
AUTOMATIC FLOOD DETECTION FROM SENTINEL-1 DATA USING DEEP
LEARNING ARCHITECTURES

B. Ghosh1,4∗, S. Garg2, M. Motagh1,3

1 GFZ German Research Centre for Geosciences, Department of Geodesy, Section of Remote Sensing, 14473 Potsdam, Germany
2 Future Infrastructure and Built Environment, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

3 Institut of Photogrammetry and GeoInformation (IPI), Leibniz University Hannover, Germany
4 Department of Computer Science, Technical University Berlin, Berlin, Germany

ICWG

KEY WORDS: Flood detection, NASA, synthetic aperture radar, transfer learning, deep learning, UNet, Feature Pyramid Network
(FPN)

ABSTRACT:

Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosys-
tem. During flood events near real-time satellite imagery has proven to be an efficient management tool for disaster management
authorities. However one of the challenges is accurate classification and segmentation of flooded water. The generalization ability of
binary segmentation using threshold split-based method, is limited due to the effects of backscatter, geographical area, and time of
image collection. Recent advancements in deep learning algorithms for image segmentation has demonstrated excellent potential for
improving flood detection. However, there have been limited studies in this domain due to the lack of large scale labeled flood event
dataset. In this paper, we present two deep learning approaches, first using a UNet and second, using a Feature Pyramid Network
(FPN), both based on a backbone of EfficientNet-B7, by leveraging publicly available Sentinel-1 dataset provided jointly by NASA
Interagency Implementation and Advanced Concepts Team, and IEEE GRSS Earth Science Informatics Technical Committee. The
dataset covers flood events from Nebraska, North Alabama, Bangladesh, Red River North, and Florence. The performances of both
networks were evaluated with multiple training, testing, and validation. During testing, the UNet model achieved the meanIOU
score of 75.06% and the FPN model achieved the meanIOU score of 75.76%.

1. INTRODUCTION

Flooding is a widespread and dramatic natural disaster that af-
fects lives, infrastructures, economics and local ecosystems all
over the world. Floods often cause loss of life and substan-
tial property damage. Moreover, the economic ramifications
of flood damage disproportionately impact the most vulnerable
members of society. Due to their imaging capabilities that allow
data acquisition regardless of illumination and weather condi-
tions, satellite Synthetic Aperture Radar (SAR) data have be-
come the most widely used Earth Observation (EO) data for
operational flood monitoring (Martinis et al., 2015). However,
current operational services are mainly focused on inundated
rivers and/or mapping of water extent in rural areas, where the
specular reflection occurring on smooth water surfaces results
in most cases in a dark tone in SAR data, making floodwa-
ter distinguishable from other land surfaces. In this context,
the German Aerospace Center (DLR) developed a TerraSAR-X
(Martinis et al., 2015) and Sentinel-1 Flood Service (Twele et
al., 2016) for the automatic near-real time monitoring of rural
flooded surfaces using hierarchical tile-based thresholding and
fuzzy logic-based post-classification refinement.

Urban areas with low slopes and a high percentage of imper-
vious surfaces are vulnerable to flooding. The increased risk
of loss of human lives and damage to economic infrastructure
makes urban flood mapping greatly valuable in terms of dis-
aster risk reduction. However, flood detection in urban areas
using SAR data is challenging due to the complex backscatter
mechanisms associated with varying building types and heights,
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vegetation areas, and different road topologies. Except for a few
research studies, the full potential of SAR data for operational
flood monitoring in urban and vegetated regions are not fully
exploited yet. This is a very demanding task, considering the
availability of a vast amount of Sentinel-1 data that have been
globally available since October 2014. In practice, however,
systems that routinely analyse the full potential of Sentinel-1
data for flood detection do not exist.

Flood mapping algorithms are usually based on thresholding
algorithms, such as Otsu thresholding (Otsu, n.d.) and histo-
gram leveling, for the initialization of the classification process
in SAR amplitude data. These thresholding processes are fol-
lowed by clustering techniques like K-means (Macqueen, n.d.)
or ISODATA (Memarsadeghi et al., 2007) for improving the
segmentation of water and non-water areas. These methods are
capable of extracting the flood extent if there is a significant
contrast between water and non-water areas in the SAR data.
However, the result may lead to false positives (overestimation),
if non-water areas are characterized by a similar low backscat-
ter as open water surfaces. The main aim of our approach is
to develop an automated system capable of extracting and de-
tecting flooded areas in a very short time for near-real time for
generation of flood maps for rapid response activities in case of
flood emergencies.

