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Abstract This paper proposes a free parking space detec-

tion system by using motion stereo-based 3D reconstruc-

tion. An image sequence is acquired with a single rearview

fisheye camera and the view behind the automobile is three-

dimensionally reconstructed by using point correspondences.

Metric information is recovered from the camera height ratio

and free parking spaces are detected by estimating the posi-

tions of adjacent vehicles. Since adjacent vehicles are usually

located near the epipole, their structures are seriously degra-

ded. To solve this problem, we select point correspondences

by using a de-rotation-based method and mosaic 3D struc-

tures by estimating a similarity transformation. Unlike in pre-

vious work, our system proposes an efficient way of locating

free parking spaces in 3D point clouds. Odometry is not used

because its accuracy depends largely on road conditions. In

the experiments, the system was tested in 154 different par-

king situations and its success rate was 90% (139 successes

in 154 cases). The detection accuracy was evaluated by using

ground truth data that was acquired with a laser scanner.
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1 Introduction

An automatic parking system provides convenience for dri-

vers by automatically finding free parking spaces and steering

automobiles toward them. Recently, there has been increased

interest in automatic parking systems [3]. For instance, the

2003 Toyota Prius adopted the “Intelligent Parking Assist”

feature as an option and about 80% of buyers have selected

this option [20]. Due to customer interest and the Prius’s suc-

cess, many car manufacturers and component manufacturers

are preparing to release self-parking products [25].

Automatic parking systems consist of three components:

path planning including free parking space detection, an auto-

matic steering and braking system used to implement the

planned trajectory, and the HMI (human machine interface),

which can be used to receive driver input and provide visual

information of the ongoing parking process [15].

Free parking space detection has been implemented by

using various methods: the ultrasonic sensor-based method

[7,30], thelaserscanner-basedmethod[17,31], theshort range

radar network-based method [6,12], and the vision-based

method [9,15,16,18,19,41,42]. Among these, the vision-

based method is attractive to drivers because it visualizes

parkingprocedures,whichmakedrivers feel safer.Thevision-

based method can be categorized into four approaches: the

parking space marking-based approach, the binocular stereo-

based approach, the light stripe projection-based approach,

and the motion stereo and odometry-based approach.

The first approach recognizes parking space markings.

Xu et al. [42] developed color vision-based localization of
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parking spaces. This method uses color segmentation based

on neural networks, contour extraction based on the least

square method, and inverse perspective transformation. Jung

et al. [16] proposed the semi-automatic parking assist sys-

tem which recognized marking lines by using the Hough

transform in a bird’s eye view edge image captured with a

wide-angle camera. In this way, target spaces can be detec-

ted with a single image at a relatively low computational

cost. Also, a general configuration of a rearview camera

(a single fisheye camera) can be used. However, it cannot be

used when parking space markings are not available. Also,

performance can be degraded by poor visual conditions such

as stains, shadows or occlusion.

The second approach recognizes adjacent vehicles by

using a binocular stereo-based 3D reconstruction. Kaemp-

chen et al. [19] developed the parking space estimation sys-

tem which uses a feature-based stereo algorithm, a template

matching on a depth map, and a 3D fitting to the planar sur-

face model of the vehicle. This approach can easily recover

metric information from the fixed length of the baseline and

the camera extrinsic parameters need not be estimated every

time. However, this requires extra costs and space for the

equipment. Also, sub-pixel accuracy is required in case of

short baseline, and point correspondences are difficult to find

in case of long baseline.

Jung et al. [15] developed a method which combines the

parking space marking-based approach and the binocular

stereo-based approach. They used obstacle depth maps for

establishing the search range and simple template matching

for finding the exact location of free parking spaces. This

method is robust to noise factors such as stains, trash and

shadows when compared to the parking space marking-based

method, but it can be only used when both obstacle depth and

parking space markings are available.

The third approach recognizes adjacent vehicles by using

a light plane projector and a single rearview camera. Jung

et al. [18] developed a method which identified free parking

spaces by analyzing the light stripe on objects to the rear

of the vehicle produced by the light plane projector. This

approach can be applied to dark underground parking lots

and the algorithm for acquiring the 3D information is rela-

tively simple. Also, a general configuration of a rearview

camera can be used. However, this approach cannot be used

during the day due to the presence of sunlight and the confi-

guration of the camera and the light plane projector must be

unchanged.

