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ABSTRACT 

 

Close-range photogrammetry and the relatively new technology of terrestrial laser 

scanning can be considered as complementary rather than competitive 

technologies. For instance, terrestrial laser scanners (TLS) have the ability to 

rapidly collect high-resolution 3D surface information about an object. The same 

type of data can be generated using close-range photogrammetric (CRP) 

techniques, but image disparities common to close-range scenes makes this an 

operator intensive task. The imaging systems of some TLSs do not have very high 

radiometric resolution whereas high-resolution digital cameras used in modern 

CRP do. Finally, TLSs are essentially earth-bound whereas cameras can be moved 

at will around the object being imaged.  

 

This thesis, therefore, explores and attempts to provide a solution to the problems 

of developing a methodology to fuse terrestrial laser scanner generated 3D data 

and high-resolution digital images. Four phases of the methodology have been 

investigated:- data pre-processing (fusion of data from the two sensors), automatic 

measurements (feature detection and correspondence matching), mapping 

(creation of point cloud visual index), and orientation (calculation of exterior 

orientation parameters). Individual phases were initially investigated in a 

manually controlled environment, typically using commercial photogrammetric 

software, and then combined in a completely automated system. 
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Focusing on the amount of geometric primitives, three different scenes (data set 

A, data set B, and data set C) representing three levels of complexity (low, 

medium and high) were scanned with the laser scanner, and for each scan, a 2D 

photographic image was taken with a digital camera. To overcome the differences 

in datasets, a hybrid matching (both feature and area-based) algorithm was 

successfully developed and implemented.  

 

The fidelity of the concept of generating synthetic camera images has been tested 

by determining the exterior orientation of the synthetic camera images and the real 

camera images relative to the point cloud. This orientation process was first 

achieved by using manual methods and existing photogrammetric application 

software.  

 

The results verified that there were no conceptual errors in the developed 

methods. However, in order to meet the objective of this thesis, an automatic 

technique with photogrammetric bundle adjustment was developed. Three 

different sets of data were used to check the validity and reliability of the 

developed methodology. The results of measurements on interest points and 

correspondence matching are presented. Also, the results of manual and automatic 

exterior orientation are presented. The results indicate that the concept of the 

synthetic camera image is a feasible method for multisensor fusion. The greatest 

promise is offered by the point cloud visual index. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 Introduction   

In recent years, terrestrial laser scanning (henceforth, TLS) has emerged as a 

useful technology in a diverse range of application areas (such as heritage 

recording and documentation, reverse engineering, as-built surveys of industrial 

plants, slope stability monitoring and assessment) traditionally catered for by 

close-range photogrammetry (henceforth, CRP). The technology of TLS has the 

ability to produce high-resolution 3D surface information of an object or scene in 

a shorter time (i.e. near real-time) compared to classical CRP techniques. The 

same type of data (i.e., 3D surface information), on the other hand, can be 

generated using CRP techniques, but image disparities common to close-range 

scenes makes this an operator intensive task. 

 

Also, TLS allows users to create 3D representation that can be visualized, 

measured, and modeled in many different software environments. Table 1.1 

summarizes the advantages and disadvantages of CRP and TLS in terms of 3D 

object reconstruction. For instance, to reconstruct 3D information or to create a 

3D model with CRP, more than two images must usually be taken from two 

different positions, the same object part must be covered and the rays to 

homologous points must intersect at a good angle (Kern, 2001). 
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Table 1.1: Advantages and disadvantages of CRP and TLS  

 Close-Range Photogrammetry Terrestrial Laser Scanning 

 

Advantages: 

High Quality RGB-texture 

information 

High-density, near real time 

3D point cloud data 

measurements 

 Camera location is 

unconstrained 

3D data can be visualized, 

measured, and modeled in 

many different software 

environments 

Disadvantages: 3D model requires significant 

effort 

Low quality RGB-texture 

information 

  Earth bound 

 

It then requires image matching, which includes finding the corresponding 

features on images, and the degree of automation in CRP is directly related to the 

matching problem (Schenk and Csatho, 2002). In essence, a 3D model from the 

CRP approach requires significant effort.  

 

The imaging systems of some TLSs do not have very high quality RGB-texture 

information (i.e., lack of visual object information) whereas the high-resolution 

digital cameras used in modern CRP do. That is, in contrast to TLS derived 

points, surfaces derived by CRP are potentially rich in scene information. Also, 

TLSs are essentially earth-bound, whereas cameras can be moved around the 

object being imaged at will. This means that the camera location is unconstrained. 

Thus enabling a camera to capture imagery that is otherwise not possible with 

TLS. From these brief comparisons, laser scanning and photogrammetry can, 
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therefore, be seen as complementary, rather than competitive, technologies. It is 

possible to combine data sets from these technologies and to minimize the 

disadvantages of both. That is, some of the disadvantages of one method could be 

offset by the advantages of the other method (Schenk and Csatho, 2002).  

 

For example, TLS can easily provide 3D surface information and a ready-made 

framework for CRP. CRP can readily provide high quality image texture and fill 

in 3D data not visible to the scanner. That is, those areas not visible to the scanner 

can be captured and processed using photogrammetry, and photogrammetry can 

make use of the scanner point cloud to define the coordinate system. Merging the 

CRP and TLS data could be thought of as a problem of multisensor fusion, where 

datasets are obtained from terrestrial 3D laser scanner and an arbitrarily located 

and oriented digital close-range camera.  

 

1.2 Objectives of the Research 

The prime objective of the research is to investigate the automatic fusion of high-

density 3D point cloud data (such as those produced by terrestrial laser scanning 

systems-3D sensors) with high-resolution perspective imagery (such as that 

generated by digital cameras or scanned photographs - 2D sensors). This fusion 

should result in, amongst other things, photorealistic 3D models with the best 

characteristics of both; namely, high spatial resolution and high quality RGB-

texture information. Much of this has been done with small-scale objects and 

manual processing and with the aerial imagery and surface models derived from 
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them, but an automatic multi-scale and multi-oriented model is a new area of 

work. In order to fuse a TLS point cloud and an arbitrarily located and oriented 

CRP image, it is necessary to register or recover the positions of the 2D cameras 

with respect to the 3D laser scanner (Figure 1.1). 
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                              Figure 1.1: The Registration Problem 

 

The task of this registration is to place the data (2D photographic images and 3D 

point clouds) into a common reference frame by estimating the transformation 

between the datasets (as can be seen in Figure 1.1). It is assumed that both the 

camera and the laser scanner view the same part of the real scene, so that the 3D 

and 2D views have significant overlap (Figure 1.1). Registration, which includes 

correspondence matching, is a prerequisite for the exploitation of the inherent 

advantages of multisensor systems over single sensor systems. This requires the 

estimation of the orientation of one sensor to the other, and it is complicated by 

the fact that the data sets are dissimilar (Boughorbal et al, 2000). That is, for 
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example, the camera is a high-resolution passive sensor whereas the laser is an 

active sensor of lower resolution.  

 

These sensors also provide independent datasets, which differ in resolution, field 

of view (FOV), scale, and illumination. Although the automatic correspondence 

matching is not a problem for vertically oriented images, which have intrinsically 

much simpler geometric relationships, it is still a problem in the terrestrial case, 

and it is even more complex in the terrestrial multisensor case. What makes the 

problem more difficult for the data sets under consideration is the additional 

complexity of dealing with terrestrial images where orientations and locations of 

images are less regular. This means that locating and identifying the same object 

in each data set is not a trivial task (Pulli and Shapiro, 2000). It can be close to 

impossible due, among other things, to the difference in illumination, reflectance, 

perspective, and lack of appropriate texture.  

 

Concurrent with the objective of this research is the need to: 

• Develop methodology to automatically fuse 3D point cloud with close-range  

imagery, 

 

• Evaluate and develop algorithms for the extraction of features from both the  

2D and 3D data sets, and to assess the quality of the features; develop assessment 

measures for the merged data set models, and 
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• Development of algorithms to automate the registration process, the  

establishment of correspondence between objects in the 3D surface and in the 2D 

image, and matching. 

 

1.3 Method 

Multisensor data fusion in this thesis refers to the techniques for the combination 

of datasets from 3D point clouds and 2D photographic images to create a new 

dataset. Multisensor data fusion techniques can be performed at three different 

processing levels: data-level fusion; feature-level fusion, and decision-level fusion 

(Ma, 2001; Pohl and Genderen, 1998). This thesis addresses the problem of pixel-

level and feature-level fusion using multisensor data produced by the two 

technologies, laser scanning and close-range photogrammetry.  

 

Fusion at the pixel level deals with the combination of data sets from the two 

sensor using the photogrammetric collinearity equations whereas at feature-level 

sensor fusion specific information (i.e. features) from objects detected by different 

sensors are combined. There are two methods that could be employed in the 

multisensor data fusion. The first is to directly fuse the 2D image and the 3D point 

clouds while the second is to create a 2D representation (i.e., synthetic camera 

image) of the 3D point clouds. The creation of the synthetic camera image is been 

established as a preferable approach. 
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The concept and the methodology of the multisensor problem are illustrated in 

Figure 1.2. Figure 1.2a shows the screen capture of a high-density 3D point cloud 

which is displayed as a pseudo-coloured image. When the marked portion is 

zoomed in on, the unstructured point cloud is seen (Figure 1.2b). Figure 1.2c is 

2D representation of the point cloud and Figure 1.2d is a 2D real camera image of 

the same scene.  

 

(a) (b)

(c)(d)

 

                  Figure 1.2: Multisensor Fusion Approach 

 

Given these sets of high-density 3D point clouds of a scene (a) and 2D 

photographic imagery of the same scene (d), the questions which still need to be 
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answered are “can these independent complementary data sets (2D photographic 

image and 3D geometry) be accurately expressed in a single object-centred 

coordinate system; and how can each pixel in the 2D photographic image be 

related to its corresponding sampled 3D point on the object surface?”. As 

mentioned previously, the answers to these questions can be found in the concepts 

of multisensor fusion. This field of research has identified the following four 

approaches each of which are implemented here: data pre-processing (fusion of 

data from the two sensors), automatic measurements (feature detection and 

correspondence matching), mapping (creation of point cloud visual index), and 

orientation (calculation of exterior orientation parameters).  

 

The first approach is the 2D representation in (b) of Figure 1.2 which is created by 

transforming the 3D point cloud from its raw form into a 2D synthetic camera 

image (SCI) and so reducing the registration process to matching this 2D image 

with a 2D photographic image (real camera image - RCI). This approach, which 

can be termed data fusion (defined as the process that combines information or 

parameters from the two sensors), focuses on the techniques of combining data 

from the sensors (digital camera and terrestrial laser scanner) to create a synthetic 

image. The choice of using this type of data rather than the 3D point cloud is 

based on the fact the SCI allows the use of already existing techniques for 

matching intensity images (Dias et al, 2001; Schenk and Csatho, 2002). That is, 

existing traditional image processing algorithms can operate on these generated 

data.  
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Also, to register RCI to SCI is a much easier task than to do this operation with 

3D point clouds directly. This is due to the fact that the important object features 

(such as corner points or edges) are not directly captured by the terrestrial sensors; 

instead they have to be modeled from the 3D point cloud data in a separate 

process. In other words, the geometric features in the SCI are easier to detect than 

those in the 3D model. The second approach is to extract features from each 

image (SCI and RCI) and to determine correspondences (candidate registration 

points) between them for use in the image registration process. The third is to link 

the object coordinates of the point cloud to the pixel of the SCI. This will allow 

the exterior orientation of the RCIs to the point clouds.  

 

Finally, the exterior orientation (to calculate the relative rotation and translation 

between the two sensors) of the images to the point clouds is computed. This 

research focuses on undertaking the orientation process using manual methods 

and existing photogrammetric application software, and automatically by using a 

bundle adjustment procedure. The RCIs are then mapped to the 3D geometric 

model to produce a geometrically correct, photorealistic view of the scene using 

the relative orientation and position parameters.  

 

The fusion of close-range photogrammetry and the relatively new technology of 

terrestrial laser scanning can offer a significant tool in photorealistic 3D models 

presentation, that is texture-mapping the point cloud to create photo-realistic 

models which are essential for a variety of applications (such as 3D city models, 
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classification of real world objects, and virtual reality creation). Its other 

applications are the extraction of reference targets for registration and calibration 

purposes (El-Hakim and Beraldin, 1994); automation of the registration of point 

clouds, automation of 3D measurement (automatic exterior orientation); 3D 

reconstruction; and if the data are geo-referenced, they can be readily incorporated 

into existing GIS applications.  

 

1.4 Previous work in Fusion of Multisensory Data 

As previously stated, this thesis explores and attempts to provide a solution to the 

problems of developing a methodology to fuse terrestrial 3D point cloud data with 

digital close-range imagery. Most of the work done by others is with aerial 

imagery and point clouds from airborne laser scanning systems (ALS), which 

have intrinsically much simpler geometric relationships. The case at hand deals 

with terrestrial scanners and an arbitrarily located and oriented camera.  

 

The review of the previous related work falls into three broad and distinct 

categories. The first category presents a review of general background. This 

presents the overview of previous related work in the area of vertically oriented 

image-to-image fusion, the use of laser scanner point clouds, and close-range 

imagery. The second category reviews work related to fusion of aerial imagery 

and 3D airborne LIDAR (LIght Detection And Ranging) data; and finally, 

previous work related to fusion of TLS and CRP methods is reviewed. 
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1.4.1 General Information 

Previous work on image-to-image multisensor focuses mainly on the use of 

vertically oriented imagery (aerial photographs, satellite images, airborne laser 

scanners) for the small-scale representation of large objects. From the viewpoint 

of image-to-image fusion (fusion of only vertically oriented optical images) 

researchers have developed and utilized different methods to fuse complementary 

digital images of the same scene from multiple sensors for various applications 

(Sowmya and Trinder, 2000; Dare and Dowman, 2000; Yong et al, 2000, Saroglu 

et al, 2004, Essadiki, 2004, Sasagawa et al, 2004, Qi, 2004, Hong and Zhang, 

2004.).  

 

In most cases, image-to-image fusion is a preprocessing step to enhance certain 

features, improve classification, to substitute missing information and to detect 

changes in the images. The reported research showed that the use of multisensor 

image data has increased user’s the ability to simultaneously analyze and visualize 

complementary information in photogrammetry and remote sensing.  

 

Of late, considerable attention has been given to the use of digital close-range 

photogrammetric imagery for detailed modeling and visualization. In a series of 

papers, (Coorg and Teller, 1999; Pollefeys et al. 2001; and Chandler et al, 2001), 

various systems for extracting 3D shapes and textures from close-range image 

sequences are presented. They provide an initial solution to the problem of 

combining textures from different viewpoints in outdoor environments.  
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They tackled the problem of texture occlusion from the objects which are not 

modeled in the 3D model (such as trees, vegetation, or occluding buildings). More 

recently, within the photogrammetry community, several researchers have used 

3D point cloud data from terrestrial laser scanners to achieve visually pleasant 3D 

models of outdoor and indoor objects (Kern, 2001; Barber et al, 2001; 

Thiyagarajan, 2003; Guidi et al, 2002; Pfeiffer and Rottensteiner, 2001).  

 

Different modeling techniques (i.e., techniques or mapping image textures) have 

been applied to the point cloud to generate 3D models which are visualized in 

different software environments. In a series of papers (Guarnieri et al, 2004; 

Gordon et al, 2001a; Gordon et al, 2001b; Lemmens and van den Heuvel, 2001; 

Lichti and Harvey, 2002; Lichti et al, 2000; Lichti et al, 2002; Lichti and Gordon, 

2004; Staiger, 2002; Staiger, 2003;), the quality, accuracy and errors of the 

terrestrial laser scanning processes are discussed. From this point of view, 

researchers are focusing on the use of TLS as an independent technology.  

 

1.4.2 Fusion of Aerial Imagery and 3D Airborne LIDAR Data 

In terms of fusing vertically oriented optical images and point clouds from 

airborne LIDAR data, a great deal has been done. For example, LIDAR, 

multispectral satellite image and high-resolution aerial imagery (Liang-chien et al, 

2004),  LIDAR and Satellite imagery (Antonio et al, 2004; Barbarella et al, 2004; 

Guo, 2003; Nakagawa and Shibasaki, 2001) and LIDAR and InSAR (Gamba et 

al, 2003), LIDAR and aerial imagery (Baltsavias et al, 2001; Haala and Brenner 
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1999; Hyung-Tae et al, 2000; Rottensteiner and Jansa, 2002; Schenk and Csatho, 

2002; Schiewe, 2004; Vosselman, 2002;). Most of the LIDAR and aerial image 

fusion work has been carried out in the application area of 3D reconstruction, 

DEM generation and feature extraction, and the purpose of fusing the data sets has 

been in comparisons between photogrammetric and LIDAR derived surfaces.  

 

An often encountered problem when using LIDAR data is the need to register 

LIDAR with the imagery. The quality of the registration process is a crucial factor 

for the fusion processing. The LIDAR data are used to supplement the existing 

stereo image-based extraction techniques by providing geometric constraints to 

guide the image matching process.  

 

Also, the LIDAR data are used as initial 3D data to determine the search range 

and to detect possible occlusions. Since the accurate detection and measurement 

of point correspondences can be difficult, especially for the point clouds from 

LIDAR data, straight lines are measured between the image and the laser data as 

corresponding elements for the orientation process. In all the approaches, the 

segmentation process is used as an intermediate step to extract information on 

edges and linear surface features.  

 

Other researchers like Schenk and Csatho (2002) backprojected the 3D LIDAR 

data into 2D by first transforming the LIDAR data into perspective projective 

space and then interpolating the irregularly spaced LIDAR data into a regular grid. 
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In addition to the advantage of visualizing the 3D LIDAR data, existing image 

processing algorithm can also operate on the generated image. Although the 

conversion was straightforward, the authors pointed out that the interpolation 

techniques deserved closer attention. This method is the closest to the one 

described in this thesis since it reduced the registration process to matching 2D 

data with 2D photographic data. Apart from the differences in the data sets used 

(i.e. aerial photographs and airborne laser scanners), they interpolated the 

elevation data instead of intensity values, to generate range images.  

 

1.4.3 Fusion of Close-range Imagery and Terrestrial 3D LIDAR Data 

Despite the large amount of work reported in the literature, little has been 

published in terms of fusion of independent close-range images with TLS point 

clouds. The very few that have been published in this area of research include 

Dias et al (2002), Stamos and Allen (2000), Kurazume et al (2002), and Elstrom 

et al, (1998).  

 

Elstrom et al (1998) presented a novel stereo-based technique for registering 

colour and laser scanner point cloud data using externally uncalibrated sensors. 

The proposed registration methods took advantage of the camera images, which 

are a byproduct of the 3D point cloud for most commercial TLS systems from the 

integrated laser scanner camera. Corresponding features are automatically 

extracted from projective image pairs. These points are then used to estimate the 

relative sensor pose by minimizing the difference between scanned and predicted 
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stereoscopic range measurements. The sum-squared-error of the stereo and laser 

scanner point cloud data is then calculated, and a downhill simplex algorithm is 

iteratively applied to refine the rotation and translation estimates while rejecting 

outliers.  

 

As outlined, although they used a Kodak DCS 460 which produced 3072 X 2060 

digital images, they resampled this to a smaller size (768 X 512) for use in their 

registration algorithm. The requirement with this stereo approach is that there 

needs to be enough overlap between the TLS and the colour images and the 

cameras can not be placed too far apart. In addition, this method only works well 

in cases where the object consists of flat planes with few textures pattern and only 

simple line edges are extracted.  

 

Similarly, in Kurazume et al (2002), the integrated camera image (Cyrax laser 

scanner which produces image with only 480 x 480 pixels) is used in the 

registration processes. This image resolution is even lower than the full scan 

resolution of the point clouds data (which is 1000 x 1000 for Cyrax 2500). In their 

method, edge features from both 3D data and 2D image are first extracted for 

matching. The relative position of each sensor is determined with the robust 

statistical method – maximum likelihood estimator - without any initial estimation 

of the relative sensor position. A minimum number of points is needed for the 

existence of robust solution. In both problems, 2D linear features are 

advantageous because they can be reliably extracted and are prominent in real  
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scenes. However, the quality of features extracted from such low resolution 

images is limited.  

 

In Stamos and Allen (2000), the authors use independent 2D images and the 

Iterative Closest Point (ICP) approach to register the datasets. This approach 

requires interaction between 2D and 3D data with the subsequent problem that the 

corresponding sets of 3D and 2D feature are known a-priori. That is, these 

corresponding sets of feature matches are provided by the user. In their work, the 

sensors are calibrated. The authors concluded that the success of the ICP 

algorithm to estimate the unknown position and the orientation of the camera with 

respect to the range sensor depends largely on the distance between the 

viewpoints of the data sets and the overlap between the data sets. It can be seen 

that the solution to both problems requires the knowledge of a set of 

corresponding 3D and 2D features, that is 3D features and their 2D projections on 

the image plane.  

 

None of this research has explicitly exploited the fact that the TLS and the digital 

camera capture their data with similar imaging geometry - perspective projection. 

That is, the pulses of laser light are assumed to radiate from and return to a single 

point inside the scanner in a fashion similar to the rays of light from the object 

passing through the perspective centre of the real camera lens. The conceptual 

elements of this problem are solved in the field of photogrammetry. Compared to 

the registration techniques described by previous research, the one described in 



Chapter 1: Introduction 17

 

this thesis does not need any previous calibration and is automatic (i.e. minimizes 

user intervention). Also, the registration starts with the use of photogrammetric 

interest operators to find the candidate registration points. Instead of rescaling the 

high-resolution image, an image pyramid approach is used with the matching 

algorithms. 

 

1.5 Outline of the Thesis 

The thesis is organized in order to fulfill the research objectives. Chapter 2 

provides the essential background to the study. The fundamental concepts of 

terrestrial sensors relevant to close-range photogrammetry and laser scanning are 

reviewed. The simplified collinearity equation used to model the multisensor data 

is explained in this chapter. Also, the background information on mutisensor 

fusion and multisensor mathematical models is presented 

 

In Chapter 3, the methodology for the creation of synthetic camera images 

through multisensor data fusion is presented. The basis for establishing the 

synthetic data is explained, and all related information is presented. The strategy 

for the data capture is also discussed. This chapter also presents together the 

synthetic camera and real camera data used in this research.  

 

Chapter 4 focuses on the automation of the multisensor image matching process 

based on the detection and extraction of interest points, and feature 

correspondence matching. The existing image matching strategy for feature level 
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fusion is reviewed. This chapter discusses the principles, concepts and 

implementation issues of the Harris corner detector, the zero mean normalized 

cross correlation and the RANSAC algorithm. The performance of the developed 

matching algorithm is evaluated.  

 

Chapter 5 discusses the process of establishing a link between the pixel intensity 

values of the generated synthetic camera and the corresponding sampled 3D point 

data. The manual implementation of the orientation process used in the existing 

photogrammetric application software is discussed in this chapter. Also, the 

photogrammetric bundle adjustment with the self calibration techniques used to 

determine the exterior orientation parameters is discussed. This chapter discusses 

the process of mapping the real camera images on the 3D geometric model to 

produce photorealistic models of objects. Finally, the performances of both the 

automatic and manual methods are evaluated.  

