
Automatic Feedback Provision in
Teaching Computational Science

Hans Fangohr1,2(B), Neil O’Brien2,3, Ondrej Hovorka2, Thomas Kluyver1,
Nick Hale2, Anil Prabhakar4, and Arti Kashyap5

1 European XFEL GmbH, Schenefeld, Germany
{hans.fangohr,thomas.kluyver}@xfel.eu

2 University of Southampton, Southampton, UK
{fangohr,nsob1c12,o.hovorka,n.w.hale}@soton.ac.uk

3 Imaging Physics, University Hospital Southampton, Southampton, UK
4 Department of Electrical Engineering, IIT Madras, Chennai, India

anilpr@ee.iitm.ac.in
5 School of Basic Sciences, IIT Mandi, Mandi 175001, HP, India

arti@iitmandi.ac.in

Abstract. We describe a method of automatic feedback provision for
students learning computational science and data science methods in
Python. We have implemented, used and refined this system since 2009
for growing student numbers, and summarise the design and experience
of using it. The core idea is to use a unit testing framework: the teacher
creates a set of unit tests, and the student code is tested by running
these tests. With our implementation, students typically submit work
for assessment, and receive feedback by email within a few minutes after
submission. The choice of tests and the reporting back to the student is
chosen to optimise the educational value for the students. The system
very significantly reduces the staff time required to establish whether
a student’s solution is correct, and shifts the emphasis of computing
laboratory student contact time from assessing correctness to providing
guidance. The self-paced nature of the automatic feedback provision sup-
ports a student-centred learning approach. Students can re-submit their
work repeatedly and iteratively improve their solution, and enjoy using
the system. We include an evaluation of the system from using it in a
class of 425 students.

Keywords: Automatic assessment tools · Automatic feedback
provision · Programming education · Python · Self-assessment
technology · Pytest · Computational science · Data science

1 Introduction

One of the underpinning skills for computer science, software engineering and
computational science is programming. A thorough treatment of the existing
literature on teaching introductory programming was given by Pears et al. [1],
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12143, pp. 608–621, 2020.
https://doi.org/10.1007/978-3-030-50436-6_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50436-6_45&domain=pdf
https://doi.org/10.1007/978-3-030-50436-6_45

Automatic Feedback Provision in Teaching Computational Science 609

while a previous review focused mainly on novice programming and topics related
to novice teaching and learning [2]. We provide a recent literature review in the
technical report that accompanies this work (Sect. 1.3 in [3]).

Programming is a creative task: given the constraints of the programming
language to be used, it is the choice of the programmer what data structure to
employ, what control flow to implement, what programming paradigm to use,
how to name variables and functions, how to document the code, and how to
structure the code that solves the problem into smaller units (which potentially
could be re-used). Experienced programmers value this freedom and gain satis-
faction from developing a ‘beautiful’ piece of code or finding an ‘elegant’ solution.
For beginners (and teachers) the variety of ‘correct’ solutions can be a challenge.

Given a particular problem (or student exercise), for example to compute the
solution of an ordinary differential equation, there are a number of criteria that
can be used to assess the computer program that solves the problem:

1. correctness: does the code produce the correct answer? (For numerical prob-
lems, this requires some care: for the example of the differential equation,
we would expect for a well-behaved differential equation that the numerical
solution converges towards the exact solution as the step-width is reduced
towards zero.)

2. execution time performance: how fast is the solution computed?
3. memory usage: how much RAM is required to compute the solution?
4. robustness: how robust is the implementation with respect to missing/incor-

rect input values, etc?
5. elegance, readability, documentation: how long is the code? Is it easy for oth-

ers to understand? Is it easy to extend? Is it well documented, or is the choice
of algorithm, data structures and naming of objects sufficient to document
what it does?

When teaching and providing feedback, in particular to beginners, one tends
to focus on correctness of the solution. However, the other criteria 2 to 5 are
also important. In particular for computational science where requirements can
change rapidly and users (and readers) of code may not be fully trained computer
scientists [4], the readability and documentation matter.