The fourth approach recognizes adjacent vehicles by using

a motion stereo and odometry-based 3D reconstruction.

Fintzel et al. [9] and Vestri et al. [41] proposed a system

which provides a rendered image from a virtual viewpoint

for better understanding of parking situations and procedures.

This system obtains camera external parameters and metric

information from odometry and reconstructs the 3D structure

of the parking space by using point correspondences. This

approach can easily reconstruct the Euclidean 3D structure

by using odometry and a general configuration of rearview

camera can be used. However, odometry information can be

erroneous when road conditions are slippery due to rain or

snow [21], and a free parking space detection method was

not presented.

The proposed system is similar to the fourth approach. We

three-dimensionally reconstruct the rearview structures by

using a single rearview fisheye camera and find free parking

spaces in the 3D point clouds. This system consists of six

stages: image sequence acquisition, feature point tracking,

3D reconstruction, 3D structure mosaicing, metric recovery,

and free parking space detection.

Compared to previous works [9,41], the proposed sys-

tem makes three contributions. First, the degradation of the

3D structure near the epipole is solved by using de-rotation-

based feature selection and 3D structure mosaicing. This is a

serious problem when reconstructing 3D structures with an

automobile rearview camera because the epipole is usually

located on the image of an adjacent vehicle which must be

precisely reconstructed. Although this problem was mentio-

ned in [29,41], a solution was not presented. Second, an effi-

cient method for detecting free parking spaces in 3D point

clouds is proposed. For this task, the structure dimensions are

reduced from 3D to 2D and the positions of adjacent vehicles

are estimated. Third, odometry is not used because its accu-

racy largely depends on road conditions. The camera external

parameters are estimated by using point correspondences and

the metric information is recovered from the camera height

ratio.

There has been some research into reconstructing 3D

structures with similar configurations in the field of SLAM

[26,27,29]. These studies used a single forward-looking wide

angle camera for building maps and locating vehicles. Odo-

metry was not used in these studies but the 3D structures

were reconstructed only up to an unknown scale factor. The

degradation near the epipole was mentioned but it was not

considered.

In our experiments, the system was applied to 154 real

parking situations. It succeeded in 139 cases and failed in 15

cases, producing a success rate of 90.3%. Detection accu-

racy was evaluated with 47 image sequences taken with a

laser scanner data. This evaluation showed that the proposed

system yielded acceptable accuracy levels.

The rest of this paper is organized as follows. In Sect. 2,

we discuss the point correspondences and 3D reconstruc-

tion. In Sect. 3, we explain the problem of the epipole and

offer a solution. In Sect. 4, we describe metric recovery and

the free parking space detection. In Sect. 5, we present the

experimental results including a comparison with the laser

scanner data. Finally, in Sect. 6, we conclude the paper with

a summary and some suggestions for future work.
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2 Motion stereo-based 3D reconstruction

2.1 Point correspondences

Point correspondences in two different images have to be

found in order to estimate the motion parameters and 3D

structures. For this task, we considered three approaches. The

first approach finds a small number of reliable point corres-

pondences to estimate the fundamental matrix and matches

many feature points by using the epipolar constraints. This

is called guided matching [13], which requires the fisheye

images to be undistorted and rectified but both are very time-

consuming processes.

The second approach finds many point correspondences

by using a naive algorithm, and rejects false matches by using

an outlier rejection method designed for cameras on intelli-

gent vehicles [33]. Even though this approach is fast and

produces few mismatches, it is difficult to find point corres-

pondences on automobile surfaces due to the lack of features.

The third approach detects feature points and tracks them

through image sequences [22,34,35]. Since this method

tracks the feature points between consecutive images, it can

find many point correspondences on automobile surfaces.

However, computational costs are high because the algorithm

has to be applied to many images.

The first and second approaches require two images. The

memory size for saving the images is small but it is diffi-

cult to select key frames without saving the whole sequence.

Key frames determine the 3D reconstruction interval. The

third approach also requires two images every moment if it

is implemented in real-time. Since point correspondences for

each frame are saved, it is convenient to select key frames by

using the tracking results. By summarizing this comparison,

the tracking approach was selected in our application.

For tracking, we chose the Lucas–Kanade method [22,

35] because it produces accurate results, offers affordable

computational power [2,24], and there are some existing

examples of real-time hardware implementations [5,8,23].

This method uses the least square solution of optical flows.

