
AUTOMATIC FPGA BASED IMPLEMENTATION OF A
CLASSIFICATION TREE

J. Mitéran1, J. Matas2, J. Dubois1, E. Bourennane1

1 Le2i - FRE CNRS 2309 Aile des Sciences de l’ingénieur
Université de Bourgogne - BP 47870 - 21078 Dijon - FRANCE

miteranj@u-bourgogne.fr
2 Center of Machine Perception – CVUT, Karlovo Namesti 13, Prague, Czech Republic

Abstract

We propose a method of automatic hardware imple-
mentation of a decision rule based on the Adaboost al-
gorithm. We review the principles of the classification
method and we evaluate its hardware implementation
cost in term of FPGA’s slice, using different weak classi-
fiers based on the general concept of hyperrectangle. We
show how to combine the weak classifiers in order to
find a good trade-off between classification perform-
ances and hardware implementation cost. We present re-
sults obtained using examples coming from UCI data-
bases.

Keywords : Adaboost, FPGA, classification, hard-
ware, image segmentation

1 INTRODUCTION
In this paper, we propose a method of automatic hard-
ware implementation of a particular decision rule. This
paper focuses mainly high speed decisions (approxi-
mately 5 to 10 ns per decision) which can be useful for
hi-resolution image segmentation or pattern recognition
tasks in very large image databases. Our work is de-
signed in order to be easily integrated in a System-On-
Chip, which can perform the full process: acquisition,
feature extraction and classification. This paper focuses
on the last part of this process. Our method is based on
the well known Adaboost algorithm, which decision
consists in a simple summation of signed numbers [1, 2].
The limited number of operations to be performed allows
us to choose the fastest implementation, a fully parallel
one. Moreover, the regular structure of the function can
be automatically generated using a hardware description
language such as VHDL, and thus can be implemented
efficiently in FPGA.

Many implementations of particular classifiers have
been proposed, mainly based on neural networks [3, 4,
5]. However, the implementation of a classifier is not of-
ten optimum in terms of silicon area and performances,
because of the general structure of the chosen algorithm.
Moreover Adaboost is a powerful machine learning
method that can be applied directly, without any modifi-
cation to generate a classifier implementable in hard-
ware, and a complexity/performance trade-off is natural
in the framework: Adaboost learning constructs a set of
classifier with increasing complexity and better perform-
ance (lower crossvalidated error).
In order to follow real-time processing and cost con-
straint, we have to minimise the test error e while mini-
mising the hardware implementation cost λ and maxi-
mise the decision speed. The maximum speed will be

obtained using a full parallel implementation. We esti-
mated λ considering Field Programmable Gate Array
(FPGA) as the hardware target. The advantage of these
components is mainly their reconfigurability [6] [7]. Us-
ing reconfigurable architecture, it is possible to integrate
the constant values in the design of the decision function,
optimising the number of cells used. We consider here
the slice as the main elementary structure of the FPGA
and the unit of λ. One component can contain a few
thousand of these blocks.

In the first part of this paper, we present the principle
of the proposed method, reviewing the Adaboost algo-
rithm and defining a family of weak classifiers suitable
to hardware implementation, based on the general con-
cept of hyperrectangle. We describe how it is possible to
estimate the full parallel hardware implementation cost
in terms of slices. In the second part, we present the al-
gorithm allowing finding a hyperrectangle minimizing
the classification error and allowing finding a good
trade-off between performance hardware implementation
cost which we estimated. In the third part, results ob-
tained on real databases coming from UCI repository are
presented.

2 PROPOSED METHOD

2.1 Review of Adaboost

The basic idea introduced by Schapire and Freund [1, 2]
is that a combination of single rules or “weak classifiers”
gives a “strong classifier”. Each sample is defined by a
feature vector x=(x1, x2, ..., xD)T in an D dimensional
space and its corresponding class :
() { }= ∈ − +1, 1C yx in the binary case.

We define the learning set S of p samples as:

() () (){ }= 1 1 2 2S , , , , ..., ,p py y yx x x .

Each sample is weighted such as after each iteration of
the process (which consists in finding the best weak
classifier as possible), the weights wi of the misclassified
samples are increased, and the weights of the well classi-
fied sample are decreased. The final class y is given by:

() ()α
=

=  
 
 
∑

1

T

t t
t

y sgn hx x

Where both α t and th are to be learned by the following
boosting procedure.