We demonstrate in this paper that the assessment of criteria 1 to 4 can be
automated in day-to-day teaching of large groups of students. While the higher-
level aspects such as elegance, readability and documentation of item 5 do require
manual inspection of the code for useful feedback, we argue that the teaching
of these high level aspects benefits significantly from automatic feedback as all
the contact time with experienced staff can be dedicated to those points, and no
time is required to manually check the criteria 1 to 4.

In this work, we describe the motivation, design, implementation and effec-
tiveness of an automatic feedback system for Python-based exercises for com-
putational science and data science, used in teaching undergraduate students in
engineering [5] and physics, and postgraduate students from a wider range of
disciplines.

610 H. Fangohr et al.

We aim to address the shortcomings of the current literature as outlined in
the review [6] by detailing our implementation and security model, as well as
providing sample testing scripts, inputs and outputs, and usage data from the
deployed system. Some of that material is made available as a technical report
[3] and we make repeated reference to it in this manuscript.

In Sect. 2, we provide some historic context of how programming was taught
at the University of Southampton prior the introduction of the automatic testing
system described here. Section 3 introduces the new method of feedback provi-
sion, initially from a the perspective of a student, then providing more detail on
design and implementation. Based on our use of the system over multiple years,
we have composed results, statistics and a discussion of the system in Sect. 4,
before we close with a summary in Sect. 5.

2 Traditional Delivery of Programming Education

Up to the year 2009, we taught programming and the basics of computational
science in a mixture of weekly lectures that alternate with practical sessions
in which the students write programs in a self-paced fashion. These programs
were then reviewed and assessed individually by a demonstrator as part of the
laboratory session. We estimate that 90% of the demonstrators’ time went into
establishing the correctness (and thus obtaining a fair assessment) of the work.
Only the remaining time could be used to support students in solving the self-
paced exercises and to provide feedback relating to items 2 to 5 in Sect. 1. We
provide a more detailed description and discussion of the learning and teaching
methods in [3, Sect. 2].

3 New Method of Automatic Feedback Provision

3.1 Overview

In 2009, we introduced an automatic feedback provision system that checks each
student’s code for correctness and provides feedback to the student within a
couple of minutes of having completed the work. This takes a huge load off the
demonstrators who consequently can spend most of their time helping students
to do the exercises and providing additional feedback on completed and assessed
solutions. Due to the introduction of the system the learning process can be
supported considerably more effectively, and we could reduce the number of
demonstrators from 1 per 10 students as we had pre-2009, to 1 demonstrator
per 20 to 30 students, and still improve the learning experience and depth of
material covered.

3.2 Student’s Perspective

Once a student completes a programming exercise in the computing laboratory
session, they send an email to a dedicated email account that has been created

Automatic Feedback Provision in Teaching Computational Science 611

for the teaching course, and attach the file containing the code they have written.
The subject line is used by the student to identify the exercise; for example “Lab
4” would identify the 4th practical session. The system receives the student’s
email, and tests the student’s code. The student receives an email containing
their assessment results and feedback. Typically, the student will receive feedback
in their inbox within two to three minutes of sending their email.

Please define the following functions in the file training1.py and make sure they
behave as expected. You also should document them suitably.

1. A function distance(a, b) that returns the distance between numbers a and b.
2. A function geometric mean(a, b) that returns the geometric mean of two num-

bers, i.e. the edge length that a square would have so that its area equals that of
a rectangle with sides a and b.

3. A function pyramid volume(A, h) that computes and returns the volume of a
pyramid with base area A and height h.

Fig. 1. Example exercise instructions. We focus here on question 3.