However one of the challenges is accurate classification and
segmentation of flooded water and permanent water. Binary
segmentation using the threshold split-based method is com-
monly used in this regard, however, the generalization ability
of this method is limited due to the effects of backscatter, geo-
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graphical area, and time of image collection. Recent advances
in computer vision and the rapid increase of commercially and
publicly available medium and high resolution satellite imagery
have given rise to a new era area of research at the interface
between machine learning and remote sensing. For flood map-
ping applications, techniques like Bayesian network fusion, and
deep convolutional networks have been applied for extraction of
flooded areas from optical as well as SAR satellite images, al-
though there have been limited studies in this domain due to the
lack of large scale labeled flood event dataset (Li et al., 2019),
(Wieland and Martinis, 2019).

Deep learning methods represented by convolutional neural net-
works have been proven to be effective in the field of flood dam-
age assessment, and related research has grown rapidly since
2017 (Bai et al., 2018). Recently, the development of deep
learning in the image processing field, especially deep convo-
lutional neural networks (DCNNs), has enabled the develop-
ment of new methods for automated extraction of flood extent
from SAR images, as proposed in (Zhang et al., 2019), (Kati-
yar et al., 2021). The latest research focuses on the application
of deep learning algorithms for enhancing flood water detec-
tion (Kang et al., 2018), (Li et al., 2019). Early research fo-
cused on the extraction of surface water (Chen et al., 2020),
(Wangchuk and Bolch, 2020), (Zhang et al., 2020). (Isik-
dogan et al., 2017) proposed a deep-learning-based approach
for surface water mapping from Landsat imagery. The results
demonstrated that the deep learning method outperform the tra-
ditional threshold and Multi-Layer Perceptron model. The se-
mantic segmentation-based flood extraction method was further
applied to identify the flood inundation caused by mounting
destruction (Sunkara et al., 2020). Experimental results val-
idate the efficiency and effectiveness of the proposed method.
(Muñoz et al., 2021) combined the multispectral Landsat im-
agery and dual-polarized synthetic aperture radar imagery to
evaluate the performance of integrating convolutional neural
network and data fusion framework for generating compound
flood mapping. The usefulness of this method was verified by
comparing with other methods. These studies show that deep
learning algorithms play an important role in enhancing flood
classification. However, research in this field is still in its in-
fancy, due to the lack of high-quality large-scale flood annota-
tion satellite datasets, which brings us to the real problem of
near-real-time flood mapping with deep learning techniques:
the absence of a SAR-based global flood dataset that provides
enough diversity to generalize the model.

Recent development in earth observation has contributed a
series of open-sourced large scale disaster related satellite im-
agery datasets (Bonafilia et al., 2020), which has greatly spurred
the advance of leveraging deep learning algorithm for disaster
mapping from satellite imagery. For building damage clas-
sification, the xBD dataset (Gupta et al., 2021) has provided
large scale satellite imagery data that collected from the multi-
type disasters with four category damage level labels to world-
wide researchers, and the research spawned by this public data
has also verified the great potential of deep learning in build-
ing damage recognition (Bai et al., 2020), (Su et al., 2020).
For flooded building damage assessment in Hurricane disaster
events, FloodNet provides a high-resolution UAV image data-
set and has done the same task (Rahnemoonfar et al., 2020).
The recent release of the large-scale open-source Sen1Floods11
dataset (Bonafilia et al., 2020) is boosting the research of util-
izing deep learning algorithms for water type detection in flood
disasters (Konapala and Kumar, 2021).

In this work, our aim is to design models and train them on
the labelled flood data from some specific geographical regions
and then test the performances of the trained models on the data
from the other geographical regions. This is to test if it is pos-
sible to detect flood in certain parts of the world, even though
the model has been trained on flood data from a completely dif-
ferent geographical area.