If I and J are two consecutive images and x and � denote

the feature position and the small spatial neighborhood of x,

respectively, then the goal is to find the optical flow vector,v

which minimizes:

min
v

∑

x∈�

{I (x) − J (x + v)}2. (1)

The solution of Eq. (1), vopt is given by:

vopt = G−1b

G =
∑

x∈�

[

I 2
x Ix Iy

Ix Iy I 2
y

]

, b =
∑

x∈�

[

δ I I x

δ I I y

]

. (2)

Ix and Iy are the image gradients in the horizontal and vertical

directions, respectively, and δ I is the image pixel difference.

Since the matrix G is required to be non-singular, the image

location where the minimum eigenvalue of G is larger than

the threshold is selected as a feature point and tracked through

the image sequence.

2.2 Three-dimensional reconstruction

Once the point correspondences are obtained, the structure

of the parking space is three-dimensionally reconstructed by

using the following three steps: key frame selection, motion

parameter estimation, and triangulation. First of all, the key

frames which determine the 3D reconstruction interval

should be appropriately selected. If there is not enough

camera motion between the two frames, the motion para-

meters is inaccurately estimated and in the opposite case, the

number of point correspondences is decreased.

Some algorithms have been proposed to select key frames

[28,29,37]. We used a simple but less general method which

uses the average length of optical flow. This method works

well because rotational motion is always induced by trans-

lational motion in our application. Since parking spaces are

reconstructed at the driver’s request, the latest frame is selec-

ted as the first key frame. The second key frame is selected

when the average length of optical flow from the first key

frame exceeds the threshold. The next key frame is selected

in the same way. The threshold value was set to 50 pixels and

this made the baseline length approximately 100–150 cm.

Once the key frames are selected, the fundamental matrix

is estimated to extract the motion parameters. For this task,

we used RANSAC followed by an M-Estimator. Torr et al.

[36] found that fundamental matrix estimation performance

could be improved by using this combination. We also perfor-

med experiments using the various methods in [1] by using

automobile rearview fisheye images and the same combina-

tion was found to be the best.

The RANSAC is based on randomly selecting a set of

points to compute the candidates of the fundamental matrix

by using a linear method. This method calculates the number

of inliers for each fundamental matrix and chooses the one

which maximizes it. Once the fundamental matrix is deter-

mined, it is refined by using all the inliers. The M-Estimator

reduces the effect of the outliers weighting the residual of

each point correspondence. If x′
i and xi are the coordinates

of the point correspondences in two images and F is the fun-

damental matrix, then the M-Estimator is based on solving

Eq. (3):

min
F

∑

i

wi (x
′T
i Fxi )

2 (3)

wi is a weight function and we used Huber’s [14] function.
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After estimating the fundamental matrix, we follow the

method presented in [13]. The essential matrix is calcula-

ted by using the fundamental matrix and the camera intrin-

sic parameters matrix. The camera intrinsic parameters were

pre-calibrated because they do not change in our applica-

tion. The four combinations of the rotation matrix and the

translation vector are extracted from the essential matrix.

Since only the correct combination allows the 3D points to

be located in front of both cameras, several randomly selected

points are reconstructed to determine the correct combina-

tion. The projection matrices of the two cameras are produced

by combining the camera intrinsic parameters matrices, the

rotation matrix, and the translation vector. After that, the 3D

points are calculated by using a linear triangulation method.

If P and P ′ represent the projection matrices of the two came-

ras and X represents the 3D point of the point correspondence

(x and x′), they satisfy Eq. (4).

x × (PX) = 0

x′ ×
(

P ′X
)

= 0.
(4)

By combining the above two equations into the form AX = 0,

the 3D point (X) is simply calculated by finding the unit sin-

gular vector corresponding to the smallest singular value of

A. This is solved by using a SVD. The matrix A is expressed

as:

A =

⎡

⎢

⎢

⎢

⎢

⎣

xp3T − p1T

yp3T − p2T

x ′p′3T
− p′1T

y′p′3T
− p′2T

⎤

⎥

⎥

⎥

⎥

⎦

(5)

piT and p′iT represent the i th rows of the projection matrices

of the two cameras, and [x, y]T and [x ′, y′]T represent the

image coordinates of the point correspondences. For 3D

reconstruction, we did not use a complex optimization algo-

rithm such as a bundle adjustment [38] because its computa-

tional cost is too high for our application.