 

Chapter 6 compares the exterior orientation parameters as produced by 

photogrammetric software and bundle adjustment. Also, the exterior orientation 

parameters of the generated synthetic camera images are discussed. In Chapter 7, 

the fusion of opportunities provided by close-range photogrammetry and the 

relatively new technology of terrestrial laser scanning are discussed. Conclusions 

are drawn in Chapter 8 as an overall evaluation of this study and suggestions are 

made for future work. 
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CHAPTER 2 

 

BACKGROUND 

 

2.1 Introduction  

This thesis develops an approach of fusing data sets from two technologies: laser 

scanning and close-range photogrammetry. Both are effective technologies for 

providing a measurement system that can record detailed 3D data. Important to 

this research, has been the established level of knowledge relating to the 

generation of the synthetic camera image, disparities of the data set and 

multisensor orientation, these being the concepts of multisensor fusion and the 

application of these to images and point clouds, and to the automation of 

registration processes. This chapter provides the essential background to the 

research. The fundamental concepts of terrestrial sensors relevant for close-range 

photogrammetry and laser scanning are reviewed. Also, the background 

information on multisensor fusion is reviewed.  

 

2.2 Overview of Close-range Photogrammetry 

Close-range photogrammetry (CRP) measures objects directly from images 

captured with a camera at close-range. Digital cameras, visualization and 

automated image measuring software, and desktop computing power, have made 

CRP a useful tool for reconstruction in a diverse range of applications.  
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Regardless of measured size, the process of photogrammetry (aerial and close-

range) remains the similar, and enables the three dimensional coordinates of an 

object to be reconstructed from a series of two-dimensional photographs taken 

from various orientations around an object. To reconstruct 3D information or to 

create a 3D model with CRP, two images must usually be taken from two or more 

different positions, the same object part must be covered and the rays to 

homologous points must intersect with good geometry (Kern, 2001). It then 

requires image matching, which includes finding the corresponding features on 

these images.  

 

However, in terms of the camera configuration (the locations and the orientations) 

of the photography and control points required, CRP has its own distinct 

characteristics. That is, although, close-range and aerial photogrammetry have the 

same basic projective geometry, the locations and orientations of the images are 

much less regular in close-range projects than in aerial applications (Mikhail et al, 

2001). Camera configurations commonly used in CRP are either single or stereo 

camera systems, and the most popular is that of a single camera imaging an object 

from various exposure stations (King, 1993). In this thesis, discussion of the 

concepts, principles and the implementation of the CRP techniques is based on a 

single camera system configuration.  

 

As pointed out in Mason (1995), high measurement accuracies can be achieved 

with CRP through the selection of a suitable mathematical model of the process 
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(for example, the bundle adjustment method), by calibration of the measurement 

system and with careful design of the convergent multistation camera 

configuration (convergent photos were used). This thesis uses a multistation 

camera configuration. This means that the camera axes are convergent, pointing 

towards the middle of the object.  

 

The cameras that are used in CRP are metric and non-metric. Most of today’s 

close-range photogrammetric applications (for example in heritage recording and 

documentation, reverse engineering, as-built surveys of industrial plants, slope 

stability monitoring and assessment) are carried out by means of non-metric 

cameras; either analogue or digital (Karras and Mavrommati, 2001). Being 

significantly cheaper than traditional metric photogrammetric cameras, non-metric 

cameras (amateur) have made analytical photogrammetry an extremely flexible 

and viable alternative to positioning and measurement science (King, 1993). 

 

Measurements with non-metric cameras for CRP purposes are accompanied by: 

defining the image co-ordinate system (non-metric cameras do not have fiducial 

marks); defining the unknown elements of internal orientation (focal length and 

image co-ordinates of the principal point of the photograph); and defining the 

distortion of the lens (the distortion with non-metric cameras often amounts to 

considerable values and has a substantial effect).  
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Non-metric digital cameras use high-resolution CCD sensors in panchromatic or 

RGB modes, and an example of this is a Nikon D1x digital camera. This camera 

is used in this dissertation to capture images of the object from different 

viewpoints. The Nikon D1x digital camera is a 5.47 mega pixels CCD with 

effective pixel of 3008 x 1960. The physical sensor size is 23.7 x 15.6 mm.  

 

The following sections provide an overview of close-range photogrammetric 

methods. The collinearity equations used to model the multisensor data and also 

used as a functional model in the bundle adjustment are reviewed in Section 2.2.2. 

Interior and exterior orientations models that are used for image registration and 

3D reconstruction are discussed in Section 2.2.3. The photogrammetric bundle 

adjustment techniques used to determine the exterior orientation parameters is 

also reviewed in Section 2.2.4.  

 

2.2.1 The Mathematical Model 

The collinearity equations define the condition that the perspective centre PC 

, a point in the object space Oooo Z ,Y ,X 1 (X, Y, Z), and its corresponding image 

point I1 (x, y) must lie on a straight line at the moment of exposure (Figure 2.1). A 

distortion in the image signifies that there is a deviation from collinearity. 

Collinearity concepts are well established in photogrammetric literature and more 

detailed information can be found in Karara (1980).  
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The mathematical relationship between conjugate points on the object and image 

space is described by three-dimensional projective transformation which can be 

written in the following matrix form: 
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R is the orthogonal rotation matrix that describes the relative rotation of the image 

space coordinate axes with respect to the object space axes. The scale quantity λ is 

a scale factor of an image point.  

 

 

Figure 2.1: The Collinearity Model 
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This scale factor can be eliminated by dividing the first and second equations from 

the system by the third one, leading to the general collinearity in Equation 2.2 

(Karara, 1980). 
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where:      

               x, y are the coordinates of image point 

               ∆x, ∆y are image distortions  

               X, Y, Z are the coordinates of the object space point 

               are the object coordinates of the perspective centre; oZ ,oY ,oX

               are image coordinates of the principal point; ox , oy

               are the elements of the rotation matrix  that depend on  the three ijR

              angles (ω, φ, κ); and 

f is the focal length of the camera. Focal length only applies when the lens  

is focused at the hyperfocal distance. When it is focused on a closer object,  

it is the principal distance, c. 

f, xo, and yo are usually called the interior orientation parameters while  

ooo Z ,Y ,X ,  are called exterior orientation parameters.  κϕω ,,
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The implementation of the collinearity model in fusing multisensor data can be 

found in Section 3.3.1. Also, the Bundle Adjustment discussed in Section 2.2.3 

uses this functional model. 

 

2.2.2 Orientation Process 

Orientation is the procedure where the transformation parameters from one 

coordinate system to a second coordinate system are determined. In 

photogrammetry, the re-establishment of the orientation of the camera at the 

moment of exposure is a necessary step in the measurement process. The 

processes of defining the orientation are described in this thesis as: interior and 

exterior orientations.  

 

In this thesis, the orientation process is required as a pre-processing stage in the 

task of multisensor fusion. Existing orientation techniques fall into two broad 

categories: manual and automated orientation processes and the implementation of 

each process is described in Chapter 5. 

 

2.2.2.1 Interior Orientation 

The interior orientation determines the interior perspective of the image as it is or 

was at the instant of recording. Thus, it refers to the perspective geometry of the 

camera, and is defined by the following parameters: the calibrated focal lengths, 

the position of the principal point in the image plane, and the geometric distortion 

characteristics of the lens system.  
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In the interior orientation process, a geometric relationship is defined between 

measured or computed features in the pixel coordinate systems and image 

coordinate system that has its origin at the camera’s perspective centre (Schenk, 

1999). 
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                        Figure 2.2: Geometry of Interior Orientation  

                        (adapted from Schenk, 1999) 

 

The image coordinate serves as a suitable reference system for expressing spatial 

positions in the image space. Figure 2.2 illustrates a image coordinate systems 

which is commonly used to define the location of image points with respect to the 

exposure center. The transformation of a point p (Equations 2.3a, b and c) in the 

pixel system to image coordinates is (Schenk, 1999): 
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            ,  are the pixel coordinates of the point p; pr pc

          pr ,  are the pixel size in microns;  pc

          ,  are the pixel coordinates of the principal point usually available or oc

          from the camera calibration; and  

          , ,  are the image coordinates of point p. px py pz

 

For digital cameras, the relationship between pixel and image coordinates is 

assumed constant, and is determined during the calibration procedure in addition 

to the parameters of interior orientation (namely the calibrated focal length, the 

image coordinates of the principal point and the lens distortion parameters) of the 

camera (Heipke, 1996; Heipke, 1997). 

 

2.2.2.2 Exterior Orientation   

The task of exterior orientation is to determine the relationship between the 

coordinate systems of the image and the object. There are several approaches to 

determining the parameters of the orientation of two or more photos. The 

orientation can be processed in steps (the sequential relative orientation and 

absolute orientation approach), with the simultaneous bundle adjustment (BA) 

approach, and with a Fast Fourier Transform (FFT-based) approach.  

 

Relative orientation involves determining the relation between a pair of 

overlapping photos and the creation of an arbitrary 3D coordinate system (Heipke, 

1997).  
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The transformation of the arbitrary coordinates into object coordinates is achieved 

in the absolute orientation phase. Absolute orientation is used to relate image 

space to object space after successful interior and relative orientations. The 

fundamental problem is to establish a relationship between image and the object 

space coordinates system by means of a suitable transformation.  

 

A bundle adjustment is used compute the direct relationship between image 

coordinates and object coordinates. The practical procedure of absolute 

orientation and BA includes the search for conjugate points (the need to identify 

control points to be able to solve for the orientation) through image matching, the 

use of conjugate points to compute orientation elements, and the computation of 

three-dimensional coordinates of the conjugate points. In this research, the laser 

scanner points were used to complete this transformation process and the accuracy 

of orientation is determined by mainly by the accuracy of image matching and the 

accuracy of the ground control points (i.e., laser points).  

 

Like the BA methods the Fourier domain approach (which use frequency domain 

information) can be use to register images by making use of the phase shift 

property of Fourier transforms. The FFT-based algorithm (discussed in Appendix 

A2) for automatic pairwise image registration was implemented using Matlab 

programming language. This thesis addresses the problem of the simultaneous BA 

and the FFT approaches. The FFT is evaluated in Section 5.4.1 and the BA is 

overviewed in Section 2.2.4. 
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2.2.3 Bundle Adjustment for Multisensor Measurement 

An image acquired with CCD camera is, in principle, a central projection of the 

scene, and if more images from different viewpoints are available, the bundle 

adjustment (BA) method allows the computation of all camera parameters and the 

reconstruction of the 3D object coordinates as well as the computation of the 

systematic errors.  

 

The BA employs a least squares computation based on the functional model of the 

collinearity equations (discussed in Section 2.2.1). There are several methods for 

the least squares; the method used in this thesis is based on the unified method of 

the least squares adjustment. Detailed information on the classical derivation of 

this method can be found in Slama (1980). The bundle adjustment as presented in 

the 3DMapper Software StereoMaker (3D Mapper, 2004) and as in SPGA 

program developed by Fraser (1983) was used.  

 

The essential property of the unified method is that all variables (or parameters) 

involved in the mathematical formulation are considered as observations. This 

allows all adjustments parameters to be assigned weights that reflect their 

uncertainty (King, 1993). The assignment of appropriate weights (weight of an 

observation is inversely proportional to the observation’s variance) to each 

parameter is critical to the performance of an adjustment. Thus, those parameter 

or observation whose values are considered to be well known or reliable may be 

assigned a high weight (King, 1993).  
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The total variance is the sum of the individual variances. This individual variance 

can be obtained by using propagation of errors (in this case error is propagated as 

the squared relative standard deviation). For the unified method of the least 

squares the value for each observation’s (image coordinates, camera exterior 

orientation and object point coordinate observations) variance must be derived 

(King, 1993).  

 

A commonly used statistic to assess the precision of parameter or observation is 

the standard deviation and for any measurement the error in a quantity defines 

how many figures are significant (Glover et al, 2004). That is, significant figure is 

the number of digits recorded in a result that reflects the precision of the 

measurement). The significant figures of the standard deviations presented in 

Chapters 5 and 6 do reflect the significant figures of the standard deviations as 

quoted by the manufacture of the laser scanner used in the thesis. The 

measurement results with the quantity zero (‘0’) such as in Tables 6.9 and 6.10 are 

denoted as ‘0.000’to reflect on the requisite number of significant digits.  

 

The initial values of exterior orientation parameters are given as calculated values 

from the space resection (estimating the camera parameters with known 3D 

control points). Space intersection is also used to estimate the 3D coordinates of 

the object points. This requires a minimum of three control points in space whose 

object coordinates in the laser scanner system are known and whose image points 

have been measured with the imaging system to be oriented.  
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The accuracy of the 3D point measurements is tied to the precision of their 

locations (PhotoModeler, 2005), and how well they are distributed (i.e., the points 

are distributed evenly throughout the images) in the images. Points should be 

distributed over as much of the image as possible and not clustered in one corner, 

in order to achieve a better geometry of the object. 

 

The BA method and its statistical model are usually extended by the incorporation 

of parameters for self-calibration and the use of additional parameter (AP) (King, 

1993, Remondino and Borlin, 2004) functions that are intended to model the 

systematic image errors (i.e. the effects of radial and tangential lens distortions, or 

variations in lens principal distances).  

 

Using these additional parameters, the physical process of image formation is 

adapted to the assumed mathematical model of central perspective represented by 

the collinearity equations. In other words, the additional parameters attempt to 

compensate for any remaining systematic inconsistencies between the 

mathematical model and physical reality. The procedure of self-calibration using 

APs introduces new observation and unknowns in the least squares estimation 

process, extending the bundle model and raising problems concerning the quality 

of the model.  
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2.2.3.1 Assessment of the Bundle Adjustment 

The quality of the photogrammetric BA solution is partially controlled by 

measurement errors associated with elements used in the functional model to 

relate image to object. The assessment of this is primarily based on the accuracy 

and the precision of the computed object coordinates and, as King (1993) reports, 

these criteria are generally of greatest interest in close-range analytical 

photogrammetry. In this thesis, Root Means Square (RMS) errors of the residuals 

in both the object and image spaces were used to assess the accuracy of the 

adjustment solutions. These are determined by calculating the mean of the squares 

of the residuals of points from their known (true) position, and then taking the 

square root of the mean. The RMS errors of the object point coordinates may be 

computed for each of the coordinate axes (i.e. , ,  ) as well as 

for the spatial component by ( ) (King, 1993): 

xRMS yRMS zRMS

pRMS

 

 
∑ )x - x(

n

1
RMS

n

1i

2
i

1
ix

=
=

                                               (2.8) 
 

 

 
∑ )y - y(

n

1
RMS

n

1i

2
i

1
iy

=
=

                                               (2.9)  

 

 

∑ )z - z(
n

1
RMS

n

1i

2
i

1
iz

=
=                                                   (2.10)

 

 



Chapter 2: Background 33

 

                       (2.11) 
∑ ))z  - z()y - y()x - x((

n

1
RMS

n

1i

2
i

1
i

2
i

1
i

2
i

1
ip

=
++=  

 

Where: 

           n = the number of points 

           , , = known object point coordinates ix iy iz

              =  reconstructed object point coordinates 1
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The assessment of the accuracy of each model is on the basis of RMSP with the 

other RMS errors being used to indicate more trends. The statistical differences 

between the corresponding values of ( ) from each model are analysed by 

the Fisher test (F-test). The F-test investigates the significance of the difference 

between population variances of two normal distributions, and these differences 

are identified via hypothesis testing. The hypothesis to be tested is the two-tailed 

hypothesis (King, 1993): 

pRMS

 

2
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1
pRMS:0H (i.e., testing the hypothesis that the two variances are 

equal), versus (i.e., larger variance ( ) is 

significantly different from the smaller variance ( ); is the F statistic being 

the ratio of both sample variances: 
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For practical reasons, the largest variance is always placed in the numerator  

(i.e., ). The hypothesis of equality is rejected if 
2

pRMS>
1

pRMS

2r1r
2
α ,,F>F (i.e., F-test statistic is greater than the upper critical value), where 

2r1r
2
α ,,F is the critical value of the F-distribution with and being the respective 

degrees of freedom at a significance level of α . The rejection of the null 

hypothesis ( ) indicates that the two RMS positional errors may come from 

different populations and so are considered to be different at the tested level of 

significance (King, 1993).  

1r 2r

0H

 

This Fisher test was used to test the statistical significance of the RMS errors of 

the Bundle adjustment (discussed in Section 5.4.4.1). Also, it was used to test the 

significance of the reference variance factor (discussed in Section 5.4.4.7) and the 

additional parameter estimates (discussed in Section 5.4.4.8). 

 

The precision of the estimated parameters is expressed by the covariance matrix. 

Thus, the square roots of the diagonal elements of the covariance matrix give the 

standard deviations to the corresponding parameters which are used to evaluate 

the precision of the measurements system. In photogrammetric applications, the 

precision of the coordinates of the object points and the camera parameters can be 

estimated.  
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2.3 3D Laser Scanning Technology 

3D laser scanning is a technology that captures the 3D coordinates or the digital 

shape of a given physical object surface in a systematic pattern (Boehler et al, 

2003). 3D scanners may or may not deliver reflectivity values for the scanned 

surface elements in addition to the 3D coordinates, and they are similar, in nature, 

to reflectorless total stations.  

 

As in all reflectorless laser technologies (including laser scanners), the 

performance is affected and limited by the physical laws of reflection, and the 

optical properties of materials, including refraction and inner reflection effects 

(Ingensand et al, 2003).  

 

3D laser scanners are used as either airborne systems for topographic applications 

or ground-based (commonly known as terrestrial laser scanner) systems for close-

range and mid-range applications. The following sections concentrate on the 

discussion of the 3D terrestrial laser scanner. These discussions include the 

principles, classification, and data processing of 3D terrestrial laser scanners. 

 

2.3.1 3D Terrestrial Laser Scanners 

Terrestrial 3D laser scanning technology provides, among other things, very dense 

point cloud data of objects of various sizes and shapes in near real-time. They 

operate at the scales of meters to hundreds of meters.  
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The spacing of the laser pulses (sample spacing) is adjustable to yield the required 

spatial resolution (i.e., number of points scanned) on a case-specific basis. That is, 

the resolution of the scan, which controls the number of points recorded in a scene 

and the level of detail visible in a scan (Barber et al, 2001), is simply the smallest 

change in angle that the scanner is capable of detecting. This resolution is also a 

function of sample spacing and the laser beamwidth (Lichti, 2004). Because of the 

radial nature of the scanner’s sampling (for example, the laser beam of the Cyrax 

2500 is fired from a centre point) points sampled closer will have a smaller a 

smaller spacing and, conversely, anything further away will have a larger sample 

spacing. The operator selects the appropriate resolution based on several factors 

such as the distance between the scanner and the target surfaces, the size of 

structures or process equipment being scanned and the detail required.  

 

2.3.1.1 Classification of Terrestrial Laser Scanners 

3D terrestrial laser scanners can be categorized according to their performances, 

such as distance or range measurement, the point density or the point accuracy, 

angle of view, and scanning speed.  

 

Terrestrial laser scanners can be categorized by the principle of the distance 

measurement system. Mainly, the distance measurement system correlates both to 

the range and to the accuracy; therefore, this categorization implies a 

categorization by range as well as by accuracy. Depending on the principles for 

distance measurements, laser scanners may be categorized as: lasers using CCD 
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cameras where the distance measurement is based on the principle of 

“triangulation”; lasers using phase difference principles; and lasers using time-of-

flight principles, where distance is derived from the two-way propagation time 

(Barber et al, 2001; Boehler et al, 2003; Lichti and Gordon, 2004). 

 

The basic features of time-of-flight terrestrial scanners are distance measurement 

technologies, the beam deflection techniques which have a strong relation to 

maximum scanning angle, and the resolution of the encoders. These scanners use 

a pulsed laser beam to measure the range to a point on the scanned object (Figure 

2.3). The pulse is diffusely reflected by the surface, and part of the light returns to 

the receiver (Boehler et al, 2003). The scanner measures the time it takes each 

laser pulse to reflect off a scanned surface and return to the scanner.  

 

 

Figure 2.3: Principle of Time-of-Flight Scanner 
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The range, γ, is derived from the two-way flight time of the pulse, and the velocity 

of light, c ∆t, by γ = c∆t*1/2. Three-dimensional measurements are obtained by 

encoding two rotational mirrors with orthogonal axes which deflect the laser pulse 

in measurable intervals of arc. In general, these scanners use a high-speed 

oscillating mirror system to scan the laser across a scene.  

 

Scanners of this type include those manufactured by Cyra Technologies (Cyrax 

2500 or HDS 2500, HDS 3000), Callidus Precision Systems (Callidus cp 3200, 

Callidus ct 180), Mensi (SOISIC) and Riegl Laser Measurement Systems (LMS-

360i, LMS-420i). The collection of points from a scan is termed a point cloud that 

can be used directly for point-to-point measurements or for 3D modeling 

visualization.  

 

A point cloud is produced with up to million points, each containing 3D geometric 

position (x, y, z) and a returned laser intensity (or monochromatic reflectance) 

value. The intensity (I), which is a relative measure of the strength of the returned 

laser signal, gives adequate information to distinguish points that belong to 

different objects or materials (Yu and Ferencz, 2001).  

 

2.3.1.2 The Scanner used in this Study - CYRA 2500 

The CYRA-System is a 4D-Laser scanner which delivers not only 3D-coordinates 

from the scanned points (Staiger, 2002), but also the intensity of the reflected 

beam. The Cyrax 2500 (recently renamed the Leica HDS2500) 3D laser scanner 
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consists of a scan head, and some accessories that work in conjunction with the 

Cyclone software that runs on a PC. Also, there are Cyra targets that are designed 

for use in the Cyrax system. These targets are about 15cm in diameter and the 

centre of the target is a reflective material of about 2mm in diameter 

 

The popularity of Cyrax 2500 scanners is based on the accuracy at range 

(maximum up to hundred metres); highly adjustable scan density; high scanning 

speed; adjustable field of view and ease of use (Santala and Joala, 2003; Lichti 

and Harvey, 2002.). The Cyrax 2500 scanner is a non-contact sensor that uses a 

pulsed laser beam to measure the range to a point on an object’s surface and uses 

two mirrors (Figure 2.4) to deflect the laser beam on both the horizontal and the 

vertical axis (Barber et al, 2001).  

 

 

                    Figure 2.4: Measurement Principles of Cyra 2500 Laser 

                                        Scanning System (Staiger, 2002) 
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The laser pulses radiate and return to a central point, thus imitating the perspective 

projection of a CRP camera. The rotating mirrors change the angles and emit the 

pulse at equal intervals of arc in both the horizontal and the vertical planes. These 

are the imaginary planes perpendicular to the scanner’s center axis. High accuracy 

recording of angular settings is important, since the angles together with the 

distance measurements determine the reflecting point position (Boehler et al, 

2002).  

 

The origin of the object coordinates is “the centre of the scanner” as defined by 

the rotating mirrors. The XY coordinate plane is parallel to the front face of the 

instrument and the Z axis points to the rear of the scanner (as shown in Figure 

2.5).  
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                               Figure 2.5: Cyrax 2500 Laser Scanner  
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The same coordinate system definition is used in CRP, the only difference is that 

in a CRP, there is an image plane onto which rays from an object and passing 

through the perspective centre are projected. This means that the TLS systems 

(example Cyrax 2500) and a digital camera capture their data with similar 

imaging geometry. This fact can be exploited in that it allows the 3D point cloud 

to be transformed into a 2D image (discussed in Section 3.3.1) by using the 

collinearity equations (discussed in Section 2.2.2). 

 

As mentioned before, the Cyrax 2500 uses a reflectorless technology and, 

therefore, the performance is affected and limited by the physical laws of 

reflection of the laser beam by the object surface, the optical properties of 

materials, and refraction. One of the salient properties of a scanner that strongly 

influences both point cloud resolution and positional uncertainty is the laser 

beamwidth (Lichti and Gordon, 2004). Every point cloud produced by a scanner 

contains a considerable number of points that show gross errors (Boehler et al, 

2003).  