In this paper, we utilize the publicly available Sentinel-1 dataset
provided jointly by NASA Interagency Implementation and Ad-
vanced Concepts Team and IEEE GRSS Earth Science Inform-
atics Technical Committee. The dataset is composed of 66,810
tiles of 256×256 pixels, and cover flood events from Nebraska,
North Alabama, Bangladesh, and Florence. For our analysis,
we compare two convolutional neural networks (CNN), one a
Unet and the other an FPN architecture, both based on a back-
bone of EfficientNetb7. The performance of both networks
were evaluated with multiple training, testing, and validation.

This paper is organized as follows. First, the details of the
NASA dataset are discussed, along with the test site details and
the data used for the test site. Then, the network architectures
and training strategy are elaborated. After this, the testing steps,
as well as validation data generation on the test site and the per-
formance measures used in the study, are discussed. Finally,
the results of the different models’ performance are discussed
using statistical metrics. The current study should help guide
the remote sensing community in developing robust strategies
for model development, and model validation.

2. MATERIALS AND METHODS

2.1 Dataset

To use artificial intelligence applications for earth observation
datasets we require a huge amount of benchmark datasets to
train and test their performance and effictiveness. However,
currently, there is a scarcity of benchmark datasets in the re-
mote sensing community (some reference). To address this is-
sue, NASA Disaster team in collaboration with Alaska SAR Fa-
cility - Distributed Active Archive Centers (ASF -DAAC) who
are specialists in synthetic aperture radar (SAR) data collection,
processing, archiving, and distribution, organized a data science
challenge for flood extent mapping. To label the SAR data-
sets provided by ASF DAAC, NASA IMPACT Machine learn-
ing team (NASA’s IMPACT Collaborates on Global Flood De-
tection Challenge | Earthdata, n.d.) coordinated with students
across the world and guided the students on a weekly basis
to generate the flood extent datasets. These labeled datasets
provide the necessary ‘truth’ for developing, validating, and
comparing various algorithms and also maximize the potential
use of earth-observation data for Artificial Intelligence applica-
tions (ETCI 2021 Competition on Flood Detection, n.d.).

The dataset is quite diverse and more representative of the dif-
ferent variations of geographical areas which were affected by
flood, including agricultural land and urban settings. The data-
set covered five flood events from Nebraska, North Alabama,
Bangladesh, and Florence. A total of 54 Geotiff images, (total
size 5.3 Gigabytes) were converted into tiles of 256×256 pixels.
More comprehensive details about the flood evenets are detailed
in Table 1.

Each tile includes 3 RGB channels generated from Sentinel-1
C-band synthetic aperture radar (SAR) imagery data acquired
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Table 1. Table showing the different flood events covered in the
dataset

Area name Total area
covered

Flood start
date

Flood end
date

Bangladesh 7,150 sq.
km.

14.03.2017 12.07.2017

Nebraska 1,741 sq.
km.

08.01.2017 22.12.2017

North
Alabama

13,789 sq.
km.

02.03.2019 27.12.2019

Florence 7,197 sq.
km.

01.10.2018 05.10.2018

in Interferometric Wide Swath mode in 5m * 20m resolu-
tion using Hybrid Pluggable Processing Pipeline “hyp3”. The
“hyp3” system takes the Sentinel archive and creates a set of
processes to get to a consistent method of generating the VV-
VH amplitude or power imagery. The imagery is then con-
verted to a 0 - 255 grayscale image. The whole dataset con-
sists of approximately 66000 tiled images from these various
geographic locations. The dataset was split across 29 root
folders named region datetime, region being the region and dat-
etime being the date and time of the flood event. Each root
folder includes 4 sub-folders: VV, VH, flood label and wa-
ter body label with 2,068 files each. VV and VH correspond
to the VV and VH bands of the satellite images and images in
the flood label and water body label folder provide reference
ground truth (NASA’s IMPACT Collaborates on Global Flood
Detection Challenge | Earthdata, n.d.).

The Bangladesh geographic area which is predominant in the
dataset, is primarily an agricultural hub and recently harvested
fields can look similar to floods due to low backscatter in both
VV and VH polarizations. Similarly the dataset from Florence
has a primarily urban setting. Such varying backscatter is rel-
evant for performance optimizations and generalizability to test
imagery. A sample image from the dataset is depicted in Figure
1.