For our discussion, we use the example exercise shown in Fig. 1, which is
typical of one that we might use in an introductory laboratory that introduces
Python to beginners. We show a correct solution to question 3 of this example
exercise in Listing 1.1. If a student submits this, along with correct responses to
the other questions, by email to the system, they will receive feedback as shown
in Listing 1.2.

def pyramid_volume(A, h):
""" Calculate and return the volume of a pyramid
with base area A and height h."""
return (1./3.) * A * h

Listing 1.1. A correct solution to question 3 of the example exercise

Overview
========

distance : passed -> 100%; (weight =1)
geometric_mean : passed -> 100%; (weight =1)
pyramid_volume : passed -> 100%; (weight =1)

Total mark for this assignment: 3 / 3 = 100%.
(Points computed as 1 + 1 + 1 = 3)

This message has been generated automatically. Should you feel that you
observe a malfunction of the system , or if you wish to speak to a human ,
please contact the course team (course -help@uni.email.address).

Listing 1.2. Email response to correct submission, additional line wrapping due to
column width

612 H. Fangohr et al.

def pyramid_volume(A, h):
""" Calculate and return the volume of a pyramid
with base area A and height h. """
return (A * h) / 3

Listing 1.3. An incorrect solution to question 3 of the example exercise, using integer
division

Overview
========

distance : passed -> 100%; (weight =1)
geometric_mean : passed -> 100%; (weight =1)
pyramid_volume : failed -> 0%; (weight =1)

Total mark for this assignment: 2 / 3 = 67%.
(Points computed as 1 + 1 + 0 = 2)

Test failure report
====================

test_pyramid_volume

def test_pyramid_volume ():

if height h is zero , expect volume zero
assert s.pyramid_volume (1.0, 0.0) == 0.

tolerance for floating point answers
eps = 1e-14

if we have base area A=1, height h=1, we expect a volume of 1/3.:
assert abs(s.pyramid_volume (1., 1.) - 1./3.) < eps

another example
h = 2.
A = 4.
assert abs(s.pyramid_volume(A, h) - correct_pyramid_volume(A, h)) < eps

does this also work if arguments are integers?
> assert abs(s.pyramid_volume(1, 1) - 1./3.) < eps
E assert 0.3333333333333333 < 1e-14
E + where 0.3333333333333333 = abs((0 - (1.0/3.0)))
E + where 0 = <function pyramid_volume at 0x7f0ce1af4e60 >(1, 1)
E + where <function pyramid_volume at 0x7f0ce1af4e60 > = s.

pyramid_volume

Listing 1.4. Email response to incorrect solution

If the student submits an incorrect solution, for example with a mistake in
question 3 as shown in Listing 1.3, they will instead receive the feedback shown
in Listing 1.4. The submission in Listing 1.3 is incorrect because integer division
is used rather than the required floating-point division. These exercises were
based on Python 2, where the “/” operator represents integer division if both
operands are of integer type, as is common in many programming languages.
(We have since upgraded the curriculum and student exercises to Python 3.)

Within the testing feedback in Listing 1.4, the student code is visible in
the name space s, i.e. the function s.pyramid_volume is the function defined
in Listing 1.3. The function correct_pyramid_volume is visible to the testing

Automatic Feedback Provision in Teaching Computational Science 613

system but students cannot see the implementation in the feedback they receive
– this allows us to define tests that compute complicated values for compar-
ison with those computed by the student’s submission, without revealing the
implementation of the reference computation to the students.

3.3 Design and Implementation of Student Code Testing

The incoming student code submissions are tested through carefully designed
unit tests, as discussed below. The details of the technical design and implemen-
tation are available in [3, Sect. 3.3]. We discuss three aspects here.

Iterative Testing of Student Code. We have split each exercise on our courses
into multiple questions, and arranged to test each question separately. Within
a question, the testing process stops if any of the test criteria are not satisfied.
This approach was picked to encourage an iterative process whereby students
are guided to focus on one mistake at a time, correct it, and get further feedback,
which improves the learning experience. This approach is similar to that taken
by Tillmann et al. [7], where the iterative process of supplying code that works
towards the behaviour of a model solution for a given exercise is so close to
gaming that it “is viewed by users as a game, with a byproduct of learning”.
Our process familiarises the students with aspects of test-driven development [8]
in a practical way.