3 Feature selection and 3D structure mosaicing

3.1 Degradation of 3D structure near the epipole

When reconstructing 3D structures in our application, heavy

degradation appears near the epipole. This is because tri-

angulation has to be performed at a small angle in that area.

With a small angle, the accuracy of the 3D points is degraded

because of the relatively high portions of the point detection

error and the image quantization error. This can be shown as

a rank deficiency of the matrix A in Eq. (5). When the feature

point nears the epipole, the rank of matrix A becomes closer

to two. This causes unreliable estimation of the 3D points.

Even though this problem is very serious in 3D recons-

truction as mentioned in [29,41], it has not been dealt with

Previous camera

Current camera

Free 

parking 

space

Previous camera

Current camera

Free 

parking 

space

Epipole

Camera center

Image plane

Epipole

Camera center

Image plane

Fig. 1 Location of the epipole in a typical parking situation

in previous works because of two reasons. First, the epipole

is not located inside the image in many applications because

of camera configurations. This happens when the 3D struc-

tures are reconstructed by using a stereo camera or a single

moving camera whose translation in the optical axis is not

dominant relative to the translations in the other axes [11,19].

Second, the epipole is located inside the image but it is not

on the target objects. This happens when a single forward (or

backward) looking camera moves along a road or corridor.

In this case, the epipole is located inside the image but it is

usually on objects far from the camera, so the region around

the epipole is not interesting [26,27,29].

In our application, the translation in the optical axis is quite

dominant, so the epipole is always located inside the image.

Also, the epipole is usually located on the image of an adja-

cent vehicle which is our target object used for locating free

parking spaces. Figure 1 shows the epipole location in a typi-

cal parking situation. As shown in this figure, the epipole is

usually located on the image of an adjacent vehicle due to the

motion characteristics of the automobile rearview camera.

For this reason, the 3D structure of the adjacent vehicle is

erroneously reconstructed in our application. Figure 2 shows

the location of the epipole in the last frame of the image

sequence and its reconstructed 3D structure. We depict the

structure as seen from the top after removing the points near

the ground plane. In this figure, the 3D points near the epipole

on the adjacent vehicle appear quite erroneous, so the free par-

king space detection results will be degraded by those points.

3.2 De-rotation-based feature selection and 3D structure

mosaicing

To solve the problem of the epipole and obtain a precise

3D rearview structure, we propose a two-step method. First

the unreliable point correspondences are removed by using a

de-rotation-based method, and then the removed part of the

structure is substituted by mosaicing several 3D structures.

In the first step, we eliminate the rotational effect from the

optical flow. Since the optical flow length is proportional to

the 3D point accuracy in a pure translation [39], we simply
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Fig. 2 a A typical location of

the epipole. b Its reconstructed

3D structure as seen from the

top after removing the points

near the ground plane

Structure near 

the epipole

(a) (b)

Fig. 3 a Undistorted optical flows. b De-rotated optical flows

throw away the point correspondences whose optical flow

lengths are shorter than the threshold. This prevents the 3D

structure from including erroneously reconstructed points.

For eliminating the rotational effect, a conjugate rotation is

used [13]. If x and x′ are the images of a 3D point (X) before

and after the pure rotation:

x = K [I |0]X

x′ = K [R|0]X = K RK −1x
(6)

so that x′ = Hx with H = K RK −1. K , I, and R represent

a 3 × 3 camera intrinsic parameters matrix, a 3 × 3 identity

matrix, and a 3 × 3 rotation matrix, respectively.

Figure 3 describes the de-rotated-based feature selection

procedure. The optical flows found in the fisheye images are

undistorted as shown in Fig. 3a. After that, the undistorted

optical flows are de-rotated by using a conjugate rotation as

shown in Fig. 3b. All the optical flows in Fig. 3b point toward

the epipole because the rotational effect is totally eliminated.

In this case, the epipole is known as the focus of expansion.

In Fig. 3b, the red lines indicate the unreliable optical flows

classified by the de-rotation-based method. The unreliable

optical flows include the features near the epipole and far

from the camera. The threshold for the optical flow length

was set to ten pixels.

In the second step, we reconstruct several 3D structures

by using the reliable point correspondences and mosaic them

into one structure by estimating the similarity transformation.