[a] [b] [c]

[d]

Figure 1. Visual example of SAR image and corresponding label
mask in the dataset: (a) Sentinal-1 VV (b) Sentinal-1 VH (c)

Water body data and (d) Flood label

The image tiles are generated by cropping the Geotiffs. Owing
to the viewing geometry, there are some artifacts particularly
at the edges- where the sentinel-1 Geotiffs do not exactly align
with sliding cropping window resulting in noisy tiles. These
data are then filtered from the whole dataset. After filtering, the
remainder dataset consists of 33,405 image tiles covering flood
events from all the geographical areas under consideration. The
water body channel of each data tile was replaced by the chan-
nel containing the value of (vv+VH)/(VV-VH) for every pixel.
This reason behind this was for better adaptation of the model
so that only the VV and VH bands of Sentinel-1 SAR data can
be used for flood detection, without the necessity of a separate

water body layer, which sometimes maybe difficult to obtain.

In this work, our aim is to design models and train them on
the labelled flood data from some of these geographical regions
and then test the performances of the trained models on the data
from the other remaining geographical regions. This is to test
if it possible to detect flood in certain parts of the world, even
though the model has been trained on flood data from a com-
pletely different geographical area.

For our evaluation, we keep the entire Florence dataset as our
test set. 8382 images from the Florence dataset is separated
from the rest of the data, and the remaining approximately
25000 image tiles are used for training. The remaining 25000
image tiles are shuffled randomly and split into two parts, tak-
ing 75% for training and 25% for validation.

2.2 Model Architecture

In this work, two network combinations of a densely supervised
encoder and decoder are applied for semantic segmentation of
flooded areas from the dataset. The encoder–decoder network
can fuse abstract high-level information and detailed low-level
information and is mainly responsible for water body segment-
ation (Bai et al., 2021). Unet (Ronneberger et al., 2015), (Bizo-
poulos et al., 2021) combines an encoder that scales down the
features to a lower dimensional bottleneck and a decoder that
scales them up to original dimensions. It also uses skip connec-
tions that were proven to improve image segmentation results
(Drozdzal et al., 2016). Feature Pyramid Network (FPN) (Lin
et al., 2017) is also similar to Unet with the difference of apply-
ing a 1 × 1 convolution layer and adding the features instead of
copying and appending them as done in the Unet architecture.
UNet is one of the most fundamental semantic segmentation
networks. It was originally intended to be used on biomedical
images, however it finds increasing relevance in nearly all areas
of interest today including remote sensing (Hu et al., 2020). In
case of UNet, the encoder is used for multi-level feature extrac-
tion and the decoder combines learnt features and resolution
through a sophisticated stacking, taking both localization and
feature representation into account (Ronneberger et al., 2015).
On the other hand, FPN works by creating two pyramids, and
combines them to generate feature-rich segmentation maps at
each level (Figure 2).

[a]

[b]

Figure 2. Segmentation models investigated in the study: (a)
UNet (b) FPN

2.3 Encoder Architecture

As mentioned in the paper (Tan and Le, 2020), Convolutional
Neural Networks are commonly developed at a fixed resource
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budget, and then scaled up for better accuracy if more resources
are available. To maximize the model accuracy for any given
resource constraints, an optimazation problem can be designed
with parameters w, d, r, which are coefficients for scaling net-
work width, depth, and resolution. The authors of the paper
(Tan and Le, 2020) also use neural architecture search to design
a new baseline network and scale it up to obtain a family of
models, called EfficientNets, which achieve much better ac-
curacy and efficiency than previous Convolutional Neural Net-
works.

In the paper(Tan and Le, 2020), the authors introduce a new
compound scaling method, which use a compound coefficient
ϕ to uniformly scale network width (βϕ), depth ( αϕ), and res-
olution (γϕ), where α, β, γ are constants that can be determined
by a small grid search. Intuitively, ϕ is a user-specified coeffi-
cient that controls how many more resources are available for
model scaling, while α, β, γ specify how to assign these extra
resources to network width, depth, and resolution respectively.

