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Abstract

A common way to elude a signature-based NIDS is
to transform an attack instance that the NIDS recognizes
into another instance that it misses. For example, to avoid
matching the attack payload to a NIDS signature, attack-
ers split the payload into several TCP packets or hide it be-
tween benign messages. We observe that different attack in-
stances can be derived from each other using simple trans-
formations. We model these transformations as inference
rules in a natural-deduction system. Starting from an ex-
emplary attack instance, we use an inference engine to au-
tomatically generate all possible instances derived by a set
of rules. The result is a simple yet powerful tool capable of
both generating attack instances for NIDS testing and de-
termining whether a given sequence of packets is an attack.

In several testing phases using different sets of rules, our
tool exposed serious vulnerabilities in Snort—a widely de-
ployed NIDS. Attackers acquainted with these vulnerabili-
ties would have been able to construct instances that elude
Snort for any TCP-based attack, any Web-CGI attack, and
any attack whose signature is a certain type of regular ex-
pression.

1. Introduction
The goal of a Network Intrusion Detection System

(NIDS) is to alert a system administrator each time an in-
truder tries to penetrate the network. A signature-based
NIDS defines penetration via malicious signatures: if an
ongoing activity matches a signature, an alarm is raised
[25, 33]. Such systems are widely deployed [36, 46] be-
cause they are simple to use and provide concrete infor-
mation about the events that have occurred. A weakness of
a signature-based NIDS is its inability to recognize an at-
tack that is different from the attack signature it uses.

An attacker wishing to stealthily penetrate a net-
work monitored by a signature-based NIDS can exploit
this weakness in two ways. First, they can use an at-
tack whose signature is not known to the NIDS. How-
ever, such attacks are usually difficult to find. Second, they
can use a known attack, but try to elude the NIDS by find-

ing an instance of the attack that the NIDS does not de-
tect. For example, to elude a NIDS that does not perform
TCP reassembly, the attacker can fragment the attack sig-
nature into several TCP packets [12, 30, 41]. Or, to elude
a NIDS that uses only printable characters in its signa-
tures, an attacker can change the signature of an HTTP
attack by substituting equivalent hexadecimal ASCII val-
ues for the characters in a URL [10]. If an attacker can find
an instance of a known attack that eludes the NIDS, then
the NIDS is useless.

We study the ability of attackers to find attack instances
that elude a NIDS and the ability of a NIDS to detect such
instances. To be more concrete, we translate these abilities
into the following two problems:

1. The black hat problem: given a NIDS and an instance of
an attack A, find an instance of A that evades the NIDS.

2. The white hat problem: given an instance of an attack A
and a sequence of packets s, determine whether s is an
instance of A.

We propose a novel approach to rigorously tackle both
problems. We observe that variants of the same attack can
be methodically computed, or derived, from each other. We
express the attacker’s knowledge in a set of inference, or
transformation, rules; each rule represents an atomic trans-
formation the attacker can use to hide the attack signature.
Then, starting from a known attack instance, we use an in-
ference engine [42] to successively apply the rules and auto-
matically compute all attack instances based on any combi-
nation of the rules. Finally, to deal with the black hat prob-
lem, we feed the instances into the given NIDS until we find
one that is undetected. To deal with the white hat problem,
we check whether the given instance matches one of the in-
stances generated.

In particular, this paper makes the following contribu-
tions.

AGENT, a NIDS testing and attack analysis tool.
Based on the notion of attack derivation, we implemented
AGENT: Attack Generation for NIDS Testing tool. AGENT
addresses both the black and white hat problems and has the
following advantages:



1. Unlike other tools [22, 31, 39, 41], AGENT is sound,
generating instances of real attacks only. There-
fore, when a NIDS misses an AGENT-generated attack,
the NIDS is vulnerable.

2. AGENT is exhaustive, capable of generating all attack
instances from a known instance using a set of rules.
Hence, even if a single instance evades a NIDS, AGENT
can find it. Similarly, AGENT can show that a NIDS
correctly identifies all possible attack instances derived
by a given set of transformations. Our results show
that AGENT effectively finds NIDS vulnerabilities even
without generating all instances.

3. Given a sequence of packets, AGENT can provide a
proof, a sequence of transformations used for obfusca-
tion, that the sequence is a real attack. Developers can
use AGENT to analyze attacks and to identify the exact
transformation that their NIDS fails to handle.

An attack derivation model for computing attack in-
stances. We formalized AGENT’s inference engine as a nat-
ural deduction system [28] and developed a formal model
for computing attack instances. Using this model we for-
malize the black and white hat problems. The model has
the following advantages:

1. The model is sound: it computes only real attacks. The
model is exhaustive: given a set of transformations and
an attack instance, the model computes all attack in-
stances that are derivable from this instance using the
transformations.