This process substitutes the removed part of the rearview

structure. The similarity transformation parameters consist

of R(3 × 3 rotation matrix), t(3 × 1 translation vector), and

c (scaling) and we use the least-square fitting method [40]

with the 3D point correspondences known from the tracking

results. Since the reconstructed 3D points may be erroneous

and include outliers, the RANSAC approach [10] is used for

parameter estimation. The least-square fitting method can

be explained as follows. We are given two sets of 3D point

correspondences Xi and Yi ; i = 1, 2, . . ., n in the 3D space.

Xi and Yi are considered as 3 × 1 column vectors, and n

is equal to or larger than three. The relationship between

Xi and Yi can be described as:

Yi = cRXi + t. (7)

The mean squared error of two sets of points can be written

as:

e2(R, t, c) =
1

n

n
∑

i=1

‖Yi − (cRXi + t)‖2. (8)

If A and B are the 3 × n matrices of {X1, X2, . . . , Xn}

and {Y1, Y2, . . . , Yn}, respectively, and UDVT is a SVD of

ABT (UUT = VVT = I, D = diag(di ), d1 ≥ d2 ≥ · · · ≥

0), the transformation parameters which minimize the mean

squared error can be calculated by:

R = UVT, t = µY − cRµX , c =
1

σ 2
X

trace(D) (9)

µY , µX and σ 2
X can be defined as:

µY =
1

n

n
∑

i=1

Yi ,µX =
1

n

n
∑

i=1

Xi , σ
2
X =

1

n

n
∑

i=1

∥

∥Xi − µX

∥

∥

2
.

(10)

Figure 4 shows the key frame images and the reconstructed

3D structures when using and without using the de-rotation-

based feature selection. The 3D structures are shown as seen
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Fig. 4 a Key frame images.

b 3D structures without using

the de-rotation-based feature

selection. c 3D structures when

using the de-rotation-based

feature selection

(a) (b) (c)

from the top after removing the points near the ground plane.

Figure 4a shows the key frame images and their epipole loca-

tions. We can see that the epipoles are located on different

positions of the adjacent vehicle. Figure 4b shows the recons-

tructed 3D structures of each key frame without using the

de-rotation-based feature selection. The structures near the

epipoles are badly reconstructed. However, the erroneously

reconstructed part in one structure is correctly reconstruc-

ted in another structure. Figure 4c shows the reconstructed

3D structures of each key frame when using the de-rotation-

based feature selection. Most of the erroneous 3D points in

Fig. 4b are deleted.

Figure5showsthereconstructedstructureswhenusingand

without using the proposed feature selection and 3D mosai-

cing methods. The red point indicates the camera center. By

using the proposed two-step method, we obtained more pre-

cise structure near the epipole. In the experimental results, the

advantages of this method are presented in detail by compa-

ring the reconstructed structures with the laser scanner data.

4 Free parking space detection

4.1 Metric recovery

For locating free parking spaces in terms of centimeters, the

metric information of the 3D structure has to be recovered.

This is usually achieved by using a known baseline length or

prior knowledge of the 3D structure. Since the camera height

in the real world is known in our application, we estimate the

camera height in the reconstructed world and use the ratio

for metric recovery. The camera height in the real world is

assumed as fixed in this paper. A height sensor can be used

with camera height variations that may occur due to changing

cargos or passengers.

To calculate the camera height ratio, the ground plane

in the reconstructed world has to be estimated because the

camera location is set to the origin. The estimation proce-

dure consists of three steps: tilting angle compensation, den-

sity estimation-based ground plane detection, and 3D plane

estimation-based ground plane refinement. The tilting angle

is calculated and the 3D structure is rotated according to

the calculated angle. This procedure forces the ground plane

parallel to the X Z -plane. In our camera configuration (shown

in Fig. 6), the tilting angle (θ) can be calculated by [4]:

θ = arctan

(

ey − y0

f

)

(11)

ey and y0 are the y-axis coordinates of the epipole and the

principal point, respectively. f is the focal length of the

camera.

Since there is usually only one plane (the ground plane)

parallel to the X Z -plane after compensating the tilting angle,

the density of the y-axis coordinate of the 3D points has the

maximum peak at the location of the ground plane. Figure 7

shows the density of the y-axis coordinate of the 3D points.
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Fig. 5 Comparison of the 3D

structures a when using the

proposed two-step method

b without using the proposed

two-step method

(a) (b)

Ground plane 

Image 

plane
Epipole (ex, ey)

Y

Z

Principal point (x0, y0) 

f

Optical axis

Automobile

q

Fig. 6 Configuration of rearview camera
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Fig. 7 Density of the y-axis coordinate of the 3D points

In this figure, the peak location is recognized as the location

of the ground plane and the distance from the peak location

to the origin is recognized as the camera height in the 3D

structure.