Figure 3. Network architecture of EfficientNet-B0 (Tan and Le,
2020)

Figure 3 shows the architecture of EfficientNet-B0. Its main
building block is mobile inverted bottleneck MBConv (Sandler
et al., 2019), to which squeeze-and-excitation optimization (Hu
et al., 2019) is added. Starting from the baseline EfficientNet-
B0, a compound scaling method is added to scale it up with two
steps:

• ϕ = 1 is first fixed, assuming twice more resources avail-
able, and a small grid search of α, β, γ is done.

• α, β, γ are fixed as constants and the baseline network is
scaled up with different ϕ, to obtain EfficientNet-B1 to B7.

In particular, the EfficientNet-B7 has achieved state-of-the-art
84.3% top-1 accuracy on the ImageNet dataset (Deng et al.,
2009), while being 8.4x smaller and 6.1x faster on inference
than the best existing convolution network. The EfficientNet
also transfers well and achieves state-of-the-art accuracy on
CIFAR-100 (91.7%) (Krizhevsky, n.d.), and Flowers (98.8%)
datasets (Nilsback and Zisserman, 2008).

2.4 Model training details

For our analysis, we use the EfficientNet-B7 as the encoder
backbone for both the Unet as well as the FPN networks. The
classifier is retrained on our filtered dataset and the weights of
the pre-trained network are also fine-tuned by continuing the
back-propogation. For the entire study, the mini-batch size was
selected as 10 and iterated over the whole dataset for 14 epochs.
The Adam optimizer (Kingma and Ba, 2017) was used for train-
ing optimization, with an initial learning rate of 0.01. The loss
function used was dice loss for training both Unet as well as the
FPN networks. The minimum value for learning has been fixed
to 0.0001.

2.5 Model evaluation metrics

In a binary segmentation study such as flood inundation, two
outcomes which correspond to water and non-water regions are
possible. The output can be classified as (1) True Positive (TP):
where water pixels are correctly classified as water; (2) True
Negative (TN), where non-water pixels are correctly classified
as non-water regions; (3) False Positive (FP): non-water pixels
incorrectly classified as water (4) False Negative (FN): water
pixels incorrectly classified as non-water (Konapala and Kumar,
2021).

Based on these outputs, pixel accuracy which determines the
percentage of pixels correctly classified can be computed. How-
ever, as accuracy computes this percentage irrespective of
classes, it can be misleading when the class of interest (i.e. wa-
ter) has relatively low number of pixels. To avoid this, Pre-
cision, Recall, and F1 scores are commonly used. Precision
and Recall are interdependent measures of over and under-
segmentation Low values of Precision and Recall indicates
over-segmentation and under-segmentation, respectively. F1
score is the harmonic mean of Precision and Recall scores cap-
turing both the aspects as a single metric. Intersection over
Union (IoU) is the ratio between the area of overlap and the
area of union between the ground truth and the predicted areas.
The mIoU is the average between the IoU of the segmented ob-
jects over all the images of the dataset.

Precision illustrates how many of the predicted water pixels
matched the water pixels in the annotated labels. It can be cal-
culated as

Precision = TP/(TP + FP ) (1)

Whereas Recall denotes how many have been predicted as wa-
ter pixels by our deep learning model. It can be defined as:

Recall = TP/(TP + FN) (2)

For an image to be classified accurately, both Precision and Re-
call should be high. For this purpose, F1 score and mIoU, is
often used as a tradeoff metric to quantify both over- and under-
segmentation into one measure. While training, a sum of F1
score and mIoU, which is the model evaluation score is used a
metric for evaluating the model while training.

F1score = 2 ∗ (Precision ∗Recall)/(Precision+Recall)
(3)

F1score = TP/(TP + (FP + FN)/2) (4)

IoU = TP/(FN + FP + TP ) (5)

mIoU = IoU/N (6)

where N is the number of images in the dataset.
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A modified K-fold cross validation approach was used to evalu-
ate the performance of both models. For each one of two mod-
els, the Unet and the FPN, the filtered dataset was randomly
divided into 10 equal subsets. For each round, the model was
trained on 9 of subsets randomly and validated on the remain-
ing subset. The process was repeated for k=10 by randomly
selecting 9 susbsets for training and the remaining one for val-
idation. The model with the highest model evaluation score was
selected and its performance was evaluated on the test dataset.
As mentioned, this process was repeated for both models sep-
arately and the best models from each of the two architectures,
the Unet and the FPN were then selected and their performances
were assessed on the test dataset. The training was performed
on a server with three nVidia GP104GL [Quadro P4000] GPUs,
with driver NVIDIA UNIX x86.64 Kernel Module 460.56. The
whole model development and training were performed using
the Tensorflow platform (Abadi et al., 2015) along with the
Keras library in Python.