Defining the Tests. Writing the tests is key to making this automatic testing
system an educational success: we build on our experience before and after the
introduction of the testing system, ongoing feedback from interacting with the
students, and reviewing their submissions, to design the best possible unit test-
ing for the learning experience. This includes testing for correctness but also
structuring tests in a didactically meaningful order. Comments added in the
testing code will be visible to the students when a test fails, and can be used
to provide guidance to the learners as to what is tested for, and what the cause
of any failure may be (if desired). A more detailed discussion including the test
code for the example shown in Listing 1.2 and 1.4 is given in [3, Sect. 3.4.3].

Results and Feedback Provision to Students. Students receive a reply email from
the testing system that provides a per-question mark, with a total mark for
the submission, and then details on any errors that were encountered. In the
calculation of the mark for the assessment, questions can be given different
weights to reflect greater importance or challenges of particular questions. For
the example shown in Listing 1.2 all questions have the same weight of 1.

We describe and illustrate a typical question, which might form part of an
assignment, in Sect. 3.2. As shown in Listing 1.4 on page 5, when an error is
encountered, the feedback that is sent to the student include the testing code
up to the point of the failing assertion. The line that raises the exception is
indicated with the > character (in this case the 6th-last line shown) as is usual
for pytest output [9]. This is followed by a backtrace which illustrates that, in this

614 H. Fangohr et al.

case, the submitted pyramid_volume function returned 0 when it was expected
to return an answer of 1

3 ± 1 × 10−14.
All the tests above the failing line have passed, i.e. the functionality in the

student code that is tested by these tests appears to be correct. The report also
includes several comments, which are introduced in the testing code (shown in
Listing 1.4), and assist students in working out what was being tested when the
error was found. For example, the comment “does this also work if arguments
are integers?” shows the learner that we are about to test their work with integer
parameters; that should prompt them to check for integer division operations.
If they do not succeed in doing this, they are able to show their feedback to a
demonstrator or academic, who can use the feedback to locate the error in the
student’s code swiftly, then help the student find the problem, and discuss ways
to solve the issue.

In addition, students receive a weekly summary of all their past submissions
and marks. The course lecturer has access to all data in a variety of ways.

Clean Code. Our system optionally supports coding style analysis and in the
majority of our tests for Python submissions, we perform an automated style
check against the PEP8 coding standard [10]. We typically add 2−Nerr (where
Nerr is the number of stylistic errors detected) to the student’s overall mark so
that full compliance with the guideline is rewarded most generously.

4 Results

4.1 Testing System Deployment

The automatic testing system was first used at the University of Southamp-
ton’s Highfield Campus in the academic year 2009/2010 for teaching about 85
Aerospace engineers, and has been used every year since for growing student
numbers, reaching 425 students in 2014/2015. The Southampton deployment
now additionally serves another cohort of students who study at the University
of Southampton Malaysia Campus (USMC) and there is a further deployment
at the Indian Institute of Technology (IIT) Mandi and Madras campuses, where
the system has been integrated with the Moodle learning management system
[3, Sect. 4.5].

The testing system has been used in a number of smaller courses at
Southampton, typically of approximately 20 students, such as one-week intensive
Python programming courses offered to PhD students. The feedback system has
also been used in the Physics department at the University of Hamburg (Ger-
many) to support an introduction into computational science and data science in
2019. It also serves Southampton’s courses in advanced computational methods
where around 100 students have submitted assignments in C (this requires an
extension of the system which is beyond the scope of this contribution).

Automatic Feedback Provision in Teaching Computational Science 615

4.2 Case Study: Introduction to Computing

In this section, we present and discuss experience and pertinent statistics from
the production usage of the system in teaching our first-year computing course
at the University of Southampton. In 2014/15, there were about 425 students
in their first semester of studying Acoustic Engineering, Aerospace Engineering,
Mechanical Engineering, and Ship Science.