1. Input () () (){ }= 1 1 2 2S , , , , ..., ,p py y yx x x , number of

iteration T and initialize
() 1 /tw p
i

= for all i=1, …, p

2. Do for t=1, …, T
2.1 Train classifier with respect to the weighted samples set

{ }()S, td and obtain hypothesis { }→ − +: 1, 1th x

2.2 Calculate the weighted error ε t of

th : ()()ε
=

= ≠∑ ()

1

I
p

t
t i i t i

i

d y h x

2.3 Compute the coefficient
11

log
2

t
t

t

ε
α

ε

−
=

 
  
 

2.4 Update the weights (){ }
()

(1) exp
t

t i
i t i t i

t

d
d y h

Z
α+ = − x

Where Zt is a normalization constant: 2 (1)t t tZ ε ε= −

3. Stop if ε = 0t or ε ≥
1
2t and set T=t-1

4. Output : () ()
1

T

t t
t

y sgn hα
=

=  
 
 
∑x x

2.2 Choice of a good weak classifier

A weak classifier suitable to parallel hardware imple-
mentation is necessary. In term of slices, the hardware
cost can be expressed as follow:

(1) add TTλ λ λ= − +

where λadd is the cost of an adder (which will be consid-

ered as a constant here), and Tλ is the cost of the parallel
implementation of the set of the weak classifiers :

1
T t

T

t
λ λ

=

=∑

whereλt is the cost of the weak classifier th associated to
the multiplexers (see Fig. 1).
Single parallel axis threshold is often used in the litera-
ture. However, the number of iterations needed by a so
simple classifier is often important, increasing the hard-
ware cost (which depends on the number of additions to
be performed in parallel). To increase the complexity of
the weak classifier allows converging faster, and then
minimizing the number of additions, but will also in-
crease the second member of the equation. We have then
to find a trade off between the complexity of th and the
hardware cost.
It has been proved in the literature that decision trees
based on hyperrectangles (or union of boxes) instead of
single threshold give better results [11]. Moreover, the
decision function associated with a hyperrectangle can
be easily implemented in parallel (Fig. 2).

0h

Set of
Adders

0α+

0α−

Mux

th

tα+

tα−

Mux

x

y
sgn

Fig. 1 Parallel implementation of Adaboost

AND

0 0θ>
lx

AND

x

0 0θ<
ux

θ>D

l
Dx

0 0θ>
lx

AND

θ<D

u
Dx

th

Fig. 2 Parallel implementation of th

However, there is no algorithm in the complexity of D
allowing finding the best hyperrectangle, i.e. minimizing
the learning error. We will use a suboptimum algorithm
to find it.

We defined the hyperrectangle as a set H of 2D
thresholds and a class Hy

{ }1 1 2 2, , , , ..., , ,l u l u l u

D D HH yθ θ θ θ θ θ=

Where θ l
k and θ

u
k are respectively the lower and up-

per limits of a given interval in the kth dimension. The
decision function is

() ()() ()u

1

 , otherwise
D

l

H H d d d d H H
d

h hy x x yθ θ
=

= = −⇔ > <∏x x

This expression, where product is the logical operator,
can be simplified if some of these limits are rejected to
the infinite (or 0 and 255 in case of byte based imple-
mentation). Comparisons are not necessary in this case
since the result will be always true. It is particularly im-
portant for minimising the final number of used slices.
Two particular cases have to be considered:
The single threshold: { },d yθ ΓΓ =

Where dθ is a single threshold, { }1, ...,d D∈ , and the
decision function is:
() (), otherwise d dh hy x yθΓ Γ Γ Γ= = −⇔ <x x

The single interval: { }, ,l u

d d yθ θ ∆∆ =
Where the decision function is:
() () () ()and , otherwise l u

d d d dh hy x x yθ θ∆ ∆ ∆ ∆= = −⇔ > <x x
In these two particular cases, it is easy to find the op-

timum hyperrectangle, because each feature is consid-
ered independently form the others. In the general case,
one has to follow a particular heuristic given a subopti-

mum hyperrectangle. A family of such classifiers have
been defined, based on the NGE algorithm described by
Salzberg [12] whose performance was compared to the
Knn method by Wettschereck and Dietterich [13]. This
method divides the attribute space into a set of hyperrec-
tangles based on samples. The performance of our own
implementation was studied in [14]. We will review the
principle of the hyperrectangle determination in the next
paragraph.

3 HYPERRECTANGLE
DETEMINATION

3.1 Review of Hyperrectangle based method

The core of the strategy is the hyperrectangles set H
determination from a set of sample S.