 

In this thesis, the calibration of the Cyrax 2500 is not discussed. That is, the 

quality of the measurements, such as the accuracy of the 3D coordinates, the 

angular accuracy, and range accuracy were not investigated.  
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              Table 2.1: Technical Data of Cyrax 2500 

 

Technical Data 

 

 

Performance 

 

 Single Point Accuracy   

                  - position    ±6mm (1σ) @ 1.5 - 50m range,  

                  - distance    ±4mm (1σ ) ,  

                  - angle    60micro-radians  (12") 

 Modeled Surface Precision    ±2mm 

 Beam Spot Size    6mm from 0 – 50m 

 Maximum Field of View   40˚ vertical and 40˚ horizontal 

 Scan Rate    1000 points/sec 

No. of Measured Points    1000 x 1000 points/scan 

Range    maximum up to 100m 

Laser Class    Class 2 pulsed green laser 

 

However, the technical data (which can be accessed at http://hds.leica-

geosystems.com/products)) as listed in Table 2.1, has been reported and evaluated 

by Boehler et al (2003), Lichti et al (2000), Lichti and Harvey (2002), and Santala 

and Joala (2003). The reported research showed that the Cyrax 2500 laser scanner 

(used in this research) fulfills the specifications given by producer. These 

specifications were used (in Chapters 5 and 6) as the benchmark against which the 

accuracy (in terms of RMS errors of the residuals) of both manual and automatic 

bundle adjustment solutions were compared. 
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2.3.1.3 Measurement Errors and the Nominal Accuracy of the Cyrax 2500  

            Laser Scanner  

There are three types of measurement errors (gross errors, systematic errors and 

random errors) that are likely to affect the quality of the photogrammetric BA 

solutions. The size of each of these errors in each measurement affects the 

accuracy and precision of the computed parameters (these are the positions and 

rotations of the camera and the image and the objects coordinates of points on the 

object).  

 

The nominal accuracy of the Cyrax 2500 laser scanner (used in this research) was 

used as the benchmark against which the accuracy (in terms of RMS errors of the 

residuals) of both manual and automatic bundle solutions were compared. The 

nominal accuracy (used to assess the performance of the bundle solutions) for a 

single point are: range - Sez = ±4 mm, and position in the XY plane (Sexy) = ±6 

mm.  

 

As previously pointed out, these standard deviations of the Cyrax 2500 laser 

scanner are quoted for one sigma (1σ). This means that there is a 68% probability 

(i.e., 68% confidence interval) that the "true" mean value of any measurements 

fall between +1 and -1 standard deviation. Since this is not a very strong 

probability, the performance of each method for each data set was assessed based 

on the 95% confidence interval (i.e., 95% confident that the "true" value lies 

between -1.96 and +1.96 times the standard deviation). 
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That is the comparison simply compares the measurement errors obtained by each 

BA to these nominal values for each data set. Any measurement error greater than 

two times the standard deviations (2 Sexy, and 2 Sez) of the nominal accuracy (for 

both position and range) of the scanner was considered to be an error (gross error, 

systematic error and large random error) and it therefore, requires further 

investigations for a more conclusive evaluation. 

 

2.3.2 3D Terrestrial Laser Scanner Data Processing 

The result of the laser survey is a very dense cloud of points (also called a point 

cloud). For each point of the model, the X, Y, and Z coordinates and the 

reflectivity value are given. This cloud of points can be used to describe and 

model the scanned object. Point clouds can be easily visualized in three 

dimensions and the necessary surface, line or point data can be extracted using 

either Cyra’s Cyclone software or CAD systems such as AUTOCAD and 

Microstation. Important object features, such as corner points or edges, are not 

directly captured; instead they have to be modeled from the point clouds in a 

separate process (Boehler et al, 2003).  

 

Processing point clouds (the conversion from the discrete points into surfaces and 

solid modeling) requires that an operator to interact with the points and be able to 

understand what the point cloud represents. That is, the laser scanner data 

processing consists of a set of actions (such as the fitting of geometric and 

mathematical surfaces) that are necessary to obtain the correct digital model of the 
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object. The operations that are directly carried out on the point cloud include, for 

example, data filtering (noise reduction), point cloud registration (combining 

several scans with different orientations and positions) and georeferencing (the 

orientation of point cloud to an absolute coordinate system). The Cyclone 

software allows camera images to be overlaid on the surface model, but, as 

already pointed out in Section 1.4.3, the resolution of these images from the laser-

based cameras is typically low. 

 

2.4 Overview of Multisensor Data Fusion  

While the concept of image fusion is not new, the emergence of new imaging 

sensors has created a need for image processing techniques that can fuse 

observations from a variety of different sensors. In image processing or in remote 

sensing applications, image fusion (multisensor, multi-temporal and multi-

resolution imagery) is commonly undertaken, using a variety of techniques. There 

is also an increasing number of studies that combine information on different 

types (e.g. imagery with ground elevation data or magnetic readings). For 

instance, in this thesis, multisensor fusion combines the terrestrial 3D point cloud 

and 2D photographic imagery. Although many papers focus on the topic of 2D 

image fusion, there is little research on the topic of 3D data fusion.  

 

Multisensor fusion is becoming a standard source of information for various 

mapping applications, including orthoimage production, feature extraction, 
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surface reconstruction and mapping, perspective view generation, and virtual 

reality (fly-through) creation.  

 

In image fusion, the data may differ in sensor type, viewing conditions, camera 

position, or capture time. Depending on the synergy of the information inherent in 

the data, it is possible to enhance the spatial, temporal, and or spectral resolution, 

extract the 3D structure, and improve the decision-making (detection, 

classification, recognition, etc.) performance (Gunturk, 2003). 

 

In the following sections, a general introduction (which includes the concept and 

the techniques) of multisensor data fusion is provided. The description of levels of 

multisensor data fusion, problems and issues of multisensor data fusion, and 

multisensor data fusion algorithms are presented. The complexities involved in 

the multisensor data sets used in this thesis are also discussed.   

 

2.4.1 Concepts of Multisensor Data Fusion 

Lee et al, (2002) describe multisensor data fusion as the process that combines 

data and information from multiple sensors (typically provided by several images 

or aspects of a scene), obtained using different imaging techniques or with 

different acquisition parameters or at different times, in order to achieve improved 

accuracy and better inference about the environment than can be achieved by the 

use of a single sensor. The fusion of multisensory data provides complementary 

information, as sensors based on different physical principles register different 
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properties of the object. This, in turn, translates to a more consistent scene 

description enabling an improved scene interpretation and understanding.  

 

Applications of multisensor fusion may be characterized by the level of 

representation given to data during the fusion process, and by the mathematical 

foundation upon which the fusion operation is based. The goal of multisensor 

fusion is to create new images that are more suitable for the purposes of human 

visual perception, object detection and target recognition (Li et al, 1995), than 

those from any of the individual sensors. However, such sensors provide 

independent measurements with a very large spectrum of characteristics with 

respect to data rates (spatial and temporal sampling), spatial and temporal scales, 

field of view and means of acquisition (Csatho and Schenk, 1998). This diversity 

creates a tremendous source of practical problems, whose resolutions lie in a good 

understanding and modeling of more fundamental components (Li et al, 1995).  

 

2.4.1.1 Complexities in the Data Sets 

Fusion of multisensor data sets is a complex task, as it requires the application of 

mathematical concepts and algorithms. The choice of a technique or algorithm for 

combining data in a multisensor system depends mostly on image (Vajdic et al, 

1995) dimensionality (2D, 3D), image types (natural scenes, stereo images, 

satellite images or medical images), transformation (rigid, affine, projective, 

curved), search determination (direct, search- oriented), and interaction (semi-

automatic, automatic). 



Chapter 2: Background 48

 

A prerequisite for successful multisensor data fusion is that multisensor data have 

to be correctly registered or relatively oriented. Thus, one of the processing steps 

is to perform a multisensor registration or data alignment. Since each sensor 

provides data in its local frame, data from different sensors must be converted into 

a common reference frame before combination. This requires the estimation of the 

orientation of one sensor to the other (see Chapter 5), and it is complicated by the 

fact that data sets are dissimilar. That is, for example, the camera is a high-

resolution passive sensor whereas the laser is an active sensor of lower resolution.  

 

The second key element of the sensor fusion task is the occlusion or obstruction 

problem. Since the sensors are offset by some translation and rotation, it is 

possible that certain segments of the scene might be occluded for one sensor while 

not for the other. Even a small offset may lead to occlusion, and resolving the 

occlusion is important to establishing proper correspondence among the points in 

the dissimilar data sets. The correspondence problem is a difficult one as the 

feature appearance can change in different views, and other similar features may 

exist.  

 

Another important issue is the dynamic range between the two images. Since 

different sensors provide these images (discussed in section 3.3.3), the dynamic 

range of the two images must be re-sampled to match one another. For example, 

the camera is a high-resolution passive sensor in panchromatic or RGB colour 

mode, whereas the TLS is an active sensor of lower resolution in monochromatic 
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reflectance. These sensors also provide independent datasets, which differ in 

resolution, field of view (FOV), scale, illumination and reflectance. Table 2.2 

summarizes some of the disparities between the data sets. Also, Point clouds 

represent a metaphor of “layers” which are transparent, so that offset parts or regions 

between two overlaid clouds in different colours can be identified (Naai-Jung, et al, 

2004) whereas photographic imagery can be generally described as opaque (no light 

is transmitted through it). 

 

     Table 2.2: Disparities in the Data Sets between TLS and CRP 

 Point Clouds/TLS Photos/CRP 

   Resolution    1000 x 1000    4000 x 3000 pixels

   Sensor Field of View    40˚x 40˚    40˚x27˚ 

   Sensor Dynamic Range
   Monochromatic Reflectance

   (10 bits) 

   RGB (8 bits per 

   Channel) 

   Data Opacity    Transparent    Opaque 

 

2.4.2 Classification of Multisensor Fusion Techniques 

There are several criteria to categorize current multisensor fusion techniques. 

These criteria include types of sensor data, mathematical multisensor fusion 

algorithms and levels of representation (Ma, 2001). The following discussions are 

based on the levels of representation. 
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2.4.3 Levels of Representation of Multisensor Data Fusion 

Multisensor data fusion techniques can be performed at three different processing 

levels: (a) data-level fusion; (b) feature-level fusion, and (c) decision-level fusion 

(Ma, 2001; Pohl and Genderen, 1998).  

 

This thesis addresses the problem of data-level and feature-level fusion using 

multisensor data produced by close-range laser scanners and digital cameras. 

 

2.4.3.1 Sensor Data Level Multisensor Fusion 

Sensor data-level fusion (that is fusing data at the sensor level) is, in general, only 

feasible between identical sensory devices (Bruder et al, 1994). Data-based fusion 

occurs when the raw data from various sensors are combined without significant 

post-processing (Nickels et al, 2003). The most common techniques for sensor 

data fusion are grouped into: colour techniques (RGB, IHS), statistical approaches 

(such as Principal Component Analysis and Regression Variable Substitution), 

numerical techniques (averaging), neural networks, wavelets, fuzzy logic, contrast 

pyramid and functional models (Schiewe, 1999). In this thesis, functional model 

based on photogrammetric collinearity equations are used to fuse data from the 

multisensors (see Chapter 3). That is, at the data level, the physical parameters 

measured by the sensors are combined. 
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2.4.3.2 Feature- Level Multisensor Fusion 

Feature-level sensor fusion is the process whereby specific information (i.e. 

features) from objects detected by different sensors are combined (Nickels et al, 

2003). Using features to represent the sensory information not only reduces the 

complex of the processing procedure but also increases the reliability of the 

processing results (Ma, 2001). Feature-level fusion can be divided into feature 

extraction, feature correspondence, and registration. Typical features extracted 

from an image and used for fusion include edges and regions of similar intensity 

(discussed in Chapter 4).  

 

Feature based methods have been shown to be more suitable for the problems of 

multisensor image registration (Hsieh et al, 1997). Images are represented by a set 

of features after extraction, either in the spatial domain or in the transform 

domain. Different techniques have been developed to perform feature-level 

fusion. These include techniques based on wavelet domain, expert systems neural 

networks, Bayesian inference and Dempster-Shafer reasoning.  

 

Establishing correspondence between projections of the same feature in different 

views is performed based on finding image characteristics that are similar in both 

views. A vast number of corresponding algorithms have been proposed. These 

include epipolar constraints, uniqueness constraints, photometric compatibility 

constraints, and geometric similarity constraints. The geometric constraint is 

based on the observation that geometric characteristics of features (such pixels on 
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edges, lines and corners etc.) found in the first and the second images do not differ 

greatly.  

 

Developing a robust algorithm to establish correspondence is one of the most 

important tasks in automated image registration. In most existing feature-based 

techniques, feature correspondence is still the most challenging problem. Features 

are extracted from each of the sensor data, followed by a registration step.  

 

This requires robust feature detection and selection of an algorithm capable of 

recognizing features in multisensor images (see Chapter 4). The idea is to identify 

some features (edges, corners, lines etc) on the images from each separate sensor 

and then to combine these features in an overall database. In this thesis, the 

multisensor feature detection technique is based on the Harris corner detector 

(Harris and Stephens, 1998).  

 

2.5 Summary 

The Chapter provided the essential background to the research. An overview of 

close-range photogrammetric methods was presented. This included the 

fundamental principles and concepts of CRP. The collinearity equations used to 

model the multisensor data and used in the bundle adjustment were reviewed. 

Photogrammetric interior and exterior orientations were described. The 

photogrammetric bundle adjustment technique used to determine the exterior 

orientation parameters was also reviewed.  
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The fundamental concepts of terrestrial sensors relevant for laser scanning were 

also reviewed. These discussions include the principles, classification, and data 

processing of 3D terrestrial laser scanners. The Cyrax 2500 (the Scanner used in 

this study) scanner was described.  

 

Also, the background information on multisensor fusion was reviewed. A general 

introduction which included the concept and the techniques of multisensor data 

fusion was provided.  

 

The description of levels of multisensor data fusion, problems and issues of 

multisensor data fusion, and multisensor data fusion algorithms were presented. 

The complexities involved in the multisensor data sets used in this thesis were 

also discussed. 
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CHAPTER 3 

 

CREATION OF SYNTHETIC IMAGE THROUGH 

MULTISENSOR DATA FUSION: DATA LEVEL 

FUSION  

 

3.1 Introduction 

In this context, multisensor data fusion refers to the techniques for the 

combination of datasets from 3D point clouds and 2D photographic images (i.e. 

the intrinsic parameters of the CCD camera) to create a new dataset. These 

sensors are not calibrated. Given these sets of a high-density 3D point cloud of a 

scene and 2D photographic imagery of the same scene, the question which still 

needs to be answered is “can these independent and complementary data sets (2D 

photographic image and 3D geometry) be accurately expressed in a single object-

centred coordinate system?”  

 

This section attempts to answer this question by creating a 2D representation of 

high density 3D point clouds. This is achieved by transforming the 3D point cloud 

from its raw form into a 2D synthetic camera image (SCI) and so that the 

registration process is reduced to matching this 2D image with a 2D photographic 

image (real camera image - RCI). As mentioned before, the choice of SCI rather 

than the 3D point cloud is based on the fact that the SCI allows the use of existing 

image processing algorithms.  
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Another factor which influences the use of the SCI is the fact it easier to detect 

and identify important object features (such as corner points or edges) in SCI than 

in 3D point clouds. These object features are not directly captured by laser 

scanners; instead they have to be modeled from the 3D point cloud data in a 

separate process. 

 

In the following sections, the process of creating a synthetic image through 

multisensor data level fusion is discussed, and all related information is presented. 

The strategy for the data capture is also explained. The synthetic and real camera 

images for different scenes are presented 

 

3.2 Data Set used in the Study 

In order to assess the fusion of 2D images and 3D point clouds, an experiment 

was conducted. The fieldwork was carried out on the University Campus where 

different data sets with geometric structures were selected. Focusing on the 

amount of geometric primitive, the data sets are grouped into three scenes (data 

set A, data set B, and data set C) representing three levels of complexity (low, 

medium and high). Each data set consists of one SCI and four RCIs. A low 

complexity scene (data set A) contains simple continuous geometric features 

(figure 3.2 (a) is an example). Figures 3.2 (b) and 3.2 (c) are examples of objects 

that represent medium (data set B) and high (data set C) complexity scenes, 

respectively, and contain many geometric features of different sizes and shapes. 
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To facilitate terrestrial measurements and comparison between the 

photogrammetric and laser scanning systems, retro-reflective Cyra-targets 

compatible for both sensors, were placed in data sets A and B (see Figures 3.2a 

and 3.2b). These Two data sets are used in the manual process with 

photogrammetric software. The results of these two data sets are presented and 

discussed in Chapters 5 and 6. All three data sets (A, B, and C) are used in the 

automatic process with a photogrammetric bundle adjustment. The results of these 

data sets are presented and discussed in Chapters 5 and 6. 
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Figure 3.1: Data Capture Setup 
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Figure 3.1 shows the relationship between the data acquisition systems, where the 

laser scanner is positioned in the center (SCI) and that of the digital camera to the 

right (RCI_1R and RCI_2R) and then to the left (RCI_1L and RCI_2L) of the 

scanner. The idea is to form a multisenor model (each model is composed of two 

images) of SCI with the 2D images from various camera positions (or viewing 

angles). In particular, this methodology focuses on a single point cloud with 

multiple images. To test both the registration and the correspondence algorithms, 

three scenes were scanned with the Cyrax 2500 laser scanner. For each scan, a 2D 

photographic image was taken with a Nikon D1x digital camera equipped with a 

20mm lens.  

 

3.2.1 2D Real Camera Images 

A series of images was taken in different directions and positions (as depicted in 

Figure 3.2) by the digital CCD camera (Nikon D1x). These images are called real 

camera images (RCIs), and one (out of four for each data set) is represented in 

Figure 3.3. That is, Figure 3.2(a) is an example of the RCI for data set A, Figure 

3.2 (b) for data set B and Figure 3.3(c) for data set C. The remaining three RCIs of 

each dataset are shown in Appendix A1. This camera provides a digital image 

with a resolution of 3008 by 1960 pixels at true colour mode. The pixel intensity 

depends on the surface reflectivity parameters, surface orientation, type and 

position of illuminants and the position of the viewer.  
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(b) RCI_1L(a) RCI_1L

(c) RCI_1L

(b) RCI_1L(a) RCI_1L

(c) RCI_1L

(b) RCI_1L(a) RCI_1L

(c) RCI_1L

 

Figure 3.2: Example of Real Camera 2D Images. 

 

3.2.2 3D Point Cloud Data  

A Cyrax 2500 Laser Scanner was used to carry out the laser scanning to acquire a 

discrete representation of the object. A point cloud was produced with one million 

points, each containing 3D geometric vectors (x, y, z) and a returned laser 

intensity-colour information-value.  
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(a) (b)

(c)

(a) (b)

(c)
 

Figure 3.3: Examples of Screen Capture of high-density Pseudo-coloured  

                    3D Point Clouds of the Three Data Sets 

 

These coordinates can be stored as ASCII formats for input into nearly any CAD 

programe or point-cloud processing software. Screen captures of 3D point clouds 

of three test areas as displayed in Cyra’s Cyclone Software are shown in Figure 

3.3. Figures 3.3 (a), (b) and (c) are the screen capture of pseudo-coloured 3D point 

clouds for the three sets of data (i.e., data sets A, B and C, respectively). 
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 Table 3.1 summarizes the point cloud information about each data set. All data 

sets were scanned at full field of view ( horizontal x vertical) and at full 

resolution. The 3D point cloud allows for the construction of a 3D surface model 

of the scene. Cyra targets were distributed through the scan and were used as 

control points for the orientation. These were scanned at a high density to ensure 

accurate geometric centers. 

o40 o40

 

Table 3.1: Summary of Information of Point Cloud 

Data Set A B C 

Nominal Spacing (m) 0.004 x 0.004 0.006 x 0.006 0.004 x 0.004 

Max Range(m) 5.6 21.2 43.0 

Closest Point(m) 1.3 4.5 3.4 

No. of Points 999548 995564 973862 

 

3.3 Creation of Synthetic Camera Image-SCI 

One characteristic of TLS systems that makes them similar to a camera is that 

they capture their data with similar imaging geometry – that of a perspective 

projection. This fact can be exploited in that it allows the 3D point cloud to be 

transformed into a 2D image (i.e. creating a synthetic image equivalent to that of a 

digital camera) and so the registration process is reduced to matching these 2D 

data with a 2D photographic image.  
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Once created, the synthetic camera image (SCI) can be used for many tasks 

including, but not limited to, the exterior orientation of independent 2D 

photographic images (real camera images-RCIs) to the 3D terrestrial point clouds. 

This will then allow texture mapping and data augmentation through the 

application of close-range photogrammetric techniques, and the registration of the 

of overlapping point clouds. These applications utilize the two dimensional 

properties of the SCI instead of three dimensional interaction with the point cloud. 

 

The following sections outline the methods used to fuse information between the 

two sensors (a real camera and terrestrial a laser scanner). The two sub-tasks 

contained in this data integration procedure include the transformation of 3D 

points into 2D synthetic intensity images and the computation of 2D mages (x, y) 

from the 3D point cloud data (X, Y, Z) as produced by a 3D laser scanner. The 

former is discussed in Section 3.3.1 and the latter is discussed in Section 3.3.2.  

 

3.3.1 Strategy for Creating the Synthetic Data  

This section describes the fusion of the information provided by the digital camera 

and the laser sensors to create a synthetic data source. Data fusion, in this section, 

refers to the fusion of information between the two sensors. This requires 

knowledge of the internal camera parameters (assumed principal distance, 

principal point location and no lens distortion correction). The knowledge of these 

parameters facilitates the creation of the synthetic data using the collinearity 

equations discussed in Section 2.2.2. 
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Figure 3.4: Collinearity Model for Scanner and Camera 

 

In this research, the integration setup consisted of 3D data from a 3D laser scanner 

and 2D photographic images from an arbitrarily located and oriented CCD 

camera. As previously pointed out, the two sensors had the same coordinate 

definition, the only difference was that in the CRP, there was an image plane onto 

which rays from object and passing through the perspective centre were projected.  

 

This positive image plane (usually used in CRP) is parallel to the xy plane and lies 

along the negative z at a distance equal to the focal length of the camera. If a 

similar image plane is placed in front of the laser scanner (as can be seen in Figure 

3.4) at a distance f, (the focal length of the real camera) and the point cloud data is 

backprojetced on it, an image of the points equal to that taken by the camera with 
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the same principal distance can be generated. The relationship between a point 

cloud, TLS coordinate system, the SCI coordinate system and the backprojected 

image is illustrated in Figure 3.4.  

 

With a known 3D surface (as produced by a 3D laser scanner in X, Y, Z), the 

coordinates of the exposure center  (X0, Y0, Z0) of the laser scanner, the rotation 

angles (ω=φ=κ=0) the focal length of the laser scanner (assumed to be equal to 

that of the digital camera - f = 20mm) and basic knowledge about CCD camera 

characteristics (such as the interior orientation parameters), and the position of 

each point of the point cloud on the synthetic image are given by: 

 

)
Z

Y
(f-=y

)
Z

X
(f-=x

                                                         (3.1) 

 

where X, Y and Z are the object coordinate of the points in the point cloud and x 

and y are the image coordinates of the SCI. For given a point in the laser scanner 

object space (X, Y, Z), its corresponding point in the 2D image plane (x, y) was 

estimated. The collinearity equations were implemented using Matlab 

programming language. Thus, the synthetic data formation, in principle, is 

described by mathematical rules of central perspective formation of the synthetic 

image. 
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3.3.2 A Method for Transforming Synthetic Data into Synthetic Images 

Although an even point spacing during scanning was specified (as can be seen in 

Table 3.1) in both the horizontal (X) and vertical (Y) directions at a specified 

scene range, upon back projection it was found that the points exhibited some 

variation in spacing (as can be seen in Figure 3.5). This is due to the fact that point 

spacing generally depends on the shape of the object and the variation in the range 

from the scanner.  