Course Structure. The course is delivered through weekly lectures and weekly
self-paced student exercises with a completion deadline a day before the next
lecture takes place (to allow the lecturer to sight submissions and provide generic
feedback in the lecture the next day). Students are offered a 90 min slot (which is
called “computing laboratory” in Southampton) in which they can carry out the
exercises, and teaching staff are available to provide help. Students are allowed
and able to start the exercise before that laboratory session, and use the sub-
mission and testing system anytime before, during and after that 90 min slot.

Training Assignment
Voluntary, formative feedback & assessment

Laboratory Assignment
Compulsory, summative feedback & assessment

Fig. 2. Overview of the structure of the weekly computer laboratory session: a vol-
untary set of training exercises is offered to the students as a “training” assignment,
followed by a compulsory set of exercises in the same topic area as the “laboratory”
assignment which contributes to each student’s final mark for the course. Automatic
feedback and assessment is provided for both assignments and repeat submissions are
invited.

Each weekly exercise is split into two assignments: a set of “training” exercises
and a set of assessed “laboratory” exercises. This is summarised in Fig. 2.

The training assignment is checked for correctness and marked using the
automatic system, but whilst we record the results and feed back to the students,
they do not influence the students’ grades for the course. Training exercises
are voluntary but the students are encouraged to complete them. Students can
repeatedly re-submit their (modified) code for example until they have removed
all errors from the code. Or they may wish to submit different implementations
to get feedback on those.

The assessed laboratory assignment is the second part of each week’s exer-
cises. For these, the students attempt to develop a solution as perfect as possible
before submitting this by email to the testing system. This “laboratory” sub-
mission is assessed, and marks and feedback are provided to the student. These
marks are recorded as the student’s mark for that week’s exercises, and con-
tribute to the final course mark. The student is allowed (and encouraged) to
submit further solutions, which will be assessed and feedback provided, but it is
the first submission that is recorded as the student’s mark for that laboratory.

616 H. Fangohr et al.

The main assessment of the course is done through a programming exam at
the end of the semester in which students write code on a computer in a 90 min
session, without Internet access but having an editor and Python interpreter to
execute and debug the code they write. Each weekly assignment contributes of
the order of one percent to the final mark, i.e. 10% overall for a 10 week course.
Each laboratory session can be seen as a training opportunity for the exam as
the format and expectations are similar.

1 2 3 4 5 6 7 8 9 10 11 15
number of submissions for training2

0

20

40

60

80

nu
m
be
r
of

st
ud

en
ts

(a) training 2

1 2 3 4 5 6 7 8
number of submissions for lab2

0
50
100
150
200
250
300

nu
m
be
r
of

st
ud

en
ts

(b) lab 2

Fig. 3. Histogram illustrating the distribution of submission counts per student for the
(a) voluntary training and (b) assessed laboratory assignment (see text in Sect. 4.2)

Student Behaviour: Exploiting Learning Opportunities From Multiple Submis-
sions. In Fig. 3a, we illustrate the distribution of submission counts for “training
2”, which is the voluntary set of exercises from week 2 of the course. The bar
labelled 1 with height 92 shows that 92 students have submitted the training
assignment exactly once, the bar labelled 2 shows that 76 students submitted
their training assignment exactly twice, and so on. The sum over all bars is 316
and shows the total number of students participating in this voluntary training
assignment. 87 students submitted four or more times, and several students sub-
mitted 10 or more times. This illustrates that our concept of students being free
to make step-wise improvements where needed and rapidly get further feedback
has been successfully realised.

Automatic Feedback Provision in Teaching Computational Science 617

We can contrast this to Fig. 3b, which shows the same data for the compulsory
laboratory assignment in week 2 (“lab2”). This submission attracts marks which
contribute to the students’ overall grades for the course. In this case the students
are advised that while they are free to submit multiple times for further feedback,
only the mark recorded for their first submission will count towards their score for
the course. For lab 2, 423 students submitted work, of whom 314 submitted once
only. However, 64 students submitted a second revised version and a significant
minority of 45 students submitted three or more times to avail themselves of
the benefits of further feedback after revising their submissions, even though the
subsequent submissions do not affect their mark.