3. RESULTS

3.1 Training results

As mentioned in section 2.2, a K-fold corss-validation was per-
formed using both models, the Unet and the FPN separately us-
ing the filtered training dataset. The two best models, of both ar-
chitectures were selected based on the highest model evaluation
score. The progression of training and validation loss and train-
ing and validation IoU, for the best Unet model with Efficient
B7 as encoder, over 15 epochs, after K-fold cross-validation, is
depicted in Figure 4. Similar curves for the best FPN model,
after K-fold cross-validation, is shown in Figure5.

[a]

[b]

Figure 4. (a) shows the progression of training and validation
loss and (b) shows the progression of training and validation

IoU, for the Unet model with Efficient B7 as encoder, over 15
epochs.

The results of the performances of the best models of both the
Unet and the FPN, after K-fold cross-validation, on a few of the
training images are shown in Figure 6.

3.2 Results on test data

As mentioned in section 2.1, 8382 tiles of the Florence dataset
was used to test and evaluate the performances of both models.
During testing, data augmentation was done by rotating each
tile by 90, 180 and 270 degrees and predicting the flood mask
by applying the trained model on each of the augmented tile.
The final prediction was calculated by averaging the mean of

[a]

[b]

Figure 5. (a) shows the progression of training and validation
loss and (b) shows the progression of training and validation
IoU, for the FPN model with Efficient B7 as encoder, over 15

epochs.

Performance metric UNet model FPN model
Precision 97.2% 97.2%

Recall 95% 97.5%
F1 score 96.1% 97.3%

Mean IOU 75.06% 75.76%

Table 2. Comparison of performance metrics of the best models
of the UNet and the FPN on the test data from Florence

all the separate predictions. This whole process is shown in
Figure 7.

The results of the performances of the best models of both the
UNet and the FPN, after K-fold cross-validation, on a few of
the test images from Florence are shown in Figure 8.

Based on the labels from the test data, metrics like precision,
recall, F1 score and mean IOU were calculated for both models
and the results are depicted in Table 2.

4. DISCUSSION AND CONCLUSION

In this work, the main objective was to leverage the huge
amount of publicly available Sentinel-1 dataset to delineate
open water bodies which can be further used in flood extent
mapping. In this work, two deep learning segmentation mod-
els, the UNet and the FPN, both with the same EfficientNet-B7
encoder architecture were designed and trained against a set of
labeled SAR datasets from certain geographical areas and then
tested for detection of flooded pixels for a different test case
in another geographical area. Based on the labels from the test
data, metrics like precision, recall, F1 score and mean IOU were
calculated for both models and the results are depicted in Table
2.

From the results in Table 2, it can be seen that both models
performed really well in identifying the flood pixels. However,
the metrics show that the FPN model outperformed the UNet
model to some extent. This may be due to the fact that FPN
model architecture was able to capture the minute details from
the three bands much efficiently compared to the UNet. Also,
the results indicate that the EfficientNet-B7 encoder performed
really well as is evident from the fact that both models achieved
a meanIOU score of more than 75% on the test dataset. It is
also shown that our method can enable scalable training with
data distribution drifts, as is evident from the fact that both
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Figure 6. Figure showing the SAR composite image, the
corresponding ground truth and the prediction results for both
the UNet and the FPN models for the training and validation
dataset from Bangladesh, Nebraska and North Alabama flood

events

models were trained on data from three geographical areas -
Bangladesh, North Alabama and Nebraska and tested on a dif-
ferent dataset from Florence, and in-spite this the performance
of both the models were quite commendable.

Further improvements to the models can be made with access
to better datasets in the future, such as more specific classes
for floods (open floods, flooded vegetation, and urban floods)
rather than only one general class. Also, it will be very inter-
esting to evaluate and analyze the results of classification and
segmentation of the derived flooded areas, using a visual ana-
lytics approach to explain the causality behind the classification
of the flooded areas by the deep learning models.
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