During the first step, one hyperrectangle H(x) is build
for each sample x of the learning set S as follows: each
part Qk (see Fig. 3) defines the area where for all sample

()∞∈ = −, d ,k k kQ x uu x u with:

()∞
=

= −
1,...,

, max k k
k D

d u vu v

We determine z as the nearest neighbour belonging to
a different class in each part Qk. If dk is the distance be-
tween x and z in a given Qk, the limit of the hyperrectan-
gle is computed as df = dkR. The parameter R should be
less or equal to 0.5. This constraint ensures that the hy-
perrectangle cannot contain any sample of opposite
classes.

xj

x iQ+

iQ−

jQ+

jQ−

dp

df

Bound determination

Fig. 3 Hyperrectangle computation

During the second step, hyperrectangles of a given

class are merged together in order to eliminate redun-
dancy (hyperrectangles which are inside of other hyper-
rectangle of the same class). We obtain a set H of hyper-
rectangles :

 { }1 2H , ...,, qH H H=
We evaluated the performance of this algorithm in vari-
ous cases, using theoretical distributions as well as real
sampling [8]. We compared the performance with neural
networks, the Knn method and a Parzen’s kernel based
method [10]. It clearly appears that the algorithm per-
forms poorly when the inter-class distances are too
small: an important number of hyperrectangles are cre-

ated in the overlap area, slowing down the decision or
increasing the implementation cost. However, it is possi-
ble to use the hyperrectangle generated as a step of the
Adaboost process, selecting the best one in terms of clas-
sification error.

3.2 Boosting general Hyperrectangle

From H we have to build one hyperrectangle minimis-
ing the weighted error. To obtain this result, we merge
hyperrectangles following a one-to-one strategy, thus
building q’=q(q-1) new hyperrectangles. We keep Hopt
the hyperrectangle giving the smallest weighted error.

3.3 Estimation of the hyperrectangle hardware
implementation cost

It is possible to estimate the hardware implementation
cost of ht, taking into account that we can code the con-
stant values of the decision function into the final archi-
tecture, using the advantage of FPGA based reconfigur-
able computing. Indeed, the binary result LB of the
comparison of the variable byte A and the constant byte
B is a function FB of the bits of A:

LB=FB(A7,A6,...,A0)
In the worst case, the particular structure of LB can be
stored in two cascaded Look Up Tables (LUT) of 16 bits
each (one slice). We have coded a tool which automati-
cally generates a VHDL description of a decision func-
tion given the result of a training step (i.e. given the hy-
perrectangles limits). We then have used a standard
synthesizer tool for the final implementation in FPGA.
In the case of single threshold, 1tλ = . In the case of in-

terval, 2tλ ≤ . In the case of general hyperrectangle, the
decision rule requires in the worst case 2 comparators
per hyperrectangle and per feature: 2t Dλ ≤ . Consider-
ing that some limits of the general hyperrectangle can be
rejected to the “infinit”, the general cost can be ex-
pressed as follows:

(1)
add

T kTλ λ≤ − + , 2k D≤
where k is the number of lower limits of hyperrectan-

gles which are greater than 0 plus the number of upper
limits which are lower than 1 (or 255 in the byte case).

4 RESULTS
We applied our method in different cases, based on

real databases coming from UCI repository. These ex-
ample are more significant in terms of hardware imple-
mentation, since they are performed in high dimensional
spaces (until D=64, this can be seen as a reasonable limit
for a full parallel implementation).

For each example and, we give also the result of a de-
cision based on SVM developed by Vladimir Vapnik [8],
which is known as one of the best classifier, and which
can be compared with Adaboost on the theoretical point
of view. At the same time SVM can achieve good per-
formance when applied to real problems [15, 16, 17,18].
In order to compare the implementation cost of the two
methods, we evaluated the hardware implementation
cost of SVM as:

72(3 1) 8λ − +svm D Ns
Where Ns is the total number of “Support Vectors”

determined during the training step. We used here a RBF
based kernel, using distance L1. While the decision func-
tion seems to be similar to the Adaboost one’s, the cost
is here mainly higher because of multiplications, even if
the exponential function can be stored in a particular
look up table (LUT) to avoid computation, the kernel
product K requires some multiplications and additions;
the final decision function requires at least one
multiplication and one addition per support vector

() ()α
=

= ⋅ + 
 
 
∑

1

C Sgn ,
Ns

i i i
i

y K bx s x

Results are summarised in the Table 1. The number of
classes c is from 2 to 10. For each case, we give the re-
sult of classification using a RBF kernel based SVM as a
reference. One can see that the direct hardware cost of
this classifier is not realistic here. Considering the differ-
ent results of our Adaboost implementation, it appears
clearly that the combination of the three types of weak
classifiers gives the better results. The optdigit and the
pendigit cases can be solved using from 2 to 5 compo-
nent of the Virtex family, for example, while all the
other cases can be implemented in a single low cost chip.
Moreover, the classification error of the Adaboost based
classifier is very close to the SVM one.

