Slide
Bn]mcr -y 0n o o0
Shut |1 H— Tonnage Sensors

Hcight‘ m 1 Blank
I - Upright

P’

Fig. 4. A stamping press and process variables.
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Fig. 5. One cycle of a tonnage signal.

this segment, 16 data points are included to satisfy the
requirement of the Haar transform.

Four sets of data, as shown in Fig. 6, are collected
under the different working conditions in production.
For the convenience of using the Haar transform, the
data index is used as the X axis in Fig. 6; it has a linear
relationship with the press crank angle. Figure 6(a)
shows one set of normal working condition data with
27 samples, and Fig. 6(b)—(d) show three different
fault condition data with nine samples in each set. All
three-fault conditions have a decreased inner shut
height (from the normal 95.9440 to a faulty 95.9435
inches). Fault 1 and fault 3 have an additional
decrease on the outer shut height (from the normal
83.6650 to a faulty 83.6553 inches), and fault 3 uses a
thicker blank sheet metal. Fault 2 has an increased
outer shut height (from the normal 83.6650 to a faulty
83.6725 inches), a decreased punch speed (from the
normal 14 to a faulty 7 stroke/min), and a thicker
blank. The range of each variable is selected so that
the variables beyond those extreme conditions will
affect the part quality. A summary of these different
process setups with the coded values of the variables
is shown in Table 1, where ‘0’’ corresponds to the
normal setup value, and ‘*“ — 1" and ‘‘1”’ correspond
to the lower and higher setup values (i.e., faults),

Table 1. Process setups under different working conditions
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Fig. 6. Tonnage signals under different conditions.

respectively. From Fig. 6, it can be seen that all
tonnage signals have good repeatability under each
working condition. Figure 7 provides a comparison of
the means of tonnage profiles under different work
conditions. From Fig. 7, it can be seen that although
the profile changes of a tonnage signal are good
indicators for process variable changes, it is very
difficult to classify them by using a trial-and-error
method due to their complexity of the profile changes.
The proposed method is used to analyze the
aforementioned data to demonstrate the effectiveness
and procedures of the proposed methodology.

In the analysis, we use three-fault data and normal-
condition data to simulate the real production
environment by considering the incoming faults
sequentially. At the beginning, only normal produc-
tion data is available. Based on this, normal
production condition monitoring is performed by
developing the phase 1 control limit using the normal
production data, i.e., the preliminary data. This result
will then lead to the design of a phase 2 control limit
as discussed in Section 3.2.1. After that, this phase 2

Variable Blank thickness Outer shut height Inner shut height Punch speed
Normal condition 0 0 0 0
Fault 1 0 -1 -1 0
Fault 2 1 1 -1 -1
Fault 3 1 -1 -1 0
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Fig. 7. Comparison of mean profiles of different conditions.

control limit is used to monitor the production data. In
production, it is assumed that fault 1 occurs first and
generates nine fault samples. The fault is detected by
the phase 2 control limit. Since only one fault is
available, there is no need for a fault classification
study in this stage. During continuous production,
fault 2 occurs and the fault signal is detected by the
phase 2 control limit. At this stage, an analysis is
needed to determine if this newly detected fault
belongs to the known fault (i.e., fault 1). If it does, this
newly detected fault sample will be added to the
known fault cluster, and the statistic parameters of this
fault cluster will be updated for more accurate
parameter estimation. If it does not, as is the case in
this example, a new fault cluster has to be formed and
an optimal subset of features will be selected to
represent those two fault characteristics. A piecewise
linear classifier will then be designed using the
optimal feature subset for future fault classification.
As production continuous, fault 3 occurs and is
detected. After that, the above procedures are
repeated. If the fault does not belong to those two
known faults, a situation that is true in this example,
the new feature subset to maximize the separability of
those faults will be optimized again. Then a piecewise
linear classifier will be redesigned.

Table 2. Optimal feature subset selection

Jin and Shi

4.2. Analysis results

Based on the procedures shown in Fig. 3, the Haar
transform is used first for feature extraction. Five Haar
coefficients ¢ ¢l ¢ ¢4 ¢§ are kept after data denoizing
using a universal threshold (Donoho and Johnstone,
1994), which are considered as the whole feature
space. The optimal feature subset will be formed by
selecting optimal features from these five features.

The T2 control limits are established based on these
27 samples of normal working conditions using
Equations 10 and 11 respective to phase 1 and phase
2, where p =5 corresponds to five Haar coefficients,
m=727 represents the number of samples, and
o = 0.05 respective to the Type 1 error. Therefore, in
normal working condition monitoring, phase 1 control
limit ULC, = 15.14 is used to eliminate outliers from
those preliminary data. In this example, there is no
outlier found in this step. The T? control limit in phase
2, UCL, =16.31, is used to check whether the
production data is in normal working conditions.