2. The model is self explanatory; it provides proof that a
network event is or is not a mutated attack. If an event is
a mutated attack, the proof is a sequence of transforma-
tions that links the event to a known attack instance; if
the event is benign, the model asserts that, with respect
to the rules used, such proof does not exist.

3. The model (and AGENT) appears to be insensitive to the
derivation starting point. While different starting points
may derive different attack instances, our experience
shows that for the rules and attacks we consider in this
paper, any starting point derives the same instances.

We believe that our model has other applications besides
testing. To our knowledge, no formal method to determine
whether or not a TCP sequence implements a given attack
has been previously developed. For an attack A, our model
formally defines the notion of “a TCP sequence implement-
ing A”: our model computes all TCP sequences implement-
ing A by deriving them from an initial (known) instance of
A, using transformations that preserve A’s semantics. We
believe that such a formal model is essential for examining
the capabilities of a single NIDS and for comparing capa-
bilities of different NIDSs.

Improving a widely deployed NIDS. Using AGENT,
we found several vulnerabilities in Snort v2.0.1 [33]. We

exposed vulnerabilities in the TCP engine of Snort, the way
Snort handles HTTP requests, and its pattern-matching al-
gorithm. An attacker acquainted with these vulnerabilities
could have caused Snort to miss any TCP-based attack, any
HTTP scripting attack, and many attacks that require wild-
card characters in their signatures, such as “foo*bar”.
We reported (and suggested fixes to) these vulnerabilities to
the Snort development team. Some were immediately fixed,
others will be fixed in the near future.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 illustrates how variants of
a real attack can be derived from each other and presents
AGENT’s architecture. Section 4 discusses AGENT’s im-
plementation and Section 5 formalizes the notion of deriva-
tion using natural deduction. Section 6 presents the vulner-
abilities we found in Snort and demonstrates AGENT’s ca-
pability to analyze attack instances.

2. Related Work
We review related work in the areas of attack transfor-

mation, NIDS evaluation, counter evasion techniques, pro-
tocol verification, and deductive databases.

Attack transformation methods. Ptacek and Newsham
[30] used semantics preserving IP and TCP transformations
to elude every NIDS they tested (they also implemented
a tool for packet manipulation [29]). Similarly, Handley
and Paxson [12, 25] discussed evasion techniques based
on inherent ambiguities of the TCP/IP protocol. These re-
searchers were the first to systematically address NIDS eva-
sion techniques, but unlike our work, their research provides
neither a formal model to combine transformations nor a
tool to automatically do so. Nevertheless, various tools that
mutate attacks originated from this work (Table 1). Next,
we discuss those tools and how they differ from AGENT.

Attack transformation tools. Two attack-
transformation tools that combine multiple transfor-
mations are Fragroute, which mutates TCP-based at-
tacks [41], and Whisker, which mutates HTTP attacks
[31]. They randomly combine transformations speci-
fied by the user, and have been used for NIDS testing [45].
They have two limitations that we address in our work.
First, they do not always preserve the attack semantics. Sec-
ond, they do not systematically search the space of at-
tack instances, so they may miss instances that elude the
NIDS.

Snot [39], Stick [11], and Mucus [22] are a family of
packet-mutation tools. Snot and Stick synthesize a raw net-
work packet (e.g., a TCP packet) such that it matches a
Snort signature. They use this mutated packet to perform
a DoS attack on Snort. Mucus, on the other hand, is a NIDS
testing tool. It synthesizes many packets that match a given
Snort signature by writing random data in packet fields not
required by the signature; for testing, it then feeds the pack-



Name Generation Capabilities Sound Transformations Implemented Handles white
hat problem?

Fragroute [41] Full-session TCP-based attacks N Subset of the transformations from [30]. N
Whisker [31] Full-session HTTP attacks N Full-session TCP and HTTP transformations. N
Mucus [22] Single TCP/UDP packets N Single packet TCP/UDP transformations. N
THOR [18] Full-session attacks Y IP fragmentation. N

AGENT Full-session attacks Y Full-session TCP, Finger, HTTP, and FTP. Y

Table 1. Major tools that use attack variation as a testing methodology.

ets to another NIDS. Since these tools generate raw pack-
ets, they are useful for testing either the NIDS pattern-
matching mechanism or the NIDS ability to detect UDP or
IP based attacks. However, for TCP-based attacks, when a
NIDS does not produce an alert for a TCP packet gener-
ated by Mucus, for example, it is hard to tell whether the
NIDS has discarded the packet because it is not part of a
TCP session or has scanned the packet but missed the signa-
ture due to a vulnerability in its pattern matching algorithm.
In comparison, when a NIDS misses an AGENT-generated
attack, it is necessarily the case that the NIDS is vulnera-
ble. We believe that AGENT and Mucus complement each
other: we intend to explore ways to incorporate randomness
into AGENT.