After that, the location and the orientation of the ground

plane are refined by 3D plane estimation. The 3D points

near the initially detected ground plane are selected and the

RANSAC approach is used for estimating the 3D plane. The

camera height is refined by calculating the perpendicular dis-

tance between the camera center and the estimated 3D plane.

The 3D structure is scaled in centimeters by using the camera

height ratio between the estimated camera height and the

known camera height. After that, the 3D points far from the

camera center are deleted and the remaining points are rota-

ted according to the 3D plane orientation to make the ground

plane parallel to the X Z -plane. Figure 8a, b shows the final

result of the metric recovery in the camera-view and the top-

view, respectively.

4.2 Free parking space detection

Once the Euclidean 3D structure is reconstructed, the free

parking spaces are detected in the 3D point clouds. For this

task, we estimate the positions of the adjacent vehicles and

locate free parking spaces accordingly. Because position esti-

mation in 3D space can be complicated and time-consuming,

we reduce the dimensions of the structure from 3D to 2D.

The 3D points, whose heights from the ground plane are

between 30–160 cm, are selected and the height information

is removed to reduce the dimensions. After that, we delete

the isolated points by counting the number of neighbors.

Figure 9a shows the dimension reduction result. Since all

points in Fig. 9a do not belong to the outermost surface of

the automobile, we select the outline points by using the rela-

tionship between the incoming angle and the distance from

the camera center. This procedure is performed for better

estimation of the position of the adjacent vehicle. The inco-

ming angle is the angle between the horizontal axis and the

line joining the camera center and a 2D point. Figure 9a is

re-depicted in Fig. 9b by using the incoming angle and the

distance from the camera center. Since the points on the same

vertical line comes from the same incoming angle in Fig. 9b,

the nearest point from the camera center among the points

on the same vertical line is recognized as the outline point.

Figure 9c shows the result of outline point selection.

If the automobile shape is assumed to be a rectangle as

seen from the top, the position of the adjacent vehicle can

be represented by a corner point and orientation. Therefore,

we estimate the corner point and orientation of the adjacent
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Fig. 8 Result of metric

recovery. a Camera-view,

b top-view. (0, 0, 0) indicates

the camera center
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Fig. 9 a Dimension reduction result. b Re-depicted 2D points with the incoming angle and the distance from the camera center. c Result of outline

point selection. (0, 0) indicates the camera center

vehicle and use these values to locate free parking spaces.

Since the reconstructed structure is noisy and includes not

only adjacent vehicles but also other obstacles, we use a

projection-based method. This method rotates the 2D points

and projects them onto the x and z-axes. It discovers the rota-

tion angle which maximizes the sum of the maximum peak

values of the two projection results. The rotation angle and

the locations of the two maximum peak values are recogni-

zed as the orientation and the corner point, respectively. This

method estimates the corner point and orientation at the same

time, and it is robust to noisy data.

However, when using this method, we cannot know whe-

ther the estimated orientation is longitudinal or lateral. To

determine this, it is assumed that a driver turns right when a

free parking space is located on the left, and vice versa. This

assumption helps us to determine the orientation by using the

turning direction of automobile estimated from the rotation

matrix.

Afterestimating thecornerpoint andorientation, thepoints

onthe longitudinalsideof theadjacentvehicleareselectedand

usedfor refining theorientationbyusingRANSAC-based line

estimation. This procedure is needed because the lateral side

of automobiles is usually curved so the longitudinal side gives

more precise orientation information. The corner point is also

refined according to the refined orientation.