 

 

                 Figure 3.5: Example of Backprojected Point Cloud 

 

To create a synthetic image equivalent to that of a digital camera, the 

backprojected points (discussed in the previous section) must be interpolated onto 

a regular grid (the pixels of the images) at an even spacing.  
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The purpose of this interpolation is to transform the random set of point in (x, y, I) 

into a uniformly spaced rectangular grid. In other words, interpolation takes a 

series of (x, y, I) points and generates estimated values for I (intensity) at new (x, 

y) points.  

 

Resampling has two components, namely the resampled locations and the 

resampled values (Morgan and Habib, 2002). The former has to deal with the 

pixel size or the grid intervals when we want to resample into a regular grid, while 

the latter deals with the interpolation function. The difference among various 

interpolation approaches lies in the interpolation function that is chosen. Many of 

these are discussed in Dakowicz and Gold (2003).  

 

The size of the grid spacing has a strong influence on the errors introduced during 

interpolation (Smith et al, 2003b). Errors are always present in the interpolated 

data, but the complexity of the interpolation method used will depend on the 

difference in the density between the original point cloud and the pixels in the 

synthetic image. Behan (2002) and Smith el al (2003b) quantified errors within 

models produced from different interpolation algorithms. They concluded that the 

optimal spacing should be as close as possible to the original point spacing. That 

is, the most accurate models were created using grids which had a similar spacing 

to the original points.  
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Based on a high scanning density cloud of 3D points (with a maximum point 

spacing of six millimeters) the nearest neighbour interpolation (where the value at 

the interpolating point is the same as the value at the grid point closest to it) was 

used in this thesis. Thus, nearest neighbour interpolation determines the intensity 

value from the closest pixel to the specified input coordinates, and assigns that 

value to the output coordinates. As well as being the most efficient method in 

terms of processing or computation time, the nearest neighbour approach does not 

alter the original intensity values that are used to create the SCIs (Fritscher, 2004). 

That is the intensity values in the SCIs remained unchanged and this is 

particularly important when dealing with pseudo-coloured intensity values where 

the palette of colours is already limited. Preservation of the original intensity 

values can also be an advantage since SCIs will be used in automatic 

measurements such as feature extraction and correspondence matching (discussed 

in Chapter 4).  

 

However, nearest neighbour interpolation may result in some intensity values 

being duplicated while others are lost. As previously pointed out, the grid spacing 

(8mm) was as close as possible to the original point spacing (6mm) and as can be 

seen in Figures 3.8, 3.8 and 3.10, the out images (SCIs) do not appear jagged or 

blocky. Also, the fidelity of the concept of generating synthetic camera images 

has been tested by determining the exterior orientation of the synthetic camera 

images and the real camera images relative to the point cloud.  
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There are two options related to this interpolation. The first option is to generate 

the SCI by keeping the original resolution of the point cloud data and to then 

compute a new pixel size. This means that the resultant image will always have 

1000 by 1000 as row and columns, and the pixel size will be as close as possible 

to that which fits the backprojected point clouds.  

 

The second option, on the other hand, is to keep the pixel size of the real camera 

image (the Nikon D1x has 8µm pixel size) and to then compute the number of 

pixels. To create a synthetic image equivalent to that of a digital camera, the 

second option was used to generate the synthetic images shown in Figures 3.6, 3.7 

and 3.8. In this case, the generated SCIs and the RCIs will have the same pixel 

size and the resolutions of the SCIs may be as close as possible to that of the 

RCIs. The density of the generated grid is a function of the minimum, maximum 

and the increment values for both x and y. Once the pixel spacing is defined, the 

interior orientation of the SCI is also defined. 

 

3.3 3 Dynamic-Range Compression 

Dynamic range refers to the range in which the scanner is cable of measuring the 

intensity. Grey scale images consist of pixels, each of which indicates a level of 

intensity. For an image of eight bit integers, the shade is in the range [0; 255]. As 

can be seen in Table 3.2, the generated synthetic images of all the three data sets 

are high dynamic range images. That is the range of intensities is larger than the 

standard 8-bit-per-channel (256-level) range. The reflectance values as produced 
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by the Cyrax 2500 for all the data sets is in the range [1199, 1256]. This means 

that some shades may be difficult to distinguish from each other because they are 

so close together that human vision cannot distinguish them from each other. 

 

                         Table 3.2: Dynamic Range Values 

Data Set Minimum & Maximum 

Intensity Values 

Dynamic Range  

Values 

A [-429, 770] 1199 

B [-479, 771] 1250 

C [-482, 774] 1256 

 

The ability to distinguish shades of grey in an image is the contrast of an image. 

One way to improve the contrast is contrast stretching or histogram stretching. 

The concepts of image enhancements (i.e. increasing the contrast and features of 

an image) are important for recognition of objects and the important features of 

the generated synthetic images.  

 

To match the generated synthetic images to the real camera images, the current 

dynamic range of grey values were mapped to the full range of grey values. That 

is the dynamic range of the generated images was compressed by linearly 

stretching the intensity values within the [0, 255] range. That is, each pixel a 

monochromatic image can have an 8-bit grey scale or intensity value ranging from 

0 to 255. Figures 3.7, 3.9, and 3.11 show the histograms of the two images 
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(histograms of SCIs are shown in Figures 3.7a, 3.9a and 3.11a and for RCIs the 

histograms are shown in Figures 3.7b, 3.9b and 3.11b). It can be seen that few 

pixels have values near the extremes (no information on pixel location is given by 

the histogram) so the question is “should histogram equalization be applied to 

these images?”. Histogram equalization (to obtain uniform histogram by 

redistributing the intensity distribution) can be used to increase the contrast across 

the whole dynamic range of the images. That is, histogram equalization is used for 

enhancing detail in low-range images and image enhancement is subjective and 

application specific (Gonzalez and Woods, 2002).  

 

This thesis did not investigate how histogram equalization may affect the quality 

of the texture features extracted. However, in these histograms (i.e., in Figures 

3.7, 3.9 and 3.11), it can be seen that the synthetic and real camera images display 

similar intensity distribution for the pixels. In other words, they are 

radiometrically similar for the three data sets. This also indicates that the 

generated synthetic camera images are equivalent to the real camera images. This 

similarity in the intensity distribution between the images facilitates the use 

correlation-based method which attempts to establish correspondence matching 

image intensities (discussed in Chapter 4).  

 

3.3.4 Pre-processing of the RCI 

The SCI is a monochromatic image and, thus, the RCI needs to be put into a 

compatible form.  There are two options – the first is to convert the RGB RCI into 
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grey scale based on total intensity while the second is to use either the red, green 

or blue channels. An experiment using later elements of the fusion process was 

made to find out whether one of these was better than the other. The result of the 

experiment was inconclusive, so the grey scale images were adopted for the rest 

of the study. 

 

3.4 Results and Analysis 

As previously pointed out, the dynamic range values of the generated synthetic 

camera images were compressed to produce the final images shown in Figures 

3.6, 3.8 and 3.10. Table 3.2 summarizes the details of the generated SCIs. In 

Figures 3.7, 3.9 and 3.11, histograms (showing the distribution of intensities in the 

grey scale image) of the generated images are presented. These histograms reveal 

that the pixel values are spread out between the minimum of 0 and maximum of 

255.  

 

3.4.1 The Synthetic Camera Image  

 

                           Table 3.3: Details of the generated SCIs  

 

Figure 

 

Data Set 

Resolution 

 (Row x Column 

3.5 A  2196 x 2009 

3.6 B 1440 x 1851 

3.7 C 2236 x 2086 
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             Figure 3.6: Generated Synthetic Camera Image of Data Set A 
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          Figure 3.7: Histograms of Synthetic and Real Camera Images 

                             of Data Set A 
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            Figure 3.8: Generated Synthetic Camera Image of Data Set B 
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       Figure 3.9: Histograms of Synthetic and Real Camera Images 

                          of Data Set B 
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     Figure 3.10: Generated Synthetic Camera Image of Data Set C 
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          Figure 3.11: Histograms of Synthetic and Real Camera Images 

                            of Data Set C 
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3.4.2 Similarities and Differences between the Datasets 

It is clear (as can be seen in Figure 3.12) that the geometric features in the SCI are 

easier to detect than those in the laser range data. This image offers a major 

advantage to interactively (controlled by a human operator) or automatically 

match conjugate points with the intensity images produced by a digital camera. 

However, there are differences in illumination, and reflectance as well as a lack of 

appropriate texture (Milian et al, 2002) between these images. Also, images from 

different sensors usually have their own inherent noise (Habib and Alruzouq, 

2004). Furthermore, the automatic registration problem can be complicated, in this 

case, by differences in image resolution and scale, and low image quality 

(especially with the SCI).  

 

 

                   Figure 3.12: SCI (upper) and the Point Cloud (lower) 
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3.5 Summary 

In this chapter, the strategy for terrestrial measurements (photogrammetry and 

laser scanning) has been discussed and the data sets used in this research has also 

been presented. In order to test both the fidelity of the SCI concepts and the 

correspondence algorithms, three different scenes were scanned with the laser 

scanner, and for each scan, a 2D photographic image was taken with a digital 

camera. The photogrammetric collinearity model was used to fuse data from the 

two sensors (digital camera and terrestrial laser scanner) to generate synthetic 

images. Synthetic camera images equivalent to that of a digital camera was 

created by interpolating the irregularly spaced synthetic data onto a grid at an even 

spacing and using the laser return pulse intensity.  

 

These synthetic images of the three different data sets have been presented with 

their histograms showing the distribution of the pixels values. Additionally, the 

differences and similarities between the generated synthetic and real images have 

been discussed. Chapters 4 and 5 detail how the data set discussed in this chapter 

were used with developed algorithms to determine the geometric relationship 

between the digital camera and the laser scanner. 
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CHAPTER 4 

 

AUTOMATIC HYBRID MATCHING FOR FEATURE 

LEVEL FUSION 

 

4.1 Introduction 

The fundamental task in this type of multisensor fusion – combining data from 

two distinctly different sensors (terrestrial laser scanners and cameras) is 

registering the two data sets together. At first glance, this may seem to be a trivial 

task as exemplified by the process of exterior orientation of a photograph via a set 

of control points to an object defined coordinate system. The quality of any 

products derived from such fusion will be directly influenced by the quality of the 

registration process. For this to be done, homologous points in the images need to 

be identified and then related to their object coordinates. This can be done 

manually or automatically. The actual results of both manual and automatic 

registration are given in the following chapter. 

 

To perform automatic registration, three distinct steps are usually required: firstly 

to extract potential points, secondly to find those correspondences between the 

two images, and thirdly to determine the transformation parameters between them 

(this process is described in Chapter 5).  
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There are various strategies to solve this problem, the result for this research was a 

hybrid method based on the Harris corner detector to detect interest points, zero-

mean normalized cross correlation for establishing the correspondence between 

points and RANSAC algorithm to filter out the false correspondences. The quality 

of the matching algorithm was evaluated. 

 

4.2 Existing Matching Strategy for Feature Level Fusion 

Many image processing problems involve the fundamental task of registration, 

which includes image matching of a pair of images. Usually, a matching 

procedure uses either feature-based methods (which use low-level features such as 

edges and corners) or area-based methods (which use pixel grey level values 

directly). Each of these were evaluated. 

 

4.2 1 Area-Based Methods 

The area-based or correlation-based method which attempts to establish 

correspondence matching image intensities usually adopts a window of points to 

determine a matched location (Bennamoun and Mamic, 2002, and Brown, 1992). 

Such methods include the sum of the absolute differences, the sum of squared 

differences, cross-correlation, and zero mean normalized cross correlation 

(Bennamoun and Mamic, 2002). Several correlation measures are reviewed, tested 

and compared in Giachetti (2000). All these measures use a sqaure window (i.e., a 

regularly sized pixel neighbourhood are compared to find the optimum match) of 

pixels as the basis for comparison. A regularly sized pixel neighbourhood is need 
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so that a point to be matched essentially becomes the centre of a small window of 

points, and this window is compared with similarly sized regions in the other 

image (Bennamoun and Mamic, 2002). In other words, area-based algorithms 

compare the intensity values within a regularly sized pixel neighbourhood centred 

at a point in one image with corresponding values in an identical regularly sized 

pixel neighbourhood centred at points in the other image. 

 

The majority of the area-based methods have the limitation of registering only 

images with small misalignment, because they are sensitive to perspective 

distortion (Bennamoun and Mamic, 2002). If the orientation difference between 

the two images is large, the value of cross-correlation will be greatly influenced, 

and the correspondences between feature points, thus hard to derive. In order to 

solve the problem, it is necessary that images must be roughly aligned with each 

other initially to estimate the orientation parameters. 

 

In this case, the correlation measures become unreliable when the images have 

multiple modalities and the grey-level characteristics vary (Dai and Khorram, 

1999). This is because the measure of absolute difference in image intensity may 

not be meaningful as the pixel value represents the physical property that is 

unique to the imaging method. This thesis uses the zero mean normalized cross 

correlation (discussed in Section 5.5) as a similarity measure for the matching 

process 
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4.2 2 Feature-Based Methods 

In contrast to area-based matching, feature-based matching uses symbolic 

descriptions of the image data for establishing correspondence. This symbolic 

representation consists of a set of geometric primitives (edges, contours, corners, 

line intersections). Feature-based techniques are more robust and are preferable in 

multisensor registration (Brown, 1992; Hsieh et al, 1997; Li et al, 1995). That is, 

feature-based matching is less variant against radiometric distortions. This is 

because feature-based matching does not work directly with image intensity 

values. This property makes feature-based methods suitable for situations when 

illumination changes are expected or multisensor analysis is demanded 

(Zitova´and Flusser, 2003).  

 

Generally, feature-based methods are involved in feature selection and extraction 

and feature correspondence establishment. Image data contain a considerable 

amount of information, which forms a large search space for finding the 

information relevant to the domain of building objects. To reduce the dimensions 

of this search space, it is desirable to extract some basic features from the image. 

 

4.3 Principles of Hybrid Matching for Feature Level Fusion 

Area-based and feature based methods alone have some limitations and many high 

end photogrammetric systems now use a combination of the two techniques (Dias 

et al, 2002). Such an approach is known as hybrid matching. Such a methodology 

was developed for this research.  
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The subsequent section discusses the implementation of this hybrid approach. The 

initial results of this hybrid matching algorithm which consists of feature 

extraction process followed by the cross-correlation matching were published in 

Forkuo and King (2004a). 

 

4.3.1 Detection and Extraction of Features for Matching 

The automatic registration problem requires finding features (edges, corners) in 

one image and correlates them in another. For this thesis, Harris corner detector as 

proposed in Harris and Stephens (1988) was used to detect and extract corners in 

both images. This operator has been widely used and it has been shown to be 

robust to viewpoint changes (i.e. image rotations and translations) and 

illumination changes (Dufournaud et al, 2004; Rothfeder et al, 2003). However, 

the Harris corner detector is not invariant to changes in scale (Dufournaud et al, 

2004). It uses a threshold on the number of corners extracted based on the image 

size. The number of corners detected in images is variable (Rothfeder et al, 2003). 

Once feature points are extracted from an image pair, correspondence matching 

can be performed. 

 

4.3.1.1 Image Pyramids 

One significant problem in this research was the difference in image size between 

the RCI and SCI. To account for different image sizes, the image pyramid was 

used. In this research, an intermediate step, an image pyramid, was computed for 

both images separately, before using any of the matching procedures.  
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An Image pyramid, which combines the advantages of both high and low 

resolutions of images, is a hierarchical structure composed of a number of levels 

(Figure 4.1) of the same image at different resolutions. This hierarchical approach 

involves the Gaussian smoothing and subsampling of the original images so that a 

“pyramid” of images at different resolutions is obtained (Bennamoun and Mamic, 

2002).  

 

The results of image pyramids are a series of reduced-resolution versions of the 

original images. Matching through the pyramid from coarse-to-fine reduces the 

search time for a match and increases the accuracy of the matching results 

(Bennamoun and Mamic, 2002; Heipke, 1997). Also, in the upper level images, 

features such as edges or regions of interest are more visible for correspondence 

analysis (Mikhail and Bethel, 2001). In other words, the lower levels of image 

pyramid provide detailed information.  

 

Level 3

Level 2

Level 1

Level 0

 

                                   Figure 4.1: Image Pyramid 
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4.3.1.2 Extraction of Points of Interest 

Image corner point features (also referred to as interest points in this thesis) are 

distinctive image points for which the signal change two-dimensionally (Schmid 

et al, 2000; Tissainayagam and Suter, 2004). In other words, interest points are the 

loci of two-dimensional intensity change (i.e. second-order features). Image 

corners impose more constraint on the motion parameters than do edges. Corners 

are also often more abundant than straight edges in real scenes or objects, making 

them ideal features to track in an indoor and outdoor environment.  

 

A number of algorithms for interest points and corner detection have been 

reported in recent years (Schmid et al,2000; Tissainayagam and Suter, 2004). 

They can be divided into three categories: contour-based methods, parametric 

model based methods and intensity based methods (Schmid et al, 2000). Contour 

based methods involve extracting edges and then finding the points having 

maxima curvature, or searching for points where edge segments intersect. The 

Parametric model methods fit a parametric intensity model to the signal.  

 

The intensity-based methods of algorithms search for point of interest or corners 

directly from the grey-level image. The Harris corner detector used in this thesis 

falls into the group of feature detectors based on intensity methods. Several 

interest points detectors are reviewed and compared in Schmid et al (2000). In the 

following section the Harris corner detector for the extraction of the 

aforementioned features is discussed. 
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4.3.1.3 Harris Corner Detector 

Image corner detection is an important task in various computer vision and image 

understanding systems. Applications include motion tracking, object recognition 

and image matching. This algorithm is based on an underlying assumption that 

corners are associated with maxima of the local autocorrelation function 

(Tissainayagam and Suter, 2004). 

 

The Harris corner detector has been widely used and it has been shown to be 

robust to viewpoint (i.e. image rotations and translations) and illumination 

changes (Dufournaud et al, 2004; Rothfeder et al, 2003). It should be noted that 

because this algorithm rely on spatial derivatives, image smoothing is often 

required to improve their performance. While improving the detection reliability, 

it has been shown that smoothing may result in poor localization accuracy 

(Tissainayagam and Suter, 2004). The Harris corner detector proceeds by forming 

an image gradient covariance matrix M (where M is a 2×2 matrix computed from 

image derivatives) corresponding an image I(x, y). 

 

                                                         

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⊗σ= 2

2

y

I

y

I

x

I

y

I

x

I

x

I

,0GM

                                                         

                                                (4.3) 

                                                        

 

 

 



Chapter 4: Automatic Hybrid Matching for Feature Level Fusion 84

where:  

x∂
I∂

and 
y∂
I∂

 denote the image gradients in the x and y directions,           

is a zero- mean Gaussian smoothing kernel of variance , and  ( )σ,0G 2σ

⊗  is the convolution operator.  

 

The Harris corner detector then computes a ‘cornerness’ value R for each pixel in 

an image based on Rothfeder et al ( 2003)  

                              ( ) ( )MtracekMdetR 2×−=                                                 (4.4)  

where: 

det M denotes the determinant of the M (in Equation 4.3),  

trace M is the sum of elements along the principal diagonal; and  

k is a constant parameter that is usually taken to be 0.04 (Rockett, 2003;  

Harris and Stephens, 1998). R is the corner strength function at a point.  

 

Maximum and minimum eigenvalues of the matrix M are then computed, and the 

maximum values indicate the corner position. That is, a corner is indicated when 

the two eigenvalues of the matrix M are large and similar in magnitude.  

 

The Harris corner detector uses a threshold on the number of corner extracted 

based on the image size. The number of surrounding pixels required to calculate 

M is determined by the size of the Gaussian smoothing kernel. A typical size for 

neighbourhood is 5×5 pixels, though in practice it should be set as a percentage of 
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the image dimensions (i.e., the width and height of the Gaussian smoothing kernel 

should increase as the size of the source image increase), and its width should be 

odd, for reasons of symmetry. 

 

The Harris corner detector was applied and tested over a large number of image 

pairs of data sets A, B and C. Figures 4.2, 4.3 and 4.4 are examples of corners 

detected with a Harris corner detector on image pairs (each image pair from each 

data set the remaining 3 image pairs for each data set are shown in appendix A3). 

It can be seen that the number of detected points are different for two the images 

of each data set and the differences in the number of interest points detected are 

due to the fact that the Harris corner detector is based on repeatability (which is 

defined by the image geometry) and information content (which is a measure of 

the distinctiveness of an interest point) of images. 

 

The maximum number of corners that were detected by the Harris corner detector 

from the SCI was used a threshold to extract the same number of corners from the 

RCI. For example a maximum of 1000 corners were detected from SCI of data 

sets A and C (in Figures 4.2 and 4.4, respectively). This same number of corners 

(1000) was extracted from the RCI (as indicated in Tables 4.1 and 4.3). The same 

procedure was used for corner detection of data set B (in Figure 4.2), but here the 

maximum of corners was 992 (as indicated in Table 4.2). Once feature points 

were extracted from an image pair, correspondence matching could be performed. 
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SCI RCI_1RSCI RCI_1R

 

Figure 4.2: Example of Corner Detected with Harris Corner Detector on 

                    Model_1 of Data Set A. 

 

RCI_1RSCI RCI_1RSCI

 

 

Figure 4.3: Example of Corner Detected with Harris Corner Detector on 

                    Model_1 of Data Set B. 
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RCI_1RSCI RCI_1RSCI

 

Figure 4.4: Example of Corner Detected with Harris Corner Detector on 

                    Model_1 of Data Set C. 

 
4.3.2 The Correspondence Matching Algorithm 

This section concentrates on determining the correspondence between the two sets 

of extracted interest points that were detected with a Harris corner operator. The 

most difficult part of the automatic matching is essentially the correspondence 

matching: given a point in one image, find the corresponding point in each of the 

other image(s). Although the automatic correspondence is not a problem for 

vertically oriented images, it is still a problem in the terrestrial case, and it is even 

most complex in a terrestrial multisensor case.  

 

It can be observed that, since both image types are formed using similar 

mechanisms, the location of many objects in identifiable in each image. However, 

there are differences in illumination, perspective, reflectance as well as lack of 

appropriate texture (Milian et al, 2002) between these images.  
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Also, images from different sensors usually have their own inherent noise (Habib 

and Alruzouq, 2004). Furthermore, the automatic matching problem can be 

complicated by differences in image resolution and scale and low image quality 

(especially with the SCI).   

 

Correspondence matching algorithm consists of two-step procedure. In the first 

step, matches are determined through normalized cross correlation. The initial 

matching can be used to eliminate points from both images that have no 

corresponding points. The second set up refines the initial corresponding points by 

using a robust estimator such as RANdom SAmple Consensus (RANSAC) 

algorithm (discussed in Section 4.5.1). Initial correspondence between these 

points is then established by correlating regions around the features. The 

similarity is then judged by the accumulated development of corresponding 

interest points in the two images (Rothfeder et al, 2003).  