As the process faults occurred sequentially, the
fault signals were detected using the phase 2 control
limit. In the following discussion, we discuss the
analysis only after fault 2 occurs in the production. In
this case, more than two types of faults are found.
Thus, an optimal selection of fault feature subset will
be conducted by maximizing the separability of these
faults as discussed in Section 3.4. Table 2 gives the
selected optimal Haar coefficients under the different
dimensions of the feature subsets.

After selecting the feature subset, a piecewise linear
classifier given in Equation 12 and UCL, control limit
given in Equation 11 is used for fault sample
classification, where p is the different dimensions of
the feature subset, and m =9. The cross-validation
approach is used to estimate the classification error as
discussed in Section 3.5, and is given by the
percentage value in the bracket in Table 2. The
optimal dimension of the feature subset is determined
by the minimum classification error as discussed in
Section 3.4.2. In this case study, the dimension of

Optimal features (percentage of classification errors)

Subset dimension 1 2 3 4 5
Faults 1, 2 c8(0%) S, cl(0%) 8, cl, c8(0%) ety 3,8 (0%) (0%)
Faults 1, 2, 3 c2(33.3%) S, cl(55.5%) S, cl, c8(0%) 3, ety et B (0%) (0%)




Automatic feature extraction

these optimal feature subsets is equal to 1 and 3
corresponding to the two faults and three faults,
respectively. If the classification error is equal, the
smaller dimension should be selected as the case when
the first two faults are analyzed.

5. Conclusion

In this paper, a new methodology is developed for
developing a diagnostic system by using waveform
signals with limited or with no prior fault information.
In this research, the focus is on automatic feature
extraction and optimal feature subset selection during
the use of a diagnostic system in a manufacturing
process. Thisresearchresult will accomplish in-process
and continuous diagnostic performance enhancement
and improvement. A real case study of stamping
tonnage signal analysis has been used to demonstrate
the effectiveness of the proposed methodology.

It should be pointed out that the significance of the
work is not limited to a new diagnostic system
development where historical faults are not available
and where the understanding of a process is limited. The
developed methodology can also be used in an existing
diagnostic system where continuous diagnostic perfor-
mance enhancement and improvement are desired. In
addition, the developed method has potential to be used
in data mining and knowledge discovery when massive
waveform data are available but limited knowledge
about the data pattern exists. In this situation, the
automatic feature extraction and classifications can be
used to group the massive data into organized clusters
for further analysis. The authors of the paper have been
devoting their efforts to this study.

There are a few issues to be studied further in the
methodology development. Examples of those open
issues include: (1) Theoretical assessment of the
impact of Type 1 and Type 2 error of the monitoring
algorithms on the performance of the diagnostic
system; (2) the impact of the sample size on the
diagnostic performance; and (3) the upper bound of
the diagnostic performance improvement when
implementing the proposed methodology.

Appendix

For a statistic Q = my’ W ™'y, where y~N,(0,X),
W~W,(m,%), and y and W are statistically independ-
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ent. N; and W, are used to denote a d-dimensional
normal and Wishart distribution respectively. Then, it
can be obtained as follows (Seber, 1984, pp. 30-31):

m—d+10Q
— = ~Fdm—-d+1 A-1

At phase 1, the preliminary observations are
denoted x;,X,,...,X,,, where each x; is a vector
with a dimension of p, and x; ~N, (n, X). Therefore,
the estimates of the mean vector and variance have the

following distributions:
X~N,(n,Z/m); W= (m-1)S~W,(m—1,%)
(A-2)
Because x; is independent of other observations
x;(j#i), so the dependency of X on x; can be
decomposed by

1 X, m—1 1
—x=x(1-=) - d-  x, —— :
XX X’( m) Zm m mZXf

J#i J#I
(A-3)
Thus, the variance of x; — X can be calculated by

Var(x; — X)

m—1\> m—1 m—1
m m m

Equivalently, it can be denoted as

m

Y=\ RN 0E) (A)

If a statistic G is defined as
G=(m—1y'W-ly

m T~ — _
:<ﬁ)(xi_x) S7'(x;—x) (A-6)
thus,
m—1-p+1 G
p m—1

~F(p,m—1—p+1) (A7)

Substitute Equation A-6 into Equation A-7, the
statistic T2 = (x; — X)'S ™! (x; — X) (satisfies:
2

T2 ~ pim—1)
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