Significant numbers of students choose to submit their work for both vol-
untary and compulsory assignments repeatedly, demonstrating that the system
offers the students an extended learning opportunity that the conventional cycle
of submitting work once, having it marked once by a human, and moving to the
next exercise, does not provide.

The proportion of students submitting multiple times for the assessed labo-
ratory assignment (Fig. 3a) is smaller than for the training exercise (Fig. 3b) and
likely to highlight the difference between the students’ approaches to formative
and summative assessment. It is also possible that students need more itera-
tions to learn new concepts in the training assignment before applying the new
knowledge in the laboratory assignment, contributing to the difference in resub-
missions. The larger number of students submitting for the assessed assignment
(423 ≈ 100%) over the number of students submitting for the training assign-
ment (316 ≈ 74%) shows that the incentive of having a mark contribute to their
overall grade is a powerful one.

Submission Behaviour Changes over Time. During the 10 practical sessions of
this course, the number of assessed submissions decays slightly, and the partic-
ipation in voluntary submissions decays more dramatically, before it increases
slightly as the exam is approached. This is discussed in detail in [3, Sect. 4.2.3
and Figs. 4 and 5].

4.3 Feedback from Students

We invited feedback from the learners explicitly on the automatic feedback sys-
tem asking for voluntary provision of (i) reasons why students liked the system
and (ii) reasons why students disliked the system. The replies are not homoge-
neous enough to compile statistical summaries, but we provide a representative
selection of comments in [3, Sect. 4.3] and discuss the main observations here.

The most frequent positive feedback from students is on the immediate feed-
back that the system provides. Some student comments mention explicitly the
usefulness of the system’s feedback which allows to identify the errors they have
made more easily. In addition to these generic endorsements, some students men-
tion explicitly advantages of the test-driven development such as re-assurance
regarding correctness of code, quick feedback on refactoring, the indirect intro-
duction of unit tests through the system, and help in writing clean code. Further

618 H. Fangohr et al.

student feedback welcomes the ability to re-submit code repeatedly, and the flex-
ibility to do so at any time. One student mentions the objectiveness of the system
– presumably this is based on experience with assessment systems where a set of
markers manually assess submissions and naturally display some variety in the
application of marking guidelines.

The most common negative feedback from the students is that the automatic
testing system is hard to understand. This refers to test-failure reports such as
shown in Listing 1.4. Indeed, the learning curve at the beginning of the course
is quite high: the first 90 min lecture introduces Python, Hello World and func-
tions, and demonstrates feedback from the testing system to prepare students
for their self-paced exercises and the automatic feedback they will receive. How-
ever, a systematic explanation of the assert statements, True and False values,
and exceptions, takes only place after the students have used the testing system
repeatedly. The reading of error messages is of course a key skill (and the impor-
tance of this is often underestimated by our non-computer science students), and
we think that the early exposure to error messages from the automatic testing
is useful. In practice, most students use the hands-on computing laboratory ses-
sions to learn and understand the error messages with the help of teaching staff
before these are covered in greater detail in the lectures (see also Sect. 4.4).

We add our subjective observation from teaching the course that many stu-
dents seem to regard the process of making their code pass the automatic tests
as a challenge or game. The students play this game “against” the testing sys-
tem, and they experience great satisfaction when they pass all the tests – be it
in the first or a repeat submission. As students enjoy this game, they very much
look forward to being able to start the next set of exercises which is a great
motivation to actively follow and participate in all the teaching activities.

4.4 Discussion

Key Benefits of Automatic Testing. A key benefit of using the automatic testing
system is to reduce the amount of repeated algorithmic work that needs to be
carried out by teaching staff: establishing the correctness of student solutions,
and providing basic feedback on their code solutions is virtually free as it can
be done automatically.

This allowed us to very significantly increase the number of exercises that
students carry out as part of the course, which helped the students to more
actively engage with the content and resulted in deeper learning and greater
student satisfaction.