To locate the most appropriate free parking spaces, other

adjacent vehicles located opposite the estimated vehicle are

also searched. The search range is set as Fig. 10a by using

the estimated corner point and orientation. We set a circle

with a radius of 150 cm and its center is located 300 cm away

from the corner point in the lateral direction. If there are point

clouds inside the search range, the other vehicle is considered

to be found and the free parking space is located in the middle

of two vehicles in the lateral direction. The corner points of

two adjacent vehicles are projected in a longitudinal direction

and the outer one is used to locate free parking spaces. This is

described in Fig. 10b. In this figure, corner point 1 is selected

because this is the outer one. If the other vehicle is not found,

the free parking space is located beside the detected adjacent

vehicle with a 50 cm interval in the lateral direction. Figure 11

shows the final result of the detection process. The width and

length of the free parking space were set as 180 and 480 cm,

respectively, since this is the size of the vehicle used for the

experiment.
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Fig. 10 a Search range of other

adjacent vehicles. b Free

parking space localization
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Fig. 11 Detected free parking space depicted on the last frame of the

image sequence

5 Experimental results

The proposed system was tested in 154 different parking

situations. From the database, 53 sequences were taken with

the laser scanner data and 101 sequences were taken without

it. The image sequences were acquired with a fisheye camera.

Its horizontal and vertical fields of view were about 154◦

and 115◦, respectively. The image resolution and frame rate

were 1,024 × 768 pixels and 15 fps, respectively. The proces-

sing time of the overall procedure (except the feature tracking

process) was 5.1 s on average when running it in MATLAB

using a 2.4 GHz Intel Core2 Quad CPU. We analyzed the

results in terms of success rate and detection accuracy. For

success rate, a manual check was performed to determine

whether the detected space was located inside the free space.

For detection accuracy, the errors of the estimated corner

point and orientation of the adjacent vehicle were measu-

red by using laser scanner data. The experimental results

consist of three parts. First, we compare the reconstructed

structures when using and without using the proposed fea-

ture selection and 3D mosaicing methods. Second, the suc-

cesses and failures of the system are discussed. Third, the

accuracies of the estimated corner point and orientation are

presented.

Fig. 12 Fisheye camera and laser scanner mounted on the automobile

5.1 Comparison of the reconstructed structures

In this experiment, we reconstructed the 3D rearview struc-

tures when using and without using the proposed feature

selection and 3D mosaicing methods and compared them

to the laser scanner data. The laser scanner was the SICK

LD-OEM1000 [32]. Its angular resolution and depth resolu-

tion are 0.125◦ and 3.9 mm, respectively and the systematic

error is ±25 mm. Figure 12 shows the fisheye camera and the

laser scanner mounted on the automobile. These two sensors

were pre-calibrated.

Two comparison results are shown in Fig. 13. The recons-

tructed structures are depicted as seen from the top after

removing the points near the ground plane. Figure 13a shows

the last frames of two image sequences and the points on the

vehicle indicate the locations of the epipoles. Figure 13b,c

show the reconstructed rearview structures when using and

without using the proposed method, respectively and the blue

and red points indicate the reconstructed points and the laser

scanner data, respectively.

By using this comparison, we can observe three advan-

tages of the proposed feature selection and 3D mosaicing

methods. First, it reduces the number of erroneously
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Fig. 13 a The last frames of two image sequences. b Reconstructed structures when using the proposed method. c Reconstructed structures without

using the proposed method

reconstructed points. The structures in Fig. 13c shows more

erroneous points outside the ground truth data than those in

Fig. 13b because the proposed method removes the point

correspondences near the epipole and far from the camera

center. Second, it increases the amount of information about

adjacent vehicles. The structures in Fig. 13b are more detai-

led than those in Fig. 13c because the density of the points

on the adjacent vehicles is increased by mosaicing several

3D structures. Third, it enhances metric recovery results. In

Fig. 13c, the scales of the reconstructed structures differ from

the ground truth, since the proposed method produces more

points on the ground plane, so it makes the ground plane

estimation more accurate.

5.2 Free parking space detection results

The proposed system was applied to 154 real image sequ-

ences taken in the various situations. The ground planes were

covered with asphalt, soil, snow, standing water, parking mar-

kers, etc. The automobiles varied in color from dark to bright

and they included sedans, SUVs, trucks, vans, buses, etc. The

environment included various types of buildings, vehicles,

trees, etc. Figure 14 shows six successful examples. In this

figure, the detected parking spaces are depicted on the last

frames of the image sequences and corresponding rearview

structures. To decide whether the system succeeded, we dis-

played the detected free parking space on the last frame of the

image sequence. If it was located inside the free space bet-

ween two adjacent vehicles, the result was considered to be a

success. In this way, the system succeeded in 139 situations

and failed in 15 situations, so the success rate was 90.3%.