 

To match these features automatically, the zero mean normalized cross correlation 

(ZNCC) measure, which is invariant to varying lighting conditions (Lhaullier and 

Quan, 2000) is used. Mathematically, the ZNCC can be expressed as in Equation 

4.7 (Crowley and Martin, 1995), where Sµ (Equation 4.5) is the mean of the 

template (of size M by N) and )j,i(Rµ  (Equation 4.6) is the mean of the image 

neighbourhood (of size M by N). The match measure is intended to quantify the 

degree of ‘similarity’ between the sources. More precisely, the match value 

 



Chapter 4: Automatic Hybrid Matching for Feature Level Fusion 89

( ) (Equation 4.7) reflects the resemblance between the input images 
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This method uses a small window around each point to be matched (this point 

becomes the center of a small window of grey level intensities), and this window 

(template) is compared with similarly sized regions (neighbourhood) in the other 

image (Rothfeder et al, 2003). In other words, the ZNCC method is based on the 

analysis of the grey level pattern around the point of interest, and on the search for 

the most similar pattern in the successive image (Giachetti, 2000). Each 

comparison yields a score, a measure of similarity. The match is assigned to the 

corner with highest matching score (Smith et al, 1998).  

 

Selection of an appropriate parameters such as correlation window size is a central 

problem with the ZNCC techniques. An experiment was performed with various 

parameters to find out suitable ones.  
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The results showed that by selecting a patch size (correlation window of 17 x 17 

pixels), a neighbourhood window size of 50 x 50 pixels and correlation coefficient 

threshold of 0.8, suitable matching results were obtained. That is, the matching 

process reduces the number of detection of false correspondence pairs. However, 

the number of mismatches (referred to as outliers) may be quite large.  

 

This occurs in particular when some corners cannot be matched. Also, there are 

likely to be several candidate matches for some corners which are very similar 

(Smith et al, 1998). In Figures 4.5, 4.6 and 4.7, matches are shown by the line 

linking matched points to their position in the other image (clear mismatches can 

be seen). The summary of the matching results for data set A, data set B and data 

set C are shown in Tables 4.1, 4.2 and 4.3, respectively. 

 

RCI_IRSCI RCI_IRSCI

 

Figure 4.5: Example of Detected Correspondences of Model_1 of  

                    Data Set A with ZNCC. 

 



Chapter 4: Automatic Hybrid Matching for Feature Level Fusion 91

SCI RCI_1RSCI RCI_1R

 

Figure 4.6: Example of Detected Correspondences of Model_1 of 

                   Data Set B with ZNCC. 

 

SCI RCI_1RSCI RCI_1R

 

Figure 4.7: Example of Detected Correspondences of Model_1 of 

                    Data Set C with ZNCC. 
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4.3.2.1 Robust Matching for Filtering False Correspondences 

The most commonly used robust estimators include M-estimators, Least-median-

squares (LMedS), Maximum A Posterior Sample Consensus (MAPSAC), and 

RANSAC ((Dufournaud et al, 2004, Armangue and Salvi, 2003). In contrast to 

most of robust algorithms which attempt to maximize the quantity of data used to 

identify a solution, RANSAC algorithm of Fischler and Bolles (1981) robustly 

searches for suitable solutions directly using the data, repeatedly constructing 

solutions from randomly sampled minimum subsets of data which are not related 

to any concept of an error surface (Lacey et al, 2000). This thesis, therefore, uses 

the RANSAC algorithm to refine the results of the cross correlation (discussed in 

4.5). The implementation details are discussed in Capel and Zisserman (2003); 

Fischler and Bolles (1981), and Hartley and Zisserman (2000).  

 

The RANSAC technique is based on randomly selecting the set of points used to 

compute an approximation of the fundamental matrix (F) by a linear method 

(Armangue and Salvi, 2003). Thus, RANSAC robustly determines the F from the 

correspondence matches (discussed in Section 4.5), without requiring the intrinsic 

and extrinsic camera parameters (Hartley and Zisserman, 2000).  

 

If x is a point in one image and  a point in another image, then the image points 

satisfy the relation  (details of the computation are described in Hartley 

and Zisserman (2000). Once the F matrix is determined, one can reconstruct the 

epipolar geometry which is the intrinsic projective geometry between two views 

x′

0=xFx′T
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(Hartley and Zisserman, 2000, Pollefeys et al, 2000) and matches can be found by 

searching along epipolar lines. In most circumstances, the estimated F should be a 

rank 2 matrix in order to model the epipolar geometry with all the epipolar lines 

intersecting in a unique epipole (Armangue and Salvi, 2003).  

 

Computing the epipolar geometry from the set of potential matches through least 

squares generally does not give satisfying results (Pollefeys et al, 2000). The 

obvious advantage of using epipolar geometry is that the conventional 2D 

correlation can be completely substituted by near 1D correlation along the 

epipolar lines. The matches (i.e., the results of the correspondence matching in 

Section 4.5) are refined using with RANSAC algorithm. This algorithm allows the 

user to define in advance the number of potential outliers through the selection of 

a threshold.  

 

A non-linear minimization is used to fit F to a large number of points. The best 

solution is that which maximizes the number of points whose residuals are below 

a given threshold. Once outliers are removed, the set of points identified as inliers 

may be combined to give the final solution (RANSAC inliers). The results are 

shown in Figures 4.8, 4.9, and 4.10. These inlying correspondences are used in the 

exterior orientation process. The summary of matching results is shown in Tables 

4.1, 4.2 and 4.3 for data sets A, B and C respectively. These tables show, for each 

model, the number of features detected (i.e., number of potential matches), the 
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number of correspondences (matches) obtained, the final number of matches, and 

the percentage of inliers. 

 

 

Figure 4.8: The Final Verified Detected Correspondences (RANSAC inliers) 

                    of Model_1 of Data Set A 

 

Table 4.1: Summary of Matching Results of Data Set A 

Data Set A Model_1 Model_2 Model_3 Model_4

No. of features detected 1000 1000 1000 1000 

Mutual correspondence 

Obtained 
474 434 449 414 

RANSAC inliers (valid  

matches) 
317 297 265 280 

% of valid matches 67 68 59 68 
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SCI RCI_1RSCI RCI_1R

 

Figure 4.9: The Final Verified Detected Correspondences (RANSAC inliers) 

                    of Model_1 of Data Set B  

 

Table 4.2: Summary of Matching Results of Data Set B 

Data Set B Model_1 Model_2 Model_3 Model_4

No. of features detected 992 992 992 992 

Mutual correspondence 

Obtained 
383 366 383 363 

RANSAC inliers (valid 

 matches) 
248 256 276 267 

% of valid matches 65 70 72 74 
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SCI RCI_1RSCI RCI_1R

 

Figure 4.10: The Final Verified Detected Correspondences (RANSAC inliers) 

                     of Model_1 of Data Set C  

 

Table 4.3: Summary of Matching Results of Data Set C 

Data Set C Model_1 Model_2 Model_3 Model_4

No. of features detected 1000 1000 1000 1000 

Mutual correspondence 

Obtained 
385 402 420 393 

RANSAC inliers (valid  

matches) 
256 296 279 241 

% of valid matches 66 73 66 61 

 

4.4 Evaluation of the Methodology 

The proposed matching algorithm was tested on three different types of data sets 

of different scenes. The evaluation of the matching methodology is based on 

assessing the quality of the detected interest points and the feature matching 

algorithms.  
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4.4.1 Assessing the Quality of the Detected Interest Points 

Having found corners in one image, the same corners should be found and 

matched in successive images. The ability to consistently find and match corners 

in this way relies on the corners being accurately localized (Noble, 1998). That is, 

the calculated image-plane position of a corner, given by the detector, should be 

as close to the actual position of the corner as possible. The Harris corner detector 

used in this thesis is largely controlled by setting parameters for ‘cornerness’ and 

Gaussian sigma (which specifies how much to smooth the image before 

processing) and the relative minimum threshold (which specifies the minimum 

corner strength).  

 

While improving the detection reliability, it has been shown that smoothing may 

result in poor localization accuracy (Tissainayagam and Suter, 2004). The 

inherent disadvantage of this method is that the threshold is difficult to choose in 

practice and often arbitrarily assigned (Bennamoun and Mamic, 2002). These 

techniques depend largely on the threshold to determine whether or not a match is 

valid. 

 

4.4.2 Assessing the Quality of the Matching Algorithm 

This hybrid algorithm implemented is sensitive to: number of features; 

neighbourhood size; and window block size (for ZNCC). The size of the matching 

neigbourhood has a significant impact on the quality of the matches. However, 

there is a number of techniques which can be used to recognize incorrect or 
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invalid matches. Most of these are discussed in Bennamoun and Mamic (2002). In 

this research, the validation techniques used for the area-based matching are: the 

value of the matching score, and the left-right consistency checking. With the 

value of the correlation score, the score may be compared with respect to an 

absolute threshold.  

 

A match whose score is too low (in the case of the ZNCC) was considered 

unreliable. With the correlation method, the assumption was that the grey level 

pattern is approximately consistent between the successive images (with no 

perspective effects) and that the local texture contains sufficient unambiguous 

information (Giachetti, 2000).  

 

The left-right consistency checking was also implemented to remove the invalid 

matches caused by occlusion. That is, this test was used to identify invalid 

matches which may result from an occlusion. This technique involves reversing 

the roles of the two images and performing matching a second time. If the two 

sets of matches are the same, the match is considered consistent; otherwise it is 

flagged as inconsistent. Figures 4.6, 4.7, and 4.8 show that the value of the 

correlation score and the left-right consistency checking could remove a 

significant number of invalid matches. However, as can be seen, there was a 

number of invalid matches.  
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Also, selection of an appropriate correlation window size is a central problem with 

the ZNCC techniques so that the question is “what is the ideal size of the windows 

used to perform the matching?”. The correlation window must be large enough to 

include sufficient information for matching, but small enough to avoid the effects 

of projective distortions (Bennamoun and Mamic, 2002).  The size of this window 

also affects the time it takes to compute the matches. The window size selected 

was 17 x 17 pixels. The RANSAC algorithm was used to robustly filter out the 

invalid matches and it seemed to produce acceptable results (as can be seen in 

Figures 4.9, 4.10 and 4.11) 

 

4.5 Summary 

The chapter described the automation of the image matching process. Area and 

feature based method for matching were evaluated. A hybrid method that 

integrates the merits of both area and feature based approaches was adopted. An 

image pyramid was computed for both images separately, before using any of the 

matching procedures. A Harris corner detector with appropriate threshold value 

was first used to extract feature points in both images. The extracted features 

points were then matched with zero-mean normalized cross-correlation similarity 

metrics to find correspondences between the SCI and RCI.  

 

The algorithm computes similarity scores for every pixel in the image by taking a 

fixed window (i.e., the algorithm compares the intensity values within a square 

window centred at a point on one image with the corresponding value in an 
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identical square window centred at points on the other image). A validity check 

was implemented by doing the correlation twice by reversing the roles of the two 

images. The RANSAC algorithm was used to filter out false (or incorrect) 

correspondences. 
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CHAPTER 5 

 

MULTISENSOR IMAGE REGISTRATION 

 
 

5.1 Introduction 

Image registration can generally be defined as a mapping between two or more 

(images acquired at different times, different sensors or different viewpoints) both 

spatially and with respect to intensity (Brown, 1992; Rahman et al, 200). 

Mathematically, the problem of registration can be expressed as (Brown, 1992):  

 

)))y,x(T(I(g)y,x(I 1
''

2 =                                                                       (5.1) 

 

where : 

1I  and are 2-dimensional images (indexed by  and ),  2I x y

T is a transformation which maps the two spatial coordinates,  

x  and  to two new spatial coordinates  and , and  y 'x 'y

g is a one-dimensional intensity or radiometric transformation.  

 

The result of the registration is a mathematical description of how the multiple 

images overlap, and is a fundamental concept used in photogrammetry.  
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Its usefulness can be seen in many applications including 3D mapping of the land 

and sea surface, identifying and mapping different types of land use, measuring 

and analyzing natural and agricultural vegetation, matching stereo images to 

recover shape for autonomous navigation, aligning images from different medical 

modalities for diagnosis, developing coded targets for automated identification, 

and coordinates determination of marked points for 3D model reconstruction.  

 

As previously mentioned, to perform registration, three distinct steps are usually 

required: extraction of potential points, correspondence matching between the 

images, and determination of the transformation parameters. In the previous 

chapter, features were extracted from the generated synthetic camera images, and 

the photographic images and the correspondences (candidate registration points) 

between them were established (i.e., matches between the SCI and RCI were 

obtained) for use in the registration process. Finding the parameters of the optimal 

spatial or geometric transformation is generally a key problem to registration. 

 

This chapter now describes the process of determining the parameters of the 

geometric transformation (to calculate the relative rotation and translation 

between the two sensors) of the SCI and RCI relative to the point cloud. The 

implementations of both manual and automatic methods for the orientation 

computation (exterior orientation parameters) are described in this chapter. The 

manual method uses the existing photogrammetric application software for the 

computation of the transformation parameters.  
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In this research, for the automatic computation of the transformation parameters 

(or exterior orientation parameters) two methods were investigated. Each of these 

methods is discussed in this Chapter. The first method which, works in the 

frequency domain, uses the Fast Fourier Transform (FFT) approach and the 

second method uses the photogrammetric bundle adjustment. The latter approach 

uses candidate registration points (discussed in Chapter 4) to determine the 

relative rotation and translation between the two sensors (laser scanner and digital 

camera). 

 

The bottleneck of automation of image orientation is the identification of control 

points for orientation (Labe et al, 1996). The solution which has been developed 

and implemented (discussed in Section 5.3) for the automation of the exterior 

orientation is the use of Point Cloud Visual Index (PVCI). The automatic exterior 

orientation without the need for control point is a possibility as well the terrestrial 

applications discussed in Chapter 7. The assessment of the performance of each 

method was based on the accuracy of the computed object point coordinates as it 

is this criterion which is generally of greatest interest in close-range analytical 

photogrammetry. 

 

5.2 Manual Exterior Orientation with StereoMaker Software 

As previously pointed out, the images used in this study are images of the same 

scene acquired by different sensors and at different view points or locations. 

These multisensor and multi-view images of the same scene may have relative 



Chapter 5: Multisensor Image Registration 104

 

translation, rotation, scale, and other geometric transformations between them, 

and the purpose of this is to manually establish the correspondence between them 

and to determine the geometric transformation or the orientation parameter that 

aligns one image with the other.  

 

For this manual measurement, it is necessary to understand key issues such as 

geometric quality, and both spatial and geometric resolutions of the generated 

synthetic camera images. In addition, since there was no known value upon which 

to test the exterior orientation results against as there was no calibration data for 

either camera system, the results of the manual measurement (i.e., the manual 

orientation parameters) are used to compare and evaluate the proposed automatic 

orientation strategy for the fusion of the multisensor data (discussed in Chapter 6). 

The results show that the manual errors were generally larger than those of the 

automatic. 

 

5.2.1 Implementation of the Manual Exterior Orientation Process 

As explained earlier, the prime objective of this research was to automatically 

align 2D image and 3D object. This section presents the implementation of the 

orientations processes with the 3DMapper software StereoMaker using the 

Scanner Cartesian Coordinate (SCC) system as the object space coordinates. 

StereoMaker uses a bundle adjustment to process the image measurements to 

produce the object space point coordinates of all the measured points. 
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Two of the three data sets discussed in Chapter 3 (data sets A and B) were used in 

this manual orientation process. Four models or image pairs (i.e. model_1 (SCI, 

RCI_1R; model_2 (SCI, RCI_1L); model_3 (SCI, RCI_2L and Model_4 (SCI, 

RCI_2R) of each data set were used to test how well the generated SCI can be 

related to the real camera images.  

 

The StereoMaker software offers the ability to perform affine, projective and 

conformal transformations for interior orientation and displays the root mean 

square errors of the residuals in pixels. Examination of the various transformation 

results showed that conformal transformation (i.e., transformation that preserves 

both angles and shapes) was the most suitable. Using the scanner point cloud to 

define a coordinate system, the exterior orientation was performed by a bundle 

adjustment. 

 

Twenty-two control points (fine scan Cyra target coordinates) were distributed 

through the scan for data set A, and ten for data set B. These Cyra targets were 

used as control points for the orientation, their coordinates were obtained from 

identifying the center of each target in the point cloud. The performance of this 

manual method is based on the assessment of the root mean square errors of the 

object point coordinate. The exterior orientation parameters are presented and 

discussed in Chapter 6.  
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Initial implementation and results of manual multisensor image registration, 

which includes, interior, relative and absolute orientations using two different 

types of software for comparison purposes, have been discussed in Forkuo and 

King (2003). 

 

5.2.2 Evaluation of the Manual Exterior Orientation Process 

There are several factors that influence the accuracy of the orientation process. 

The quality of this photogrammetric measurement depends mostly on scale, 

number of images, image resolution, the quality of camera description the 

accuracy and precision of the image point measurements and the accuracy of the 

control points (number and distribution of fine scan Cyra target coordinates).  

 

In this thesis, the effect of camera calibration on the overall orientation is not 

investigated. That is, the RCI was not calibrated (assumed principal distance, 

principal point location and no lens distortion correction). Assessment of the 

performance of the manual orientation is based on the accuracy of the computed 

object coordinates as it is this criterion which is generally of interest in close-

range analytical photogrammetry.  

 

5.2.3 Accuracy of Manual Measurements 

Accuracy measures used to verify the geometric accuracy quality are the 

individual components of control point residuals and the root mean square (RMS) 

errors.  
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These residuals represent the differences between the object point coordinates as 

produced by each StereoMaker orientation, and the known object point 

coordinates from the laser scanner data (laser scanner coordinates). 

 

5.2.3.1 Accuracy of Data set A 

A graph of the residuals for individual control points in each model (image pair) 

for data set A is given in Figure 5.1. It can be seen from this figure that the 

residuals vary from 0.000-0.009mm for all models in X, Y, and Z directions. The 

maximum residual for all the models for data set A is 9mm which was 

significantly smaller than the nominal positional errors in the XY plane (2Sexy = 

±12mm) for a single point of the laser scanner. This maximum residual of 9mm 

for the Z is slightly greater than the nominal range accuracy (2Sexy = ±8 mm) for a 

single point.  

 

What is most evident in the results is that the control point 7 (point_id 7) has the 

largest residual (the software produces the computed coordinate with 

comparatively poorer accuracy) for all the models in data set A. The remaining 

residuals are small indicating the accuracy measures of the manual bundle 

adjustment showed good correspondence (with maximum residual of 8mm for X, 

Y and Z) to the differences between the determined and the predefined object 

point coordinates. 
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Table 5.1 summarizes the results from StereoMaker software with overall Root 

Means Square (RMS) errors of the measurements for all the models in X, Y, and 

Z directions. It can be seen that the RMS errors (varying from 0.003-0.006m) for 

all the four models is less than one pixel (pixel size of 8 micrometers).  

 

The maximum RMS error in X and Y is even significantly smaller than the 

nominal positional error of the scanner (2Sexy = ±6mm) and the RMS error in Z is 

also smaller than 2Sez (the nominal range accuracy of ±8 mm).  

 

               Table 5.1: RMS Errors of Computed Object Coordinates for Data 

                                 Set A 

 

RMS 

errors(m) 

Model_1 Model_2 Model_3 Model_4 

r.m.s_x 0.005 0.005 0.004 0.004 

r.m.s_y 0.003 0.003 0.003 0.003 

r.m.s_z 0.006 0.004 0.005 0.005 
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Figures 5.1: Residuals (in metres) of Computed Object Coordinates for Data 

Set A 
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5.2.3.2 Accuracy of Data Set B 

It can also be seen from Figure 5.2 (residual errors for data set B) that the values 

for the control point residual range between 0.000 and 0.009m for all the four 

models. The maximum RMS errors in X and Y were less than ±12 mm (2Sexy). 

The largest error was 0.009m and it was contributed by point 6 (with point_id of 

6) of model 2. The remaining X and Y residual for all the control points appears to 

be generally lower than 9mm for all the models. As can be seen, the maximum z-

coordinate residuals for all models for were generally higher with the maximum 

value being greater than ±8 mm (2Sez). The z-coordinates of point_id 1 

(model_2), point_id 3 (model_3), point_id 4 (of model_2 and model_3), point_id 

7 (model_1) had the maximum residuals greater than ±8 mm (2Sez) and further 

analysis is need to explain these high residual values.  

 

Also, the overall RMS errors for all the four models are provided in Table 5.2.  

What is most evident in the results is that, most of the models have a RMS error 

of approximately 2-4 mm (in X and Y and 5-8 mm (in Z). The RMS errors in X 

and Y were even less the ±6 mm (Sexy = ±6 mm) and the maximum RMS error of 

the Z was equal to the ±8 mm (2Sez). In each model for this data set, the RMS Z 

coordinates error was larger than the RMS X and Y coordinate errors. It should be 

noted that, in general for data sets A and B the Y coordinate for all the models 

showed the smallest RMS error. This trend did not occur in same data sets (data 

sets A and B) for the automatic measurements and it therefore, requires further 

investigations for a more conclusive evaluation. 
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Figure 5.2: Residuals (in metres) of Computed Object Coordinates or Data 

Set B 
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              Table 5.2: RMS Errors of Computed Object Coordinates for 

               Data Set B 

 

Root Mean Square Errors(m) 

 Model_1 Model_2 Model_3 Model_4 

r.m.s_x 0.003 0.004 0.004 0.003 

r.m.s_y 0.002 0.002 0.004 0.003 

r.m.s_z 0.005 0.006 0.005 0.008 

 

5.3 Automatic Exterior Orientation 

Several algorithms for automatic registration have been proposed and successfully 

tested. In this research, two algorithms have been developed and implemented. 

The first is the frequency-based algorithm (the Fast Fourier Transform) which 

uses the frequency domain information to determine the exterior orientation 

parameters. The second is the photogrammetric bundle adjustment which uses 

both feature and area based algorithms to determine correspondence between two 

images and then computes the exterior orientation parameters. The initial results 

of the automatic exterior orientation process were discussed in Forkuo and King 

(2004b). 

 

5.3 1 Evaluation of Frequency-Based Methods 

The Fourier domain approach can be used to match images that are translated, 

rotated and scaled with respect to one another by making use of the phase shift 

property of Fourier transforms (Reddy and Chatterji, 1996).  
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If an acceleration of the computational speed is needed, or if the images were 

acquired under varying conditions or they are corrupted by frequency-dependent 

noise, then Fourier methods are preferred rather than the correlation-like methods 

(Zitova and Flusser, 2003). Fourier methods differ from other registration 

methods because they search for an optimal match according to the information in 

the frequency domain.  

 

The phase correlation method (i.e phase correlation method that uses Equation 

A2.3 to extract the phases of the cross-power spectrum of two images) is based on 

the Fourier Shift Theorem (Zitova and Flusser, 2003) and was originally proposed 

for the registration of translated images. It computes the cross-power spectrum of 

the sensed and reference images and looks for the location of a peak in its inverse. 

This method shows strong robustness against the correlated and frequency 

dependent noise.  

 

FFT-based approaches to image registration have been considered for many years. 

For example, Kuglin and Hines (1975) developed a method called phase 

correction by using certain properties of the Fourier transform; De Castro and 

Morandi (1987) introduced an extension of the phase correlation to rotation as 

well as shift; Reddy and Chatterji (1996) improved on De Castro’s algorithm by 

greatly reducing the number of transforms that need to be performed. Applications 

of the extended algorithm in remote sensing (SPOT images) and medical imaging 

are described in Chen et al (1994).  
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The registration method based on FFT relies on the Fourier shift theorem, which 

states that a shift in the coordinate frames of two functions or images is 

transformed in the Fourier domain as linear phase differences. That is, the shift 

theorem guarantees that the phase of the cross-power spectrum is equivalent to the 

phase difference between the images (Reddy and Chatterji, 1996). The necessary 

theory for pairwise image registration using Fourier translation, rotation and 

scaling properties is summarized in Appendix A2. In this research, the FFT-based 

algorithm for automatic pairwise image registration was implemented using the 

Matlab programming language.  