The marking system frees teaching staff time that would otherwise have
been devoted to manual marking, and which can now be used to repeat material
where necessary, explain concepts, discuss elegance, cleanness, readability and
effectiveness of code, and suggest alternative or advanced solution designs to
those who are interested, without having to increase the number of contact
hours.

Automatic Feedback Provision in Teaching Computational Science 619

Because of the more effective learning through active self-paced exercises, we
have also been able to increase the breadth and depth of materials in some of our
courses without increasing contact time or student time devoted to the course.

Quality of Automatic Feedback Provision. The quality of the feedback provision
involves two main aspects: (i) the timeliness, and (ii) the usefulness, of the
feedback.

The system typically provides feedback to students within 2 to 3 min of their
submission (inclusive of an email round-trip time on the order of a couple of min-
utes). This speed of feedback provision allows and encourages students to itera-
tively improve submissions where problems are detected, addressing one issue at
a time, and learning from their mistakes each time. This near-instant feedback
is almost as good as one could hope for, and is a very dramatic improvement
on the situation without the system in place (where the provision of feedback
would be within a week of the deadline, when an academic or demonstrator is
available in the next practical laboratory session).

The usefulness of the feedback depends on the student’s ability to under-
stand it, and this is a skill that takes time and practice to acquire. As we use the
standard Python traceback to report errors, we suggest that it is an advantage
to encourage students to develop this ability at an early stage of their learning.
Students at Southampton are well-supported in acquiring these skills, includ-
ing timetabled weekly laboratories and help sessions staffed by academics and
demonstrators. Once the students master reading the output, the usefulness of
the feedback is very good: it pinpoints exactly where the error was found, and
provides – through didactic comments – the rationale for the choice of test case
as well.

A third aspect of the quality of feedback and assessment is objectivity: the
system also improves the objectivity of our marking compared to having several
people each interpreting the mark scheme and applying their interpretations to
student work.

A more detailed and thorough discussion with respect to the flexible learning
opportunities that the automatic testing provides in practical use is provided
within Sect. 4 of [3].

Robustness and Performance. The chosen user interface is based on sending
and receiving email and is thus asynchronous. The testing server pulls emails
using imap and fetchmail, and received emails are stored in a file-based queue.
A “receipt email” is sent to the students, and the submitted files are tested in
order of their arrival. Finally, results are communicated with a second email.
(See Fig. 1 in [3] for details.) The system is robust towards interruption of the
network or failures of the server as the state is captured through emails (which
are inherently robust regarding network failures) and in files once the emails
have arrived on the system.

The system provides scalable automatic feedback provision: we have used the
system with up to 500 students in one course, and not experienced any noticeable
delays in the feedback time. In the academic year 2019–2020, at Southampton

620 H. Fangohr et al.

the testing system was running in a Linux operating system, hosted on a virtual
machine with 4 GB of RAM on a single core of an Intel Xeon E5-2697A v4
@ 2.60 GHzE5 CPU. In the earlier years of using the system, an older CPU
was used and the machine had 1 GB RAM. Each test for a student submission
typically takes a few seconds to complete. A test that has not completed after
one minutes is interrupted: this protects from errors such as infinite loops, and
ensures the testing queue cannot be blocked. An appropriate email message is
fed back to the student, if such a long test is detected. Memory requirements
arise from the nature of the test problem and are thus controllable, and for the
courses described here low.

More detailed discussion is available [3] with respect to the dependability and
resilience of the system [3, Sect. 3.4.7], flexible learning opportunities that the
automatic testing provides [3, Sect. 4.8.3], support of large class teaching [3,
Sect. 4.8.4], student satisfaction [3, Sect. 4.8.5], dealing with syntax errors in
student submissions [3, Sect. 4.4.1], use of undeclared non-ASCII encoding [3,
Sect. 4.4.2], and changing PEP8 [10] standards [3, Sect. 4.4.3]. We have also
connected the system to Moodle [3, Sect. 4.5], used it to assess C code [3, Sect.
4.6], and used it to pre-mark exams the students have written [3, Sect. 4.7].