Figure 15 shows four types of failures. In Fig. 15a, the sun

was strongly reflected on the surface of the adjacent vehicle

and the ground plane, so feature point tracking failed. In

Fig. 15b, the adjacent vehicle was very dark and it was located

in a shadowy region, so few feature points were detected

and tracked on the automobile surface. In Fig. 15c, the free

parking space was very far from the camera, so the structure

of the white car was more precisely reconstructed than that

of the silver van. This caused false detection. In Fig. 15d, part

of the ground plane (darker region) on the parking space was

repaved with asphalt, so the ground plane was not flat. This

made the ground plane estimation erroneous. Out of fifteen

failures, three could be depicted by Fig. 15a, nine could be

depicted by Fig. 15b, two could be depicted by Fig. 15c, and

one could be depicted by Fig. 15d.
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Fig. 14 Six successful detections. a–f The free parking spaces on the last frames of the image sequences and corresponding rearview structures.

(0, 0) indicates the camera center

5.3 Accuracy of adjacent vehicle detection

Since the free parking space detection result depends on the

estimation of the corner point and orientation, we calcula-

ted the errors of these two values for accuracy evaluation.

The ground truth of the corner point and orientation were

manually obtained by using laser scanner data. The error of

the corner point is the Euclidean distance from the estimated

point to the measured point and the error of the orientation

is the absolute difference between the estimated angle and

the measured angle. For this evaluation, 47 image sequences

and the corresponding laser scanner data were used because

6 image pairs among 53 failed to detect free parking spaces

due to the reasons mentioned in Sect. 5.2. The corner point

and the orientation of the adjacent vehicle were estimated ten

times for each image sequence. This is because the recons-

tructed structure can differ slightly every time due to the

parameter estimation results.

In Fig. 16, the corner point error and the orientation error

are depicted as histograms. The average and maximum errors

of the corner point were 14.9 and 42.7 cm, respectively. The

distance between the corner point and the camera center was

between 281.4 and 529.2 cm. Since the lateral distance bet-

ween two adjacent vehicles is approximately between 280

and 300 cm in a usual parking situation, there are about 50 cm

extra room on each side of the vehicle. This means that even
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Fig. 15 Four types of failures. a Reflected sunlight. b Dark vehicle under a shadowy region. c Far parking space. d Uneven ground plane. The

upper and the lower rows show the last frames of the image sequences and corresponding rearview structures, respectively. (0, 0) indicates the

camera center

Fig. 16 Accuracy evaluation

results. a Corner point error.

b Orientation error
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the maximum error of the corner point is acceptable for the

free parking space localization. The average and maximum

errors of the orientation were 1.4◦ and 7.7◦, respectively. The

average error of the orientation was acceptable but the maxi-

mum error of the orientation was somewhat large. This is

because the side surfaces of automobiles sometimes show

few corresponding points due to featurelessness and this

makes the orientation estimation difficult. This evaluation

shows that the proposed system produces acceptable results

for detecting free parking spaces. For the worse cases, we

are planning to refine the detection results when automobiles

move backward into parking spaces.

6 Conclusions

This paper proposed a free parking space detection system.

This system acquires an image sequence with a rearview

camera and reconstructs the 3D structure by using point cor-

respondences. The metric information is recovered from the

camera height ratio and free parking spaces are detected by

estimating the positions of adjacent vehicles. Compared to

previous work, this paper makes three contributions. First,

we solved the serious degradation of 3D structures near the

epipole. Second, we presented an efficient method for detec-

ting free parking spaces in 3D point clouds. Third, our system

did not use odometry due to its unreliability. In the experi-

ments, the proposed system showed a 90% success rate (139

successes in 154 cases) and the accuracy evaluation showed

that the proposed system produced acceptable results. In our

opinion, the reason that previous works only visualized par-

king situations without detecting the exact target space is

mostly because of the 3D structure degradation near the epi-

pole and the uncertainty of odometry. Since those problems

have been solved in this paper, we expect that our work may
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increase the possibility for the practical realization of motion

stereo-based automatic free parking space detection systems.

In the future, we plan to improve the feature selection method

by assigning confidence values to the feature points that were

simply rejected in the proposed method. For more accurate

parking space detection, we will update and refine the rear-

view structures while automobiles move backward into ini-

tially detected free parking spaces and use a height sensor to

cope with camera height variations.
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