Table 1 Results on real databases
Database D c SVM (RBF) Threshold Interval Hyperrectangle

 e (%) λSVM e (%) λ e (%) λ e (%) λ

optdigit 64 10 1.15 20215448 2.605 5292.5 2.735 5414 2.59 4392.5

pendigit 16 10 0.625 2270672 20.875 3435 2.01 5481.5 1.415 3405.5

Ionosphere 34 2 7.95 465416 8.23 126 6.81 149.5 7.095 119.5

IMAGE 17 7 3.02 1699208 12.91 568.5 7.655 697 4.015 973.5

WINE 13 3 4.44 87560 3.33 98 5.525 98 6.11 18

5 CONCLUSION
We have developed a method allowing automatic gen-
eration of hardware implantation of a particular decision
rule based on the Adaboost algorithm, which can be ap-
plied in many pattern recognition tasks, such as pixel
wise image segmentation, character recognition, etc.

We experimentally validated the method on real
cases, coming from standard datasets. We demonstrated
that it is possible to find a good trade off between the
hardware implementation cost and the classification er-
ror. The final error of this classifier if often very close to
the SVM error, which can be seen as a good reference.
Moreover, the method is really easy to use, since the
only parameters to tune are the choice of the weak classi-
fier and the R value of the hyperrectangle based method.
We are currently finalizing a development tool which
will allows developing the whole implementation proc-
ess, from the learning set definition to FPGA based im-
plementation using automatic VHDL generation. Our fu-
ture work will be the integration of this method as a
standard IP generation tool for classification.

6 REFERENCES
[1] R.E. Schapire, The strengh of weak leanabilty Machine

Learning, 5(2), pp 197-227, 1990.
[2] Y. Freund and R.E. Schapire. A decision-theoretic

generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1), pp 119-139, 1997.

[3] C. M. Bishop Neural networks for Pattern Recognition,
Oxford University Press, 1995, pp 110-230.

[4] P. Lysaght, J. Stockwood, J. Law and D. Girma,
Artificial Neural Network, Implementations on a Fine-
Grained FPGA, in Field Programmable Logic and
Applications, R. Hartenstein, M. Z. Servit (Eds.), Prague,
pp 421–431, 1994

[5] Y. Taright, M. Hubin, FPGA Implementation of a
Multilayer Perceptron Neural Network using VHDL, 4th
Int.l Conf. on Signal Processing (ICSP'98), Beijing,Vol 2,
pp 1311-1314, 1998.

[6] R. Enzler, T. Jeger, D. Cottet, and G. Tröster High-Level
Area and Performance Estimation of Hardware Building
Blocks on FPGAs, In Field-Programmable Logic and
Applications (Proc. FPL 00), Lecture Notes in Computer
Science, Vol. 1896, Springer, pp. 525-534, 2000.

[7] S. Hauck, The Roles of FPGAs in Reprogrammable
Systems, Proceedings of the IEEE, 86(4): pp 615-638,
1998.

[8] J. Mitéran, P. Gorria and M. Robert, Classification
géométrique par polytopes de contraintes. Performances et
intégration , Traitement du Signal, Vol 11, pp 393-
408,1994.

[9] M. Robert, P. Gorria, J. Mitéran, S. Turgis Architectures
for real-time classification processor, Custom Integrated
Circuit Conference, San Diego CA, pp 197-200, 1994.

[10] R. O. Duda and P.E. Hart, Pattern classification and
scene analysis, Wiley, New York, 1973, pp. 230-243.

[11] I. De Macq, L. Simar, Hyper-rectangular space
partitionning trees, a few insight, discussion paper 1024,
Université Catholique de Louvain, 2002.

[12] S. Salzberg, A nearest hyperrectangle learning method.
Machine Learning, 6: pp 251-276, 1991.

[13] D. Wettschereck and T. Dietterich, An Experimental
Comparison of the Nearest-Neighbor and Nearest-
Hyperrectangle Algorithms, Machine Learning, Vol 19,
n°1, pp 5-27, 1995.

[14] J. Mitéran, J. P. Zimmer, F. Yang, M. Paindavoine
Access control : adaptation and real-time implantation of a
face recognition method, Optical Engineering, 40(4): pp
586-593, 2001.

[15] V. Vapnik The nature of statistical learning theory ,
Springer-Verlag, New York, 1995.

[16] B. Schölkopf, A. Smola, K.-R. Müller, C. J. C. Burges
and V. Vapnik Support Vector methods in learning and
feature extraction, Australian Journal of Intelligent Infor-
mation Processing Systems, 1: pp 3-9, 1998.

[17] K. Jonsson, J. Kittler, Y. P. Li, and J. Matas Support
Vector Machines for Face Authentication. In T. Pridmore
and D. Elliman, editors, British Machine Vision
Conference, pp 543-553, 1999.

[18] M. A. Hearst, B. Schölkopf, S. Dumais, E. Osuna and J.
Platt, Trends and Controversies - Support Vector
Machines. IEEE Intelligent Systems, 13(4) : pp 18-28,
1998.