5 Summary

We have reported on the automatic marking and feedback system that we devel-
oped and deployed for teaching programming to large classes of undergraduates.
We provided statistics from one year of use of our live system, illustrating that
the students took good advantage of the “iterative refinement” model that the
system was conceived to support, and that they also benefited from increased
flexibility and choice regarding when they work on, and submit, assignments.
The system has also helped reduce staff time spent on administration and man-
ual marking duties, so that the available time can be spent more effectively
supporting those students who need this. Attempting to address some of the
shortcomings of other literature in the field as perceived by a recent review
article, we provided copious technical details of our implementation in the sup-
plementary report [3]. With increasing class sizes forecast for the future, we
foresee this system continuing to provide us value and economy whilst giving
students the benefit of prompt, efficient and impartial feedback.

Acknowledgements. This work was supported by the British Council, the Engi-
neering and Physical Sciences Research Council (EPSRC) Doctoral Training grant
EP/G03690X/1 and EP/L015382/1, and the OpenDreamKit Horizon 2020 European
Research Infrastructure project (676541).

Data Availability. Data shown in this manuscript and [3] is available in Reference [11].

Automatic Feedback Provision in Teaching Computational Science 621

References

1. Pears, A., et al.: A survey of literature on the teaching of introductory program-
ming. In: Working Group Reports on ITiCSE on Innovation and Technology in
Computer Science Education, ITiCSE-WGR 2007, pp. 204–223. ACM, New York
(2007)

2. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a
review and discussion. Comput. Sci. Educ. 13(2), 137–172 (2003)

3. Fangohr, H., O’Brien, N., Prabhakar, A., Kashyap, A.: Teaching Python program-
ming with automatic assessment and feedback provision. Technical report, Univer-
sity of Southampton, IIT Madras, IIT Mandi (2015). https://arxiv.org/pdf/1509.
03556.pdf

4. Johanson, A., Hasselbring, W.: Software engineering for computational science:
past, present, future. Comput. Sci. Eng. 20(2), 90–109 (2018). https://doi.org/10.
1109/MCSE.2018.021651343

5. Fangohr, H.: A comparison of C, MATLAB, and Python as teaching languages in
engineering. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.)
ICCS 2004. LNCS, vol. 3039, pp. 1210–1217. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-25944-2 157

6. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of recent systems
for automatic assessment of programming assignments. In: Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, Koli
Calling 2010, pp. 86–93. ACM, New York (2010)

7. Tillmann, N., de Halleux, J., Xie, T., Gulwani, S., Bishop, J.: Teaching and learn-
ing programming and software engineering via interactive gaming. In: 2013 35th
International Conference on Software Engineering (ICSE), pp. 1117–1126, May
2013

8. Beck, K.: Test Driven Development: By Example, 1st edn. Addison-Wesley, Boston
(2003)

9. Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., Bruhin,
F.: Pytest 3.7 (2004)

10. van Rossum, G., Warsaw, B., Coghlan, N.: PEP 8 - Style Guide for Python Code
(2016). https://www.python.org/dev/peps/pep-0008/. Accessed 16 Dec 2016

11. Supplementary material: data used in figures (2016). https://arxiv.org/src/1509.
03556/anc

https://arxiv.org/pdf/1509.03556.pdf
https://arxiv.org/pdf/1509.03556.pdf
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.1007/978-3-540-25944-2_157
https://doi.org/10.1007/978-3-540-25944-2_157
https://www.python.org/dev/peps/pep-0008/
https://arxiv.org/src/1509.03556/anc
https://arxiv.org/src/1509.03556/anc

	Automatic Feedback Provision in Teaching Computational Science
	1 Introduction
	2 Traditional Delivery of Programming Education
	3 New Method of Automatic Feedback Provision
	3.1 Overview
	3.2 Student's Perspective
	3.3 Design and Implementation of Student Code Testing

	4 Results
	4.1 Testing System Deployment
	4.2 Case Study: Introduction to Computing
	4.3 Feedback from Students
	4.4 Discussion

	5 Summary
	References