 

The matching parameters (rotation, scale and translation) for the test multisensor 

images are summarized in Appendix A2 .The “P-value” indicates the peak value, 

whose location gives the amount of rotation and the scale in the log-polar plane. 

Using the FFT theory, matches are considered valid only if the peak value of the 

inverse FFT of the phase difference is greater than 0.03 (Reddy and Chatterji, 

1996). Theoretically, for exact matches this value should be equal to 1.0. 

However, the presence of dissimilar parts and noise in the test images reduces the 

peak values (as seen in Tables A2.1, A2.2 and A2.3). It has been observed from 

several experiments that if the peak value is less than 0.03, then the match will 

become unreliable.  

 

Also, the algorithm requires images of the same type (from the same sensor) that 

were acquired in almost the same season (Xie et al, 2000). It works well with 
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vertically oriented images. As pointed out in Section 2.4.1.1, the sensors used in 

this research provide independent datasets, which differ in resolution, field of 

view (FOV), scale, illumination and reflectance. The images are also convergent 

and this explains why the algorithm (i.e. the conventional phase correlation 

method) did not work well in multisensor images such as the ones used in this 

thesis. 

 

5.3.2 A Point Cloud Visual Index for Automatic Exterior Orientation 

      Process 

In this context, Point Cloud Visual Index-PCVI establishes a link between the 

pixel intensity values of the SCI and the corresponding sampled 3D point data 

(which can be referred to as the object coordinates). The two terms visual and 

index in the PCVI signify the intensity information (visual) of the point cloud and 

the mapping of the pixel of the SCI to its object coordinate (indexing) of the point 

cloud, respectively. 

 

5.3.2.1 The Concepts of Point Cloud Visual Index (PCVI) 

The core of the PVCI is the generated SCI- a visual, 2D representation of the TLS 

point cloud. With the SCI, there is no need to identify control point as each point 

in the SCI can be used as a control point. In the presence of point cloud data with 

return signal intensity information, large blocks of RCIs can be automatically 

oriented. For this to be done homologous points in the images need to be 

identified and then related to their object coordinates.  
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By linking the object coordinates of the point cloud to the pixels of the generated 

SCI, a database consisting of image coordinates and object coordinates of the 

point clouds is obtained.  

 

This procedure is similar to that of ray-tracing, whereby each image point s1= (x1, 

y1) of the SCI, the object coordinates (the X, Y, and Z coordinates defined in the 

local laser scanning system) of the corresponding 3D point can be computed. This 

database, termed the Point Cloud Visual Index (PCVI), allows computation of the 

exterior orientation of the RCI with respect to the point cloud by using simple 

image matching concepts, such as interest operators and correspondence matching 

(described in Chapter 4).  

 

The assumption here is that the image correspondences are actually projections of 

the same 3D points of the point cloud. After interpolating the grey level of each 

pixel of the SCI from the return signal of the laser pulse, the same interpolation 

coefficients can be used to estimate the 3D coordinates for the centre of each 

pixel. That is, the results of the collinearity model (described in Section 3.3.1) and 

the interpolation (described in Section 3.3.2) are merged with the original point 

clouds to produce a database. 

 

5.3.2.2 The Linking of Object Coordinates of the Point Cloud to the Pixels of 

         the SCIs 

This database consists of the following attributes for each pixel in the SCI: image 

coordinates (x, y), image coordinates (rows, columns), object space coordinates 
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(X, Y, Z) and the intensity values (I). Also, this index can be extended to include 

values such as interpolation constants and points to the original cloud.  

 

The results of the correspondence matching (as described in Section 5.5) are a set 

of matched pixel values in column and rows. These values are queried using 

simple query language (SQL) programmed in Microsoft Access. This means that 

once matches are obtained between the SCI and RCIs, the object coordinates 

represented by the matched pixel are then available for use in the exterior 

orientation computation. This approach, which is a control point-free method, has 

important applications in terrestrial photogrammetric engineering (Styliadis et al, 

2003). Also, solving the camera positions and orientations, the RCI can be 

reprojected onto the point cloud surface to produce a photorealistic model 

(discussed in Chapter 7). 

 

5.3.3 Implementation of the Automatic Exterior Orientation  

Here the measurement of image coordinates is implemented as an automated 

process. Experiments were done that used a Harris corner detector to extract 

candidates registration points in each image. Automatic image matching using 

ZNCC was performed on the RCI and SCI. The pixels intensity values of the SCI 

and the object coordinates were linked for use in the exterior orientation. 
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5.3.3.1 Initial Values of Exterior Orientation Parameters 

As discussed in Chapter 2, the mathematical basis of the bundle adjustment is the 

collinearity model, and the collinearity equations are extended by the 

incorporation of parameters for self-calibration and the use of additional 

parameters that are supposed to model the systematic image errors (Fraser, 1997). 

The correction terms of the image coordinates are functions of these additional 

parameters. The initial values of the interior orientation parameters or internal 

camera parameters, such as a focal length and principal point coordinates, were 

given as the nominal values, and the lens distortion parameter was set to zero in 

this research. In addition, a set of correspondences in the images (image 

coordinates) with their corresponding control points (3D object coordinates of the 

point clouds) were used in the bundle adjustment computation. 

 

Solving for the self calibrating bundle adjustment means estimating the additional 

parameters, as well as the exterior orientation and position of the cameras, the a 

priori standard errors of the exterior orientation and position, and a priori standard 

errors for both object and image coordinates. Camera-invariant additional 

parameters (APs) were used to model the systematic errors. These parameters 

were radial lens distortions (K1, K2), and decentring lens distortions (P1, P2) and 

principal point offsets (xo, yo). All of the three different sets of data (A, B, and C) 

were processed with these a priori standard deviations.  

 

 



Chapter 5: Multisensor Image Registration 119

 

5.3.3.2 Computation of Exterior Orientation Parameters 

As discussed in the previous section, each pixel of the 2D image has the object 

point coordinates defined in the laser scanning system and in this section, the 

matches (image coordinates) and their corresponding object coordinates are used 

for the exterior orientation computation with the self-calibrating bundle 

adjustment approach. The bundle adjustment allows the simultaneous 

determination of the unknown object coordinates exterior orientation and interior 

orientation, with all relevant system parameters of the imaging system. 

 

In addition, standard deviations are computed for all parameters, which give a 

measure of the quality of the imaging system. All input parameters are treated as 

unknown parameters (or as observed quantities) and they are input with their 

standard errors. Three sets of data each comprising four models were processed by 

the bundle adjustment. The solution to the adjustment was considered to been 

have achieved when the corrections to the camera positions and object point 

parameters and the image coordinate residuals were less than 50µm (a limit set in 

the SPGA program used). 

 

5.3.4 Accuracy of the Bundle Adjustment 

This section deals with the assessment of performance of the bundle adjustment 

based on the accuracy and precision of all reconstructed (or computed) 

parameters: 3D object points coordinates, image points coordinates, camera 

position and rotations.  
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The assessment also includes statistical analysis of the a posterior reference 

variance factor (discussed in Section 5.3.4.4) and the significance of the additional 

parameters - APs. 

 

As mentioned before, for evaluation and comparison purposes, three sets of data 

each comprising for models were available for assessment. Data set A 

(representing a low complexity scene) contains simple continuous geometric 

features, data set B (representing a medium complexity scene) is of simple 

continuous geometric features with different objects, and data set C (a high 

complexity scene) contain many geometric features with different sizes and 

shapes. The results of the bundle adjustment of the three data sets are now 

presented  

 

5.3.4.1 Object and Image Point Accuracy of Data Set A 

The RMS errors (which are indications of accuracy) of the 3D object and image 

points coordinates for data set A are given in Table 5.3. For all the models for data 

set A, the largest RMS errors in X (MX) was 0.004m, in Y (MY) was 0.004m and 

in Z (MZ) was 0.007. The adjustment produced positional accuracy giving 

numerically better results compared to the nominal positional error (Sexy) of 

±6mm. The Z coordinate errors were smaller than ±8mm (2Sez). The average 

accuracy in the object space coordinate determination for this dataset (MXYZ) 

was within 0.005m which was less than (Sez). 
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       Table 5.3: RMS Errors of Computed Object and Image Coordinates for 

                           Data Set A 

        Number of points = 68 

 

RMS Errors 

object coordinates (m) image coordinates(mm) 

 MX MY MZ MXYZ Mx My 

Model_1 0.004 0.003 0.005 0.004 0.002 0.006 

Model_2 0.005 0.004 0.007 0.005 0.001 0.006 

Model_3 0.004 0.004 0.006 0.005 0.003 0.006 

Model_4 0.005 0.004 0.006 0.005 0.001 0.006 

 

Also, the maximum accuracy for image measurement for all models in x (Mx = 

0.003mm) and y (My = 0.006mm) for data set A was less than one pixel (the pixel 

size of the images is 0.008mm). The notable results for data set A is the large size 

of the Y image coordinate errors (RMS error of 0.006mm for all models) with 

respect to the X image coordinate errors (which varies from 0.001mm to 

0.003mm). This trend did not occur in other data sets and it therefore, requires 

further investigations for a more conclusive evaluation. The bundle adjustment 

produced a similar set of RMS errors for both X and Y object coordinates and the 

RMS Z coordinate error for all models was numerically larger than the RMS X 

and Y coordinate errors.  
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5.3.4.2 Object and Image Point Accuracy of Data Set B 

The RMS errors of object and image point coordinates are shown in Table 5.4. 

For the model in dataset B, the RMS errors of objects point coordinates are 

numerically smaller than the RMS errors of object point coordinates for data set A 

(presented in the previous section). As with data set A, the RMS errors of object 

coordinates in X and Y are very similar (the bundle adjustment produces similar 

RMS errors) with the maximum accuracy in X being 0.004m and in Y being 

0.004m. These were less than the Sexy of ±6 mm. 

 

            Table 5.4: RMS Errors of Computed Object and Image Coordinates 

                              for Data Set B 

             Number of points = 50 

 

RMS Errors 

object coordinates (m) image coordinates(mm) 

 MX  MY MZ MXYZ Mx My 

Model_1 0.003 0.003 0.001 0.002 0.004 0.009 

Model_2 0.004 0.002 0.003 0.003 0.001 0.005 

Model_3 0.004 0.004 0.002 0.003 0.002 0.006 

Model_4 0.004 0.002 0.003 0.003 0.003 0.006 
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However, the RMS Z coordinates error of the data set B are numerically smaller 

(with a maximum RMS error of 0.003m which was less Sez of ±4mm) than the 

RMS Z coordinates errors (with a maximum RMS error of 0.007m) of data set A 

for all models in both data sets. The average accuracy in the object space 

coordinate determination for this dataset (MXYZ) was within 0.003m, which is 

also less than the average object point coordinate accuracy of data set A.  

 

The maximum accuracy (Mx = 0.001mm and my = 0.006mm) for image 

measurement for all models, with the exception of model_1, in this data set was 

less than one pixel (8µm). The accuracy of image measurement for model_1 was 

0.009m which was slightly more than one pixel. 

 

5.3.4.3 Object and Image Point Accuracy of Data Set C 

The object and image points accuracy, in terms of RMS values for data set C are 

presented in Table 5.5. It should be noted the maximum RMS errors for object 

point coordinates in X and Y are identical to the maximum RMS errors in X and 

Y for both data sets A and B. As with data set A, the RMS errors for Z object 

coordinates for all models for this data set is numerically larger than the RMS 

errors for all model for X and Y coordinates. 
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         Table 5.5: RMS Errors of Computed Object and Image Coordinates for 

                           Data Set C 

         Number of points= 42 

 

RMS Errors 

object coordinates (m) image coordinates(mm) 

 MX  MY MZ MXYZ Mx My 

Model_1 0.001 0.002 0.007 0.004 0.004 0.005 

Model_2 0.004 0.004 0.007 0.005 0.003 0.005 

Model_3 0.002 0.002 0.007 0.004 0.002 0.004 

Model_4 0.001 0.002 0.003 0.002 0.004 0.005 

 

The RMS image coordinates for this data set is similar to the RMS image 

coordinates of the other two data sets previously discussed. The maximum RMS 

errors in both image coordinates x and y are less than one pixel.  

 

5.3.4.4 The Reference Variance Factor  

The reference variances for each data set for each mode are given in Table 5.6: 

These are highly depended on the a priori standard deviations. That is, the 

reference variances vary with changes in the a priori standard deviations. As can 

be seen from Table 5.6, the reference variances of the adjustment are generally 

similar for all the three data sets for all models. For model_1 of data set B has the 

highest value of reference variance factor.  
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                      Table 5.6: Standard Deviation of Unit Weight for all  

                                        Data Sets 

 

Standard Deviation of Unit Weight 

Data Set A B C 

Model_1 1.10 1.65 1.04 

Model_2 1.30 0.93 1.07 

Model_3 1.18 0.99 0.82 

Model_4 1.13 1.12 1.03 

 

This value is statistically identical to that of the critical value at 5% level of 

significance. Data set C has reference variances for all models closer to unity than 

the reference variances for all model of data set A. This may mean that the a priori 

standard deviations for the camera parameters of data set C are more accurate 

estimations of their true values. Therefore, on average, the a priori standard 

deviations for all observations for all the datasets are correctly estimated. 

 

5.3.4.5 Analysis of Additional Parameters Estimates 

The APs were used in the BA process and these were checked for numerical 

stability, statistical significance and reliability in order to justify their presence 

and to avoid over-parameterization. The APs are usually correlated with one 

another or with camera parameters. Both the Fisher test and the correlation were 

used for accessing the significance of the APs on the BA solution.  
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Insignificant APs do not affect the solution of the bundle adjustment but may 

weaken the covariance matrix without positive contribution to the functional 

model.  

 

A limit of 0.85 for the coefficient of the correlation was set as a threshold. If this 

limit is exceeded, the corresponding additional parameter will be excluded from 

the adjustment. This decision was based on the test values of the Fisher test which 

checks the significance of a single additional parameter. That is, if a "normalized" 

AP estimate was less than the assigned Fisher value, the AP is flagged as being 

not statistically significant at the chosen confidence level (Fraser, 1983). Figure 

5.3 is an example of the results of the APs for both synthetic and real cameras. 
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                Figure 5.3: Example of APs for Synthetic and Real Cameras  
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Each of the APs is identified by the following numbers: 1 – radial distortion (K1), 

4 – decentring distortion (P1), 16 – principal point offset in x (xo), and 17 – 

principal point offset in y (yo). The results indicate that APs were not significant 

in all the models for all the datasets confirming that the APs used neither under-

constrained nor over-constrained the solutions obtained. This also indicates that 

the radial lens distortions, decentering distortions, and principal point offsets were 

insignificant on the solutions of the BA.  

 

5.4 Discussion  

For manual measurement, the achieved accuracy (in terms of RMS errors of the 

object point coordinates) for all models for both data sets A and B was 0.005m. 

The average RMS error of the computed object points coordinates (with the 

automatic measurement) for data set A was 0.005m, 0.004m for data B, and for 

data C. it was 0.005m. Similarly, the average RMS errors of the automatic image 

measurement for data sets A, B and C were: 0.006mm, 0.009mm, and 0.005mm, 

respectively. These accuracy results obtained are compatible with the nominal 

accuracy offered by the manufacturer of the laser scanner.  

 

Considering the nominal accuracy of the laser scanner, the average point spacing 

of scanning (5mm), manual pointing to the conjugates image points, 3D 

coordinate extraction from the point cloud, and that the RCI was not calibrated 

(assumed principal distance, principal point location and no lens distortion 



Chapter 5: Multisensor Image Registration 128

 

correction), these results show that the concept of the synthetic camera image is a 

feasible method for the multisensor fusion.  

 

Generally, the results indicate that there were no conceptual errors in the 

developed methodology (especially the concept of generating SCIs and the PCVI). 

Factors which could also influence the precision and accuracy are the 

interpolation errors (for the generation of the SCIs) and the use of only two 

images, but these were not investigated.  

 

5.5 Summary 

In this chapter, the process of creating point cloud visual index (PVCI) has been 

discussed. This index was created by linking the object coordinates of the point 

cloud to the pixels of the generated synthetic images (SCIs).  

 

Using the PVCI facilitates the exterior orientation of the RCI to the point cloud by 

using simple image matching concepts such as interest operators and the 

correspondence matching. The chapter also discusses the implementation of the 

determination of the exterior orientation parameters by using both manual and 

automatic methods. The manual method, which includes, interior and exterior 

orientations uses 3DMapper software StereoMaker. The generated SCI has been 

modeled with the photographs (Real Camera Image - RCI) to develop a geometric 

relationship between the digital camera and laser scanner.  
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Accuracy assessment of the manual measurement was done by assessing the RMS 

errors of the object point coordinates., and it was found that the maximum RMS 

error for all the four models for the data A and B was 0.008m. The automatic 

implementation to determine the exterior orientation parameters with 

simultaneous bundle adjustment approach is also discussed. The accuracy 

assessment of the automatic measure was made by analyzing the RMS errors for 

both image and object space coordinates. For all models of the three data sets, the 

accuracy of the object coordinate was 0.007m and for the image coordinate 

measurement; the measurement error was within one pixel.  
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CHAPTER 6 

 

EVALUATION OF TEST RESULTS 

 
6.1 Introduction 

Two methods for registering a terrestrial scanner and arbitrarily located and 

oriented cameras were presented in this thesis. In the first method manual 

digitizing and existing photogrammetric application software for the registration 

process were used. The second method involved the automation of the registration 

process. In the previous chapters, experiments and results of applying these 

methods to different sets of data were shown. Also, the accuracy and precision of 

the manual and the automatic determination of the exterior orientation parameters 

have been discussed.  

 

In this chapter, a more comprehensive comparative evaluation of the two methods 

using two different sets of data is conducted. Thus, the results of the manual 

measurement are used to compare and evaluate the proposed automatic orientation 

strategy for the fusion of the multisensor data. Also the exterior orientation 

parameters of the generated Synthetic Camera Image are discussed and compared.  

 

6.2 Analysis of the Perspective Centre of the Laser Scanner 

The fundamental concept of the Synthetic Camera Image (SCI) was developed 

and used. The conceptual elements of generating the Synthetic Camera Images 
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been solved in the field of photogrammetry and in the process, it was however 

assumed that the perspective centre of the laser scanner were equal to zero. This 

section therefore analyzes the exterior orientation results from both the manual 

and automatic techniques. In this section the (six) exterior orientation parameters 

of each of the four images is given in the form of the location of the perspective 

centers in the laser scanner coordinate system in meters and the rotation angles 

 

6.2.1 Manual Measurement with Photogrammetric Application Software 

Tables 6.1 and 6.2 present the values of the exterior orientation of the 

measurements for data set A and data set B. Both scenes were acquired with the 

same laser scanner and digital camera.  

 

        Table 6.1 Exterior Orientation Parameters of Data set A using 

                         Photogrammetric Software (Positional unit: meters;  

                         Angular unit: degrees). 

 

 SCI RCI_1R RCI_1L RCI_2L RCI_2R 

oX  
-0.007 -0.752 0.792 1.678 -1.565 

oY  
-0.047 -0.006 -0.080 0.085 0.003 

oZ  
-0.027 0.229 0.300 0.196 0.288 

ω  
0.047 2.387 2.189 2.024 3.222 

ϕ  
-0.029 -6.159 5.708 12.025 -15.020 

κ  
0.013 -0.366 -1.433 -3.487 2.427 
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The RMS errors for data set A were variable from 0.007m to 0.047m for camera 

position and 0.013˚ to 0.047˚ for camera rotation. Similarly, for data set B, these 

RMS errors varied from 0.005m to 0.012m for camera position and 0.005˚ to 

0.076˚ for camera rotation. The results indicate that on average the exposure 

station coordinates of SCI of data set B are closer to zero than the exposure 

coordinates of SCI of data set A.  

 

Also, it can be seen that for camera position for data set A, the X and Z values are 

closer to zero than the Y value with the X value being the closest to zero. But for 

camera rotation, phi and kappa values are closer to zero than the omega value with 

the kappa being the closest. These exterior orientation parameters of laser scanner 

do confirm the assumption already discussed in Section 3.3.1. 

 

Table 6.2 Exterior Orientation Parameters of Data set B using 

                 Photogrammetric Software (Positional unit: meter;  

                 Angular unit: degrees). 

 

 SCI RCI_1R RCI_1L RCI_2L RCI_2R 

oX  
0.008 0.395 -0.934 -0.846 0.371 

oY  
-0.005 -0.029 -0.017 0.049 0.005 

oZ  
-0.012 -1.816 -1.989 -2.275 -2.389 

ω  
-0.041 -2.657 -2.623 -2.937 -6.615 

ϕ  
0.057 -3.821 -3.556 -4.290 -1.869 

κ  
-0.076 -0.007 -0.097 0.436 -1.117 
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For data set B, the results are similar to that of dataset A except that the Y camera 

position is the closet to zero and omega value is smallest. Apart from the X 

position coordinate error of data set A the Y position coordinate error was greater 

than the 2Sexy (nominal positional accuracy of ±12mm) and the Z coordinate error 

was also greater than the 2Sez (nominal angular accuracy = ±8 mm). However, the 

values of the positional errors for data set B were less than the nominal positional 

accuracy (Sexy) of ±6 mm with the Z coordinate error being greater than the 

nominal range accuracy (Sez) of ±8mm.  

 

These errors are mainly influenced by interpolation errors results (which may 

affect the quality of the generated synthetic images), systematic errors between 

terrestrial and photogrammetric measurements, and errors due to the 

measurements of the laser scanner coordinates themselves. However, the results 

indicate that on average the recovered exterior orientation parameters of laser 

scanner do confirm the assumption already discussed in Section 3.3.1 of Chapter 

3. 

 

6.2.2 Automatic Measurement with Bundle Adjustment 

To verify the validity of the matching algorithm, three different data sets (data set 

A, B and C) were used and the results of these are presented in Tables 6.3, 6.5 and 

6.7. Also, Tables 6.4, 6.6 and 6.8 provide the standard deviations for the 

measurements of camera position and rotation. Five camera stations were used on 

this project, all of which were at approximately the same elevation.  
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6.2.2.1 Exterior Orientation Parameters and their Standard Deviations of  

            Data Set A 

The exposure station coordinates produced by the bundle adjustment are generally 

closer to zero for data sets A and B than those camera station coordinates 

produced with the StereoMaker Software.  

 

Table 6.3: Exterior Orientation Parameters of Data set A using the Bundle 

                  Adjustment (Positional unit: meters; Angular unit: degrees)  

 

 SCI RCI_1R RCI_1L RCI_2L RCI_2R 

oX  
-0.005 -0.747 0.786 1.670 -1.570 

oY  
-0.052 -0.009 -0.080 0.079 0.001 

oZ  
-0.027 0.223 0.295 0.194 0.297 

ω  
0.048 2.383 2.183 2.029 3.230 

ϕ  
0.028 -6.160 5.711 12.035 -15.026 

κ  
0.016 -0.361 -1.436 -3.494 2.434 

 

What is most evident in the results is that, for each camera station for data set A, 

the standard errors for both camera position and rotation (with the maximum 

standard deviation of 0.001m for position and 18" for the rotation) for the 

generated synthetic camera image were numerically less than the standard errors 

for the other four camera stations. These are expected as the SCI defines the 

object space coordinate system and the quality of the SCI certainly has a strong 

influence on the quality of the reconstruction results. 
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Table 6.4: Standard Deviation of Exterior Orientation Parameters for Data 

                  Set A 

 

Standard Errors 

Camera Position (m) Camera Rotation(minutes) 

 σ  oX σ  oY σ  oZ σω  σϕ  σκ  

SCI 0.001 0.000 0.001 0.1 0.3 0.1 

RCI_1R 0.003 0.006 0.017 3.4 2.9 0.3 

RCI_1L 0.007 0.001 0.028 1.3 0.7 0.0 

RCI_2L 0.013 0.006 0.024 3.6 6.1 0.4 

RCI_2R 0.033 0.005 0.022 2.4 0.7 0.2 

 

As previously pointed out, the resampling techniques, nearest neighbour, has been 

used to generate SCI so the errors involved are due to interpolation errors, errors 

between terrestrial and photogrammetric measurements or errors due to the 

measurements of the laser scanner coordinates themselves. 

 

Also, the maximum standard errors for all camera position for Z values are 

numerically larger than the standard errors for X and Y. For each of the models of 

the RCIs, the Z camera position standard error produced by the BA solution was 

greater than the ±8mm (2Sexy = ±8 mm) and for all models, unlike X coordinate 

errors of model_2L and model_2L, camera position standard errors in X and Y 

were less than the two times the nominal positional errors (2Sexy) of the laser 

scanner of ±12mm.  
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It should be noted that in general, the standard rotation error in kappa (σκ ) show 

the least decrease in the standard error for the camera rotation. The maximum 

value of the standard rotation error in kappa was 18" and the minimum standard 

rotation errors both in omega (σω) and phi (σφ ) for the RCIs was 42". For this 

data set there was no general trend of standard errors for the camera rotation. 

 

6.2.2.2 Exterior Orientation Parameters and their Standard Deviations of  

            Data Set B 

As can be seen in these tables (i.e., Tables 6.3, 6.5 and 6.7), data set B produces 

camera position coordinates which are substantially smaller than the camera 

position coordinates for data sets A and C. Also, the camera rotation values of the 

SCI for dataset A were closer to zero that those rotation values for data sets B and 

C.  

Table 6.5: Exterior Orientation Parameters of Data set B using the Bundle 

                  Adjustment (Positional unit: meters; Angular unit: degrees)  

 

 SCI RCI_1R RCI_1L RCI_2L RCI_2R 

oX  
0.002 0.397 -0.927 -0.852 0.372 

oY  
-0.002 -0.027 -0.021 0.045 0.007 

oZ  
-0.005 -1.820 -1.989 -2.284 -2.390 

ω  
-0.048 -2.652 -2.617 -2.931 -6.614 

ϕ  
0.064 -3.826 -3.547 -4.290 -1.868 

κ  
-0.074 -0.010 -0.088 0.439 -1.108 
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The camera rotation values of data sets B and C are similar. It should be noted that 

for data set A, the X camera position was almost zero with the Y and Z camera 

position having substantially larger values. The phi angle for data set A was the 

closet to zero with the omega angle being the largest. The camera position values 

of data set B were all zeros but with generally substantial larger values for the 

camera rotation values. As in Section 6.2.1, the X and Y camera positional errors 

were less than Sexy (the nominal positional error of ±6mm) and the Z coordinate 

error is less than 2Sez (nominal range accuracy of ±8mm ). The X coordinate error 

of data set was less the ±6mm (Sexy) whereas the Y coordinate error of the same 

data set was greater than ±12mm (2Sexy).  

 

Table 6.6: Standard Deviation of Exterior Orientation Parameters for Data 

                  Set B 

 

Standard Errors 

Camera Position (m) 
Camera 

Rotation(minutes) 

 σ  oX σ  oY σ  oZ σω  σϕ  σκ  

SCI 0.002 0.001 0.002 0.5 0.6 0.6 

RCI_1R 0.001 0.002 0.005 1.2 0.9 0.6 

RCI_1L 0.005 0.005 0.012 2.9 1.7 0.4 

RCI_2L 0.008 0.003 0.009 1.5 4.7 2.2 

RCI_2R 0.001 0.004 0.001 2.0 0.1 0.1 
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The standard camera position and rotation errors for data set B (as can be seen in 

Table 6.6) and data set A were identical. However, the Z standard errors in data 

set B are numerically smaller than the Z standard errors in data set A. It can be 

seen that the maximum Z standard error in data set B is approximately half of the 

maximum Z standard error in data set A. The maximum RMS error values in 

camera position are about 0.008m in X and 0.005m in Y. These values were 

within the limit of the 2Sexy (nominal positional error of ±12mm). 

 

As pointed out in the previous section, the generated synthetic camera image 

shows the least standard error for both camera position and rotation, with the 

maximum standard error of camera position being 0.002m (less than Sexy = ±6 

mm) and that of the camera rotation being 36". As with data set A, the BA 

produced similar sets of standard camera rotation errors for data set B. 

 

6.2.2.3 Exterior Orientation Parameters and their Standard Deviations of  

            Data Set C 

For data set C (as can be seen in Table 6.7), both the X coordinate and Z 

coordinate were greater than ±12mm (2Sexy) and ±8mm (2Sez) respectively. There 

was slight variation in the rotation values for data set B. As can be noticed the 

exposure coordinates of the SCI for data set C were slightly higher than for data 

sets A and B. However, these exterior orientation parameters of the laser scanner 

also do confirm the assumption already discussed in previous section.  
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Table 6.7: Exterior Orientation Parameters of Data set C using the Bundle 

                  Adjustment (Positional unit: meters; Angular unit: degrees)  

 

 SCI RCI_1R RCI_1L RCI_2L RCI_2R 

oX  
-0.098 0.173 0.175 0.174 0.180 

oY  
0.011 -0.074 0.065 0.048 0.031 

oZ  
0.028 0.558 0.58 0.616 0.615 

ω  
-0.039 0.541 -0.568 -2.436 -0.698 

ϕ  
-0.063 10.864 6.859 7.256 5.044 

κ  
0.078 -1.808 -0.393 1.445 -3.135 

 

Table 6.8: Standard Camera Position and Rotation Errors for Data Set C 

 

Standard Errors 

Camera Position (m) Camera Rotation(minutes) 

 σ  oX σ  oY σ  oZ σω  σϕ  σκ  

SCI 0.001 0 0.002 0 0.2 0.3 

 RCI_1R 0.002 0.002 0.013 0.3 1.0 0.4 

RCI_1L 0.001 0.001 0.022 0.8 2.6 0.2 

RCI_2L 0.000 0.003 0.000 0.6 0.9 0.6 

  RCI_2R 0.001 0.002 0.011 0.5 1.0 0.2 

 

The standard deviations of the position and rotation measurements computed for 

data set C for all models Table 6.8. These are well within the accuracy 
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requirements discussed earlier. It can be seen that the omega (ω) and kappa (κ) 

rotational errors for all models were numerically smaller than the phi (φ) 

rotational errors. The maximum error for ω was 48", for κ it was 36", and 2.6 

minutes for φ. As previously pointed out, the RCI was not calibrated and nearest 

neighbour resampling technique has been used to generate SCI so it is worth 

investigating the effects of resampling on the overall quality of the image and the 

impact of camera calibration. Further analysis of these effects is needed to better 

explain the high standard rotational errors for this data set. 

 

6.3 Comparative Analysis of Manual and Automatic Matching results 

Important for the multisensor image fusion is the correct determination of the 

orientation between 3D laser scanner and the 2D digital camera. The image 

orientations have been determined by classical least squares bundle adjustment 

and photogrammatric software using control points (defined in the laser scanner 

coordinate system). 

 

The manual and automatic matching results have been examined to check the 

consistency of the image and object points coordinate measurements. The 

accuracy of these methods was assessed by the RMS errors. As was noted earlier, 

there was no known value upon which to test the relative orientation results 

against as there was no calibration data for either camera system.  
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This section, therefore, discusses the results of the direct comparison of the 

exterior orientation parameters determined by the photogrammetric software 

(manual) and the least squares bundle adjustment (automatic).  

 

6.3.1 Using the Exterior Orientation Parameters   

The differences between the measurements of the exterior orientation parameters 

for data sets A and B with the manual and automatic methods were computed and 

the results are given in Tables 6.9 and 6.10 for data set A and B, respectively. 

These are obtained by subtracting the automatic exterior orientation values from 

the manual orientation values for each model.  

 

       Table 6.9: Discrepancies of the Exterior Orientation Parameters with  

                         Data Set A (Positional unit: meters; Angular unit: degrees) 

 

 SCI RCI_1R RCI_1L RCI_2L RCI_2R 

δ  oX
-0.002 0.005 0.006 0.008 0.005 

δ  oY
0.005 0.003 0.000 0.006 0.002 

δ  oZ
0.000 0.006 0.005 0.002 -0.009 

δ ω  
-0.001 0.004 0.006 -0.005 -0.008 

δϕ  
0.001 0.001 -0.003 -0.010 0.006 

δκ  
-0.003 0.005 0.003 0.007 -0.007 
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        Table 6.10: Discrepancies of the Exterior Orientation Parameters with  

                          Data Set B (Positional unit: meters; Angular unit: degrees). 

 

       SCI RCI_1R RCI_1L RCI_2L RCI_2R 

δ  oX
0.006 -0.002 0.007 0.006 -0.001 

δ  oY
-0.003 -0.002 0004 0.004 -0.002 

δ  oZ
-0.007 0.004 0.000 -0.009 0.001 

δ ω  
0.007 0.005 -0.006 -0.006 -0.001 

δϕ  
-0.007 0.005 -0.009 0.000 -0.001 

δκ  
-0.002 0.003 -0.009 -0.003 -0.009 

 

Five camera stations were used in this thesis, all of which were approximately at 

the same elevation. This means that a positive value shows that the manual errors 

were larger than those of the automatic method. In the case of data set A, the 

discrepancy (difference between the manual and the automatic results) of the 

camera position (i.e. δxo, δyo, and δzo) lies between 0.000 and 0.009m for all 

models and for camera orientation (δω, δφ, δκ) it lies between 0.001 and 0.010 

degrees. The maximum discrepancy value (0.008m) for X and Y camera position 

was less ±12mm (2Sexy) and that for Z coordinate (0.009m) was slightly greater 

than the 2Sez (nominal range accuracy of ±8mm).  

 

 

It can be seen from Table 6.9 that the discrepancy values for the exterior 

orientation of the generated synthetic camera image (SCI) were significantly 

smaller as compared to the other real camera stations.  
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The second data set (data set B) show similar results in case of the discrepancy of 

the exterior orientation parameters with discrepancy values for the camera 

position ranging between 0.000 and 0.009m and with the camera orientation 

ranging between 0.000 and 0.009 degrees. In both cases (i.e., the two methods 

used in the analysis), the computed parameters of exterior orientation parameters 

were similar (i.e., no substantial difference). 

 

6.3.1 Using the Object Point Coordinates  

To evaluate the differences in reconstructed object point coordinates of the bundle 

adjustment and StereoMaker, 10 points were used as checks for both 

measurements.  

 

For each model in each data set, the check point coordinates were compared by, 

calculating the differences in X, Y, Z coordinates ( x_dev, y_dev, z_dv ). These 

represent the differences between the model coordinates as produced by manual 

and automatic pairwise measurements in the laser scanner coordinate system. The 

vectors of the discrepancies for all models for data sets A and B are graphed in 

Figures 6.1 and 6.2 respectively. The statistics (the minimum and maximum 

values and the RMS errors) of the discrepancies for individual models are 

presented in Tables 6.11 and 6.12 for data sets A and B, respectively. 
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         Table 6.11: Statistics of Discrepancies of Object Point Coordinates for  

                          Data set A  

 

Residuals(m) 

Coordinate 

Components 
Model_1 Model_2 Model_3 Model_4 

Min (m) 
0.000 0.000 0.000 0.000 

Max (m) 
0.004 -0.005 0.005 0.005 

Mean (m) 
0.002 0.002 0.002 0.003 

x_dev 

RMS(m) 
0.001 0.002 0.002 0.002 

Min (m) 
0.000 0.000 0.000 0.000 

Max (m) 
-0.006 0.007 -0.007 0.006 

Mean (m) 
0.003 0.003 0.002 0.002 

y_dev 

RMS(m) 
0.002 0.002 0.002 0.002 

Min (m) 
0.000 -0.001 -0.001 -0.001 

Max (m) 
-0.006 -0.007 -0.008 0.008 

Mean (m) 
0.003 0.004 0.004 0.003 

z_dev 

RMS(m) 
0.002 0.003 0.003 0.002 

 

What is most evident in the results is that, most of the models have RMS errors of 

approximately 3 mm (in X and Y and Z) which were less than ±6mm (Sexy). For 

data set A, the RMS errors of the computed 3D coordinates difference were: 2mm 

[X], 3mm [Y], and 3mm [Z] and for data set B 3mm [X], 2mm [Y], and 2mm [Z]. 

In spite of the small discrepancies (i.e., with maximum RMS error of discrepancy 

of 3mm), conformance (i.e., agreement of positions measurement by manual with 
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photogrammetric software and computed positions by the automatic bundle 

adjusted) is generally very high and certainly demonstrates the accuracy and 

potential of the generated SCIs and the concepts of PVCI in the automation of the 

exterior orientation process. 

 

 

(a) Discrepancy Vectors of Object Point 

Coordinates of Model_1

Location of points

Discrepancy vector (pointing to the location of the automatic points)

(b)    Discrepancy Vectors of Object Point 

Coordinates of Model_2

(c)    Discrepancy Vectors of Object Point 

Coordinates of Model_3

(d)    Discrepancy Vectors of Object Point 

Coordinates of Model_4

Scale: 1 unit = 0.5m
 

   Figure 6.1 Discrepancy Vector of Object Point Coordinates for Data  

                     Set A (Deviations are in meters) 
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Table 6.12: Statistics of Discrepancies of Object Point Coordinates for  

                   Data Set B 

Residuals(m) 

Coordinate 

Components 
Model_1 Model_2 Model_3 Model_4 

Min (m) 
0.000 0.000 -0.001 0.000 

Max (m) 
0.006 0.007 0.009 0.007 

Mean (m) 
0.002 0.003 0.003 0.003 

x_dev 

RMS(m) 
0.002 0.003 0.003 0.003 

Min (m) 
0.000 0.000 -0.001 0.000 

Max (m) 
0.006 0.004 0.007 0.004 

Mean (m) 
0.002 0.001 0.003 0.002 

y_dev 

RMS(m) 
0.002 0.001 0.002 0.001 

Min (m) 
0.000 0.000 0.000 0.000 

Max (m) 
0.004 -0.006 -0.004 0.006 

Mean (m) 
0.001 0.002 0.001 0.002 

z_dev 

RMS(m) 
0.001 0.002 0.001 0.002 
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(a) Discrepancy Vectors of Object Point 

Coordinates of Model_1

Location of points

Discrepancy vector (pointing to the location of the automatic points)

(b)    Discrepancy Vectors of Object Point 

Coordinates of Model_2

(c)    Discrepancy Vectors of Object Point 

Coordinates of Model_3

(d)    Discrepancy Vectors of Object Point         

Coordinates of Model_4

Scale: 1 unit = 0.5m
 

Figure 6.2 Discrepancy Vector of Object Point Coordinates for Data  

                     Set A (Deviations are in meters) 

 

6.4 Summary of Results 

The results of the adjustment were assessed using RMS errors of the object point 

and image coordinates. The average RMS errors of coordinates difference for all 

the models was 3mm for data set A and 2mm for data B. The residuals were very 

small, indicating highly precise networks had been established.  
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In addition, the object point coordinate and camera exposure values computed 

from the photogrammetric software agree closely with those resulting from the 

bundle adjustment where the orientation process was automated. Some high 

deviations values for some models might be due to systematic errors between 

terrestrial and photogrammetric measurements (such as manual pointing to the 

conjugates image points) and, also, the error due to the measurements of the laser 

scanner coordinates (such as 3D coordinate extraction from the point cloud) 

themselves 

 

However, the results generally indicate that there is no significant difference 

between the quality of laser scanner measurements and those generated by the 

matching algorithm. 
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CHAPTER 7 

 

APPLICATIONS OF THE DEVELOPED 

MULTISENSOR FUSION METHOD  

 
 

7.1 Introduction 

In Chapter 5, the object coordinates of the point clouds have been linked to the 

pixels of the generated synthetic camera images to create a visual reference 

(called point cloud visual index-PCVI). With the PVCI, it has been shown that 

automatic exterior orientation without the need for control point (it does not need 

retro-reflective or other special material-based targets) is a possibility. Also this 

control point-free method has important applications in terrestrial 

photogrammetric engineering. These applications include photorealistic 3D 

models presentation (that is texture-mapping the point cloud to create photo-

realistic models), extraction of reference targets for registration and calibration 

purposes, automation of the registration of point clouds, and if the data are geo-

referenced (the orientation of point cloud to an absolute coordinate system), they 

can be readily incorporated into existing GIS applications.  

 

The solution to camera calibration (process of determining and relating the 3D 

position and orientation of the camera with respect to a certain world coordinate 

system) problems requires the knowledge of a set of corresponding 3D and 2D 
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features. Once matches are obtained between the SCIs and RCIs, the object 

coordinates represented by the matched pixel (i.e. to associate the 3D co-ordinates 

in point cloud with the corresponding pixel positions in the RCI) are then 

available for use in the exterior orientation computation. This solution (PVCI) 

which has been developed and implemented can be used for the automation of 

camera calibration.  

 

Point cloud registration (combining several scans with different orientations and 

positions) is performed through the identification of common points in adjacent 

and overlapping scans (target-based registration). Once the points (at least three) 

are collected, a simple transformation can be determined. Using the PCVI would 

allow the automation of the process of establishing point correspondences 

between point clouds. Once matches are obtained between the SCIs (2D 

representation of a TLS point cloud) of point clouds, the object coordinates 

represented by the matched pixels are then immediately available for use in the 

point cloud registration process. 

 

This following now describes the process of mapping the RCIs to the 3D 

geometric model to produce a geometrically correct, photorealistic view of the 

scene using the relative orientation and position parameters. 
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7.2 Mapping of Image Texture onto the Point Cloud 

Texture mapping presented in this thesis is one of applications of the proposed 

multisensor fusion system. Texture-mapping the point cloud to create photo-

realistic models which are essential for a variety of applications such as 3D city 

models, classification of real world objects, and virtual reality creation.  

 

Texture mapping is basically a geometric transformation where pixels from the 

texture image are transformed to pixels of the surface. Then, for each pixel with 

this surface, the colour or grey value of the correspondent pixel in the texture 

image is assigned. This type of mapping has been used widely for over a decade 

to increase the sense of realism in computer generated scenes (Weinhaus and 

Deverajan, 1997). 

 

Traditional texture mapping techniques, which simply involves the draping of 

static imagery over geometry, are not sufficient to represent highly detailed 

contents of the objects and scenes. In certain applications, it is crucial to preserve 

every line or edge and shape. The conceptual basis for texture mapping is depicted 

in Figure 7.1 (Weinhaus and Deverajan, 1997). In this Figure, there are two main 

transformations involved: One transformation maps the 3D objects surface and the 

computer screen space whilst the other transformation maps the 3D object surface 

and 2D texture space.  
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The discussions in this section focus on this latter transformation. The purpose of 

texture mapping is to produce a geometrically correct, photorealistic model of the 

scene and objects. There are numerous approaches for the photorealistic 

reconstruction of a general 3D scene or objects. The goal of all methods is the 

realistic rendering of the captured scene or objects (Stamos, 2001).  

 

Texture Space Screen Space

Object Space

Forward Reverse 

Transformation
Projection

Texture Space Screen Space

Object Space

Forward Reverse 

Transformation
Projection

Texture Space Screen Space

Object Space

Forward Reverse 

Transformation
Projection

Forward Reverse 

Transformation
Projection

 

             Figure 7.1: Texture Mapping Concept (after Weinhaus and 

                                    Deverajan, 1997). 

 

There are two major approaches in photorealistic texture mapping: geometric or 

range-based techniques such as laser scanners, and image-based approaches 

(Stamos, 2001). In the first category, a complete geometric model of the scene is 

required. Rendering from viewpoints can be computed by mapping images of the 

scene onto the geometric model (texture mapping). Most existing techniques for 

photorealistic texture mapping focus on this approach. 

 

 

On the other hand, image-based modeling methods attempt to produce 

photorealistic renderings by skipping the geometric modeling steps. Set of images 
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of the scene generate a light field that is being interpolated in order to generate 

novel renderings from different view points. In this thesis, the range-based 

modeling is used. 

 

7.2.1 The Process of Mapping 

The geometry-based modeling approach applied in this research used laser 

scanning combined with high-resolution texture images. Thus, the reconstruction 

of a photorealistic texture model is achieved by the utilization of 2D imagery and 

3D point cloud data. The 3D point cloud data is used for the building of the solid 

model, whereas the texture information is provided by an independent high 

resolution camera.  

 

As previously mentioned, each pixel in the 2D photographic imagery is linked to 

its corresponding sampled 3D point on the object surface (Section 5.4.2.2). It 

should be noted that texture mapping described in this thesis is a view-dependent 

(i.e., a single scan and a single image of the scene) one. This form of texture-

mapping is most effective when the model conforms reasonably closely to the 

actual structure of the scene (Debevec, 1996). In general, each image used is only 

a partial view of the scene or object. Thus, it is usually necessary to use multiple 

images in order to render the entire model of the scene.  

 

In general, photorealitic texture mapping of 3D point clouds using 2D texture 

images consist of the following steps: 
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1. 3D point cloud and texture image acquisition of the from different viewpoints; 

 

2. registration of images and the 3D point clouds into a common frame of 

reference;  

 

3. Transformation of 3D point clouds into an intermediate surface-based 

representation; and  

 

4. Merging of the surface-based representation and the texture image into a 

common representation.  

 

The acquisition of the 3D point clouds and 2D texture image has been described 

in Chapter 3. The relative position of the range sensor and the camera is then 

known from the exterior orientation procedure (Chapter 5). The result of this 

procedure is that the intensity image and the geometric model are positioned and 

oriented in the same coordinate systems. With the position and the orientation of 

the 2D camera relative to the laser scanner known, the 2D photographic image is 

reprojected to the laser scanner frame of reference to create a texture map. Figure 

7.4 shows a detailed 3D model, which was created.  

 

A two-step approach is taken to achieve the realistic 3D model using the texture 

mapping of images and the 3D point cloud. As the first step, an accurate 3D 

model of the scene is obtained (Figure 7.4) using the mesh (Figure 7.3) generated 

in the Cyclone Software. In order to capture the complete geometric data of a 
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scene or object, the scene needs to be scanned from a number of different viewing 

directions to produce a set of complex and overlapping 3D point clouds. 

Generally, 3D modeling systems are based either on volumetric analysis or mesh-

based (Stamos, 2001) and in this thesis the latter approach is adopted. In the 

mesh-based approaches, the 3D point clouds is transformed into a mesh of 

triangular faces.  

 

In the second step, the texture image (i.e., the real camera image in Figure 7.5 is 

mapped onto the developed geometric model in Figure 7.6. This Figure presents 

how view-dependent texture mapping can be used to produce photorealistic 

models. This example uses only one data set (i.e., data set B) 

 

7.2.2 Results and Analysis 

Figure 7.6 represents the results of the photorealistic texture mapping process. 

 

 

                  Figure 7.2: Raw Point Cloud 
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  Figure 7.3: Snapshot of Simplified Mesh  

 

 

 Figure 7.4: Geometric Model                
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Figure 7.5: Texture Image 

 

 

Figure 7.6: Example of View-Dependent Texture Mapping 
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Mapping texture from multiple camera views onto a 3D model of a real object 

always involves potential problems. The main problems involve textural distortion 

at the boundaries of triangles, invisible surface parts of the real object, and 

highlights owing to inhomogeneous environment lighting. Since photo-realism is 

of utmost importance, it became apparent that many problems related to geometric 

and radiometric distortions had to be solved. In preserving every line or edge, 

even slightly curved surfaces pose problems of distortions and discontinuity.  

 

Line and edge textures on the models can be visibly affected by any small 

geometric errors. Sources of these errors can be due to the mapping between 

triangle plane and image plane, and improper camera calibration and image 

registration. Since this project focuses on high resolution textures and high quality 

geometry, the texture size can end up being quite large, with memory limitations 

becoming a major issue. Another issue is mapping between the image and the 

developed model becomes easy and accurate if they overlap, they have the same 

resolution. However, mapping becomes difficult if the images contain unmodeled 

detail. 

 

7.3 Summary 

In this chapter, the potential applications of the proposed multisensor fusion 

method have been discussed. The proposed methodology allowed the automatic 

registration (the position and the orientation of the 2D camera relative to the laser 

scanner known) of point cloud and real camera images.  
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The registered real camera images were used as texture maps to enhance the 3D 

models generated from the 3D point cloud. The process of this mapping was 

described and the results presented. 
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CHAPTER 8 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Summary 

The aim of this thesis was to develop a methodology to fuse data from high-

density 3D point cloud data (such as those produced by terrestrial laser scanning 

systems-3D sensors) with high-resolution perspective imagery (such as that 

generated by digital cameras or scanned photographs- 2D sensors) and to produce 

high accuracy (geometric and radiometric) products such as photorealistic models.  

 

The following sections summarize the data acquisition systems, generation of the 

synthetic camera images, registration methods and view-dependent texture 

mapping. In addition, conclusions, limitations of the study and possible related 

future work are discussed. 

 

The strategy for terrestrial measurements (photogrammetry and laser scanning) 

have been discussed and the data sets used in this research have also been 

presented. In order to test both the fidelity of the SCI concepts and the 

correspondence algorithms, three deferent scenes were scanned with the laser 

scanner and for each scan, a series of 2D photographic image (RCI) were taken 

with a digital camera.  
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The photogrammetric collinearity model was used to fuse data from the two 

sensors (digital camera and terrestrial laser scanner) to generate synthetic images. 

This model was used to fuse data from the two sensors (digital camera and 

terrestrial laser scanner) to generate synthetic camera images equivalent to that of 

a digital camera. These images were created by interpolating the irregularly 

spaced synthetic data onto a grid at an even spacing. The generated synthetic 

images and the 2D photographic images were used in the registration process.  

 

Initial stages of the research focused on undertaking the registration process using 

manual methods and existing photogrammetric (i.e.3DMapper software 

StereoMaker) application software. Accuracy assessment of the manual 

measurement was done by assessing the RMS errors of the object point 

coordinates. 

 

The second phase involved the automation of image matching process. A Harris 

corner detector with appropriate threshold value was first used to extract feature 

points in both images. The extracted feature points were then matched with the 

zero-mean normalized cross-correlation (ZNCC) similarity metrics to find 

correspondences between the SCI and RCI. The algorithm computes similarity 

scores for every pixel in the image by taking a fixed window. A validity check 

was implemented by estimating correlation twice by reversing the roles of two 

images. The RANSAC algorithm has been used to filter out false (or incorrect) 

correspondences. 



Chapter 8: Conclusions and Recommendations 162

 

The process of creating a point cloud visual index (PCVI) has been discussed. 

This index was created by linking the object coordinates of the point cloud to the 

pixels of the generated synthetic images (SCIs). Using the PCVI allowed the 

exterior orientation of the RCI to the point cloud by using simple image matching 

concepts such as interest operators and the correspondence matching.  

 

The automatic implementation to determine the exterior orientation parameters 

with simultaneous bundle adjustment approach is also discussed. The accuracy 

assessment of the automatic measure was made by analyzing the RMS errors for 

both image and object space coordinates and the exterior orientation parameters. 

With the position and the orientation of the 2D camera relative to the laser scanner 

known, the 2D photographic image was reprojected onto the laser scanner frame 

of reference to create a photorealistic texture map.  

 

8.2 Conclusions 

TLS and the digital camera capture their data with similar imaging geometry- 

perspective projection. This fact has been exploited to create synthetic camera 

images by integrating data from the two sensors. The fundamental conceptual 

elements of creating synthetic camera images have solved and developed in the 

field of photogrammetry. The generated SCI has been modeled with the 

photographs (Real Camera Image, RCI) to develop a geometric relationship 

between the digital camera and laser scanner.  



Chapter 8: Conclusions and Recommendations 163

 

The manual measurement process was necessary to understand the key issues such 

as geometric quality, both spatial and geometric resolutions of the generated 

synthetic camera image. Features were detected, extracted and matched to develop 

geometric relationship between the digital camera and laser scanner. Using the 

RMS errors object point coordinates as accuracy for the manual measurements, it 

was found that the maximum RMS error for all the four models for the data A and 

B was 0.008m.  

 

The results generally indicated that the coordinates and the rotation angles of the 

perspective centre of the laser scanner were very close to zero (these exterior 

orientation parameters of laser scanner do confirm the assumption already 

discussed in Section 3.3.1). These results were supported and confirmed by the 

bundle adjustment which was used to reconstruct the 3D object space coordinates 

and to recover camera positions. The accuracy of the object coordinate 

determination is with 0.007m and for the image coordinate measurement error is 

within one pixel.  

 

The RMS residuals for all models for all the three data sets were very small (RMS 

errors for all models of the three data sets was 0.007m for object coordinates and 

within one pixel (0.008mm) for image coordinates), indicating a precise network 

had been established. In addition, the object point coordinate and camera exposure 

values computed from the photogrammetric software agree closely with those 

resulting from the bundle adjustment where the orientation process was 
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automated. Some high deviation values for some models might be due to 

systematic errors between terrestrial and photogrammetric measurements and also, 

the error due to the estimation of the laser scanner coordinates themselves. 

 

However, the results generally indicate that there is no detectable difference 

between the quality of laser scanner measurements and those generated by the 

manual and automatic matching algorithms. These results indicate that there were 

no conceptual errors in the developed methods.  

 

Taking all models (i.e., image pairs) for all data sets into consideration, control 

point object coordinates and camera exposure coordinates show good accuracy 

(RMS errors for all models of the three data sets was 0.007m for object 

coordinates and within one pixel (0.008mm) for image coordinate ), and indicate a 

good project solution. The results show that the concept of the synthetic camera 

image is a feasible method for multisensor data fusion.  

 

Factors, which could also influence the precision and accuracy, are the algorithm 

robustness for matching or for the measurements of parallaxes, the influence of 

distortion parameters, and the use of only two images but these are not 

investigated.  
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8.3 Limitations of this Study 

• This research focused on fusing data from close-range camera and 

terrestrial laser scanner. The performance of the proposed methodology is limited 

to data sets from these sensors. The developed concepts have not been tested with 

aerial photography and point clouds from airborne laser scanning systems (ALS) 

which have intrinsically much simpler geometric relationships.  

 

• Although the Cyrax 2500 system can operate over distances of up to 100 

metres, the data sets were effectively captured over a shorter range. That is the 

data sets used in this thesis was captured at a very close-range (<50 m range). 

Both geometry and reflections (energy reflected by the measured points) are key 

elements in developing the synthetic camera images for use in the matching 

process. Since reflectivity value of the scanner depends basically on the type of 

material that makes up the object and the range distance, measuring distances to 

materials with a low reflectivity at a long range (distances beyond 50m) may 

affect the quality of the data capture with some areas missing data.  

 

As already pointed out, one of the salient properties of a scanner that strongly 

influences both point cloud resolution and positional uncertainty is the laser 

beamwidth so scanning at distances beyond 50m may increase the positional 

uncertainty of the laser beamwidth and may also result in low (coarse) vertical and 

horizontal scan density (i.e., low density sampling interval). In this case, more 

advance resampling techniques such as bilinear, bi-cubic and natural neigbour 
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must be used to generate the SCI. The effects of scanning at the full range (100m 

or over) of the scanner and the effects material of the object used on the quality of 

the generated SCIs are not investigated. 

 

• The setup for data capture allowed a single scan with multiple images. 

That is the object geometry is first scanned and then several photographic images 

are taken to the left and to the right of the laser scanner, each in different viewing 

positions.  

 

• The developed methodology did not include how to manage multiple point 

clouds and multiple images. Since each scan has its own reference system 

multiple scans requires the registration scans in a single coordinate system before 

generating the synthetic images. Also, the research did not investigate how far the 

developed methodology could be extended to cater for large differences in 

location and orientation between the camera and the laser scanner. 

 

• The texture-mapping approach was a view dependent one. The current 

method did not merge multiples images on the 3D model. The method adopted 

only texture-mapped one image per view. 

 

8.4 Recommendations for Future Work 

Research has shown that, using simple techniques, combining both types of data – 

photographs (Real Camera Image, RCI) and point clouds - is feasible and can lead 
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to a very flexible system for capturing 3 dimensional information about an object. 

This research highlighted several areas that, in order to fully exploit the positive 

characteristics of the two technologies, need to be further investigated, developed 

and refined. Upon resolving these issues, the potential for integrating TLS point 

clouds and independently taken photographs, both for their image quality and 

photogrammetric potential, will provide a significant boost and will allow both 

these technologies to be used in an integrated environment greatly enhancing the 

usefulness and efficiency of the measurement and modeling processes. In future 

investigations the followings points should be further addressed: 

 

• Investigation into the resolutions of the SCI. There are two options related 

to the resampling the backprojected laser point. The first option is, to generate the 

SCI by keeping the original resolution of the point cloud data (which is 1000 x 

1000 at full scan) and then compute the pixel size. This means that the generated 

SCI will always be a square image of 1000 X 1000 pixels. The second option, is 

to keep the pixel size of the real camera image involved in the project (for the 

example, the Nikon D1x has 8 micrometer pixel size) and then compute the 

number of pixels or the resolution. In this case, the resolution of the generated 

synthetic image may vary depending on the maximum and minimum values in the 

datasets. This latter option was implemented and it is worth investigating the 

effect of the former on the overall quality of the image. 
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• Study the effects of the resampling techniques. Another issue involved 

with the quality of the SCI is the resampling techniques. The simplest of the 

resampling techniques, nearest neighbour, has been used to generate the SCI and 

the question is “could the more advance resampling techniques such as bilinear, 

bi-cubic and natural neighbour improve the quality and content of the SCI”. 

 

• Development of sub-pixel corner detectors algorithms and investigation 

into the effects of the combined use of edge and corner detection approach. The 

next aspect relates to the feature detection and the correspondence matching and 

what needs to be addressed is the impact of sub-pixel feature detection and the use 

of a combined edge and corner detectors approach instead of corners only on the 

overall matching results. 

 

• To assess the impact that camera calibration on the matching results. 

 

• Multiple scans and multiple images. This would also include how to 

manage multiple point clouds and multiple images. 

 

• The effects of different base-height ratios on achieved accuracy. 
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APPENDIX A1 

 

REAL CAMERA 2D IMAGES 

 

 

(b) RCI_2L(a) RCI_1L

(c) RCI_2R

(b) RCI_2L(a) RCI_1L

(c) RCI_2R

 

FigureA1.1: Real Camera 2D Images of Data Set A. 
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(b) RCI_2L(a) RCI_1L

(c) RCI_2R

(b) RCI_2L(a) RCI_1L

(c) RCI_2R

 

Figure A1.2: Real Camera 2D Images of Data Set B. 
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(b) RCI_2L(a) RCI_1L

(c) RCI_2R

(b) RCI_2L(a) RCI_1L

(c) RCI_2R

 

Figure A1.3: Real Camera 2D Images of Data Set C. 
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APPENDIX A2 

 

 

FFT-BASED MULTISENSOR IMAGE 

REGISTRATION 

 

A2: Introduction 

This section presents the necessary theory for the pairwise image registration 

using Fourier translation, rotation and scaling properties 

 

A2.2: The Theory 

It is known that if two images  and  differ only by shift ( ), i.e., 1f 1f 00 y,x

 

         )yy,xx(f)y,x(f 0021 −−= ,                                                                   (A2.1) 

 

 then by the shifting property of Fourier Transforms: 

 

                                                                (A2.2) 
)0y20x1(j

211212 e),(F),(F
ω+ω−ωω=ωω

 

The translational offsets (  can be recovered by locating the impulses 

associated with the inverse transform of the cross-power spectrum of the two 

images (Eustice et al, 2002). The ratio R (in Equation A2.3), is the cross-power  

ox , oy )
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spectrum of two images  and  with Fourier transforms  and  is defined 

as (Eustice et al, 2002; Reddy & Chatterji, 1996; Xie at al, 2000): 

1f 2f 1F 2F

 

                              
)),(F(abs)),(F(abs

)),(F(conj),(F
R

212211

212211

ωω∗ωω
ωω∗ωω

=                       (A2.3) 

 

Where conj is the complex conjugate, abs is absolute value. By taking an inverse 

Fourier transform of R, the position with the maximum absolute value can be 

found when everywhere else is approximately zero. This position ( , ) is the 

displacement that is needed to optimally register the images. The same property 

can be exploited for images, which are rotated and scaled by representing them in 

a coordinate system where scale and rotation appear as shifts (Eustice et al, 2002). 

For example, 

ox oy

when  is a rotated version of : )y,x(f2 )y,x(f1

 

                 )cosysinx,sinycosx(f)y,x(f 000012 θ+θ−θ+θ=                         (A2.4) 

 

Their Fourier Transforms are related by: 

 

      )cossin,sincos(F)(F 0201020112,12 θω+θω−θω+θω=ωω                       (A2.5) 
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Converting the magnitude of the Fourier Transform from rectangular coordinates 

to log polar coordinates makes is possible to represent rotation as shifts (Eustice et 

al, 2002): 

               ),(M),(M 012 θ−θρ=θρ                                                                  (A2:6) 

                )arctan(, 21
2
2

2
1 ωω=θω+ω=ρ                                                 (A2:7) 

Similarly, when two images are related by a scale factor, a, then their Fourier 

Transform is related by: 

 

                          )a,a(F
a

1
),(F 2112212 ωω=ωω                                              (A2:8) 

Taking the logarithm of the frequency results in the scale appearing as a shift 

(Eustice et al, 2002):    

 

            )aloglog,alog(logF
a

1
)log,(logF 2112212 −ω−ω=ωω                          (A2.9) 

 

Combining all these properties, it is noticed that the magnitudes of the two 

translated, scaled, rotated images are related: 

             ),(M),(M 022 θ−θρ=θρ                                                                   (A2:10) 

 

After taking the log of the radius, rotation and scale are now both represented as 

shifts: 

                          ),alog(logM),(M 022 θ−θ−ρ=θρ                                    (A2:11) 
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A2.3: Results of the FFT-based Registration 

 

              Table A2.1: Parameters for Registration using the FFT for 

                                    Data Set A       

 Scale Rotation ( ) oθ
Translation 

    (  ) ,ox oy P_Value 

Model_1 
0.997 179.673 -41,13 0.117 

Model_2 
0.997 180.327 21, 105 0.136 

Model_3 
0.890 177.709 23, 86 0.087 

Model_4 
0.904 2.945 68, 25 0.066 

 

 

               Table A2.2:  Parameters for Registration using the FFT for 

                                     Data Set B       

 Scale Rotation ( ) oθ
Translation 

    (  ) ,ox oy P_Value 

Model_1 
1.016 0.194 229, -3 0.222 

Model_2 
1.002 0.194 19, -9 0.157 

Model_3 
1.031 180.972 -17, 23 0.141 

Model_4 
1.0119 179.806 229, 148 0.156 
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             Table A2.3:  Parameters for Registration using the FFT for 

                                   Data Set C       

 Scale Rotation ( ) oθ
Translation 

    (  ) ,ox oy P_Value 

Model_1 
0.997 270.000 53 ,33 0.033 

Model_2 
0.997 270.000 -29, 9 0.032 

Model_3 
0.997 2.571 -29, 6 0.031 

Model_4 
0.997 0.000 -34, -5 0.028 
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APPENDIX A3 

 
 

RESULTS WITH THE HARRIS CORNER DETECTOR 

 
 

SCI RCI_1L

MODEL_2

SCI
RCI_2R

RCI_2LSCI

MODEL_3

MODEL_4

SCI RCI_1L

MODEL_2

SCI
RCI_2R

RCI_2LSCI

MODEL_3

MODEL_4

 

Figure A3.1: Example of Corner Detected with Harris Corner Detector on 

                       Data Set A. 
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SCI

RCI_1L

RCI_2R

RCI_2LSCI

MODEL_2

MODEL_3

MODEL_4

SCISCI

SCISCI

RCI_1LRCI_1L

RCI_2RRCI_2R

RCI_2LRCI_2LSCISCI

MODEL_2

MODEL_3

MODEL_4

 

Figure A3.2: Example of Corner Detected with Harris Corner Detector on 

                       Data Set B. 
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RCI_2R

RCI_2LSCI

MODEL_2

MODEL_3

MODEL_4
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SCI

RCI_1L

RCI_2R

RCI_2LSCI

MODEL_2

MODEL_3

MODEL_4

 

Figure A3.3: Example of Corner Detected with Harris Corner Detector on 

                     Data Set C. 
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APPENDIX A4 

 

RESULTS OF THE AUTOMATIC HYBRID 

MATCHING 

 

SCI RCI_1L

MODEL_2

SCI RCI_2R

RCI_2LSCI

MODEL_3

MODEL_4

SCI RCI_1L

MODEL_2

SCI RCI_2R

RCI_2LSCI

MODEL_3

MODEL_4

 

Figure A4.1: Detected Correspondences of Model_1 of Data Set A with 

ZNCC. 
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   Figure A4.2: Detected Correspondences of Model_1 of Data Set B with 

   ZNCC. 
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Figure A4.3: Detected Correspondences of Model_1 of Data Set C with  

ZNCC. 
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APPENDIX A5 

 

RESULTS OF THE FINAL VERIFIED DETECTED 

CORRESPONDENCES (RANSAC INLIERS) 

SCI RCI_1L

MODEL_2

RCI_2R

RCI_2LSCI

MODEL_3

MODEL_4

SCI RCI_1L

MODEL_2

RCI_2R

RCI_2LSCI

MODEL_3

MODEL_4

 

Figure A5.1: The Final Verified Detected Correspondences (RANSAC 

                        inliers) of Model_1 of Data Set A. 
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Figure A5.2: The Final Verified Detected Correspondences (RANSAC  

                         inliers) of Model_1 of Data Set B. 
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Figure A5.3: The Final Verified Detected Correspondences (RANSAC 

                         inliers) of Model_1 of Data Set C.
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APPENDIX A6 

 

OUTLINE OF SOFTWARE ENVIRONMENTS, TOOLS 

DEVELOPED AND READY-MADE TOOLS USED 

 

A6.1: Introduction 

This section presents the list of software used, the tools developed and ready-

made tools used in the thesis. 

 

A6.2: Outline of Software Environments 

1. Cyra’s Cyclone software was used to capture the 3D point clouds, 

preprocessing the point clouds (data filtering) and to export the point clouds as 

ASCII format. Also, this software was used to transform the 3D point clouds 

into an intermediate surface-based representation. 

 

2. 3D Mapper StereoMaker software was used for the implementation of the 

manual exterior orientation measurements. 

 

3. Autodesk 3Ds Max software was used to merge the surface-based 

representation and the texture image into a common representation 

(photorealistic models) 
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A6.3: Tools Developed  

The Matlab programming language was used to implement the following: 

• Read and process the 3D point clouds 

• Create the synthetic camera images 

• Image pyramids 

• Extraction of points of interest using the Harris corner detector. 

• Correspondence matching using zero mean normalized cross correlation 

algorithm 

• Refines the initial corresponding points by using a robust estimator such as 

RANSAC 

 

A6.4: Ready-made Tools Used  

The bundle adjustment as presented in Simultaneous Photogrammetric and 

Geodetic Adjustment (SPGA) developed by Fraser (1983) was used.  
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APPENDIX A7 

 

DATA SETS USED AND MATLAB CODES 

DEVELOPED FOR THE MULTISENSOR FUSION 

PROCESS 

 

A7.1 Introduction 

This section describes the data sets used, Matlab codes developed for the 

multisensor fusion and the results obtained. These listings can be found on the 

DVD disk at the end of this thesis. 

 

A7.2 Data Sets Used and Results of Pre-Processing 

A7.2.1 Raw Cyrax Data (with imp File Extension) 

The files are contained in \imp_file 

 Data Set_A.imp;  

Data Set_B.imp 

Data Set_C.imp 

 

A7.2.2 ASCII files of the 3D Point Clouds (with pts File Extension) 

The files are contained in \ASCII_data 

Data Set_A.pts;  

Data Set_B.pts 

Data Set_C.pts 

 

A7.2.3 Back Projected Points (after Collinearity Equations) 

The files are contained in \Collin_data 



Appendix A7: Matlab Codes for the Multisensor Fusion Process  209

 

Data Set_A.dat;  

Data Set_B.dat 

Data Set_C.dat 

 

A7.2.4 Generated Synthetic Camera Images – SCIs 

The files are contained in \SCI_image 

SCI_A 

SCI_B 

SCI_C 

 

A7.2.5 Real Camera Images – RCIs 

The files are contained in \RCI_image: 

Data Set A  

RCI_1R,  

RCI_1L 

RCI_2L  

RCI_2R 

Data Set B  

RCI_1R 

RCI_1L 

RCI_2L 

RCI_2R) 

Data Set C  

RCI_1R, 

RCI_1L 

RCI_2L 

RCI_2R 
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A7.3 Results of Automatic Measurements 

A7.3.1Image Pyramid 

The files are contained in \Pyramid_image: 

Data_Set_A 

Data_Set_B 

Data_Set_C 

 

A7.3.2 Feature Extracted with Harris Corner Detector 

The files are contained in \Harris_Corner 

Data Set A 

H11 

H22 

H33 

H44 

Data Set B 

H11 

H22 

H33 

H44 

Data Set C 

H11 

H22 

H33 

H44 

 

A7.3.3 Correspondence Matching with ZNCC 

The files are contained in \ZNCC 

Data Set A 

ZNCC11 
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ZNCC22 

ZNCC33 

ZNCC44 

Data Set B 

ZNCC11 

ZNCC22 

ZNCC33 

ZNCC44 

Data Set C 

ZNCC11 

ZNCC22 

ZNCC33 

ZNCC44 

 

A7.3.4 RANSAC 

The files are contained in \RANSAC 

Data Set A 

R11 

R22 

R33 

R44 

Data Set B 

R11 

R22 

R33 

R44 

Data Set C 

R11 

R22 

R33 
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R44 

A7.4 Results of Orientation Measurements 

A7.4.1 Manual Exterior Orientation Results 

The files are contained in \MO 

Data Set A 

Data Set B 

 

A7.4.2 Automatic Exterior Orientation Results 

The files are contained in \AO 

Data Set A 

Data Set B 

Data Set C 

 

A7.5 Results of Texture Mapping 

The file is contained in \TM 
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A7.6 Matlab Codes for the Multisensor Fusion Process 

 

A7.6.1 Code to Read Point Clouds, to Perform Backprojection and to 

Generate Synthetic Images 

The file is contained in \matlab_code\read_dat.m 

 

A7.6.2 Code to Extract Points of Interest, Correspondence Matching 

(with ZNCC), and RANSAC 

The file is contained in \matlab_code\ransac.m 