The work closest to ours is THOR [18]. THOR launches
mutated attacks to analyze the detection capabilities of a set
of IDSs. THOR mutates attacks without altering their se-
mantics; it is based on the concept of activity variations [2],
that are analogous to our semantics-preserving transforma-
tions. At the conceptual level, we extend their work by de-
veloping a computational model to combine transforma-
tions in a systematic way. In practice, we address issues
that their work does not address, such as handling infer-
ence among transformations or bounding the number of
generated attacks. In particular, THOR’s implementation
includes only a single transformation (IP fragmentation)
while AGENT’s implementation includes both TCP and
application-level transformations.

As far as we can tell, none of the tools mentioned above
have the ability to find all the vulnerabilities that AGENT
discovered. Tools that do not generate full TCP sessions
cannot expose vulnerabilities, like the Evasive RST (Ta-
ble 3), in a NIDS mechanism that tracks the state of a TCP
session. Tools that do not use both transport and application-
level transformations cannot expose vulnerabilities, like the
FTP Padding (Table 3), in the interaction between a NIDS
mechanism that handles TCP packets and the one that per-
forms pattern matching. Concurrently to our work, Vigna
et al. [48] developed a tool that does combine transforma-
tions. They also found serious vulnerabilities in both Snort
and in ISS’s RealSecure [13]. Although they use a different
set of transformations, we believe that AGENT could have
found the vulnerabilities they found and vice versa. Unlike

this and our earlier work [34], Vigna et al. neither investi-
gate a theoretical model to systematically apply the trans-
formations nor address the white hat problem.

Other applications of attack transformations. Dacier
et al. [6] noticed that different IDSs handle different sets of
transformation methods. They developed a tool that eval-
uates the potential of a set of IDSs to handle a large set
of transformation methods. They manually identified the
methods each IDS is supposed to handle (e.g., using the
IDS documentation), and used Prolog rules to formulate this
knowledge. Then, they automatically found the set of trans-
formations that the set of IDSs should be able to handle. In
contrast, we actually test a NIDS by attacking it rather than
by analyzing its potential capabilities.

Wagner and Soto [49] developed a formal model based
on language theory to find attack instances that elude a host-
based IDS. They added system calls to a known attack such
that the attack semantics are preserved but the HIDS is no
longer able to detect it. Tan et al. [43, 44] provide evi-
dence that this theoretical model can be used in practice. We
strongly support the use of formal models in intrusion de-
tection and, to the best of our knowledge, believe that we
are the first to provide a formal model for NIDS evasion.

One type of transformation that is beyond the scope of
this paper is code obfuscation [8]. Recent research suggests
that it is possible to identify the transformations used to
obfuscate viruses [4]. In the future, we intend to explore
ways to integrate obfuscation transformations into our at-
tack derivation model.

NIDS evaluation. Lippman et al. [16, 17] present a com-
prehensive effort to evaluate IDS capabilities (with a cri-
tique by McHugh [19]). They compared the capabilities of
several IDSs to detect a set of different attacks. In contrast,
we test a single NIDS for its ability to detect many instances
of the same attack.

Lee et al. [15] study the ability of a NIDS to handle
packet loss due to a resource attack on a NIDS. In gen-
eral, packet loss is a semantics preserving transformation in
which the NIDS misses a packet that the host accepts. Al-
though we do not investigate it in this paper, there is no fun-
damental limitation on the use of AGENT for generating in-
stances with missing packets.

Resisting evasion attacks. Handley et al. [12] and



Shankar et al. [37] present techniques that remove TCP
and IP ambiguities from network connections. These tech-
niques can be used to prevent the Evasive RST vulnerability
we found in Snort (Table 3). To the best of our knowl-
edge, these methods are not widely deployed. Finally,
Kruegel et al. [14] have designed a NIDS that is highly ro-
bust against resource attacks; we believe that AGENT,
when implemented with packet loss transformations, can
be used for testing their system.

Deductive databases and security protocol verifica-
tion. For protocol verification, deductive systems have been
used to model the capability of the participants and the ad-
versary in a security protocol (e.g., [20, 24]). These tech-
niques are related to our approach because we also use de-
ductive systems to model the power of the adversary. To
improve AGENT performance, we intend to explore tech-
niques available for logic programs like state-space reduc-
tion [38] as well as efficient bottom-up [32] and top-down
evaluation [9].

3. Approach Overview
We illustrate the main idea behind our work: instances

of the same attack can be systematically computed from
each other. We start with examples of two attack instances
of a known FTP vulnerability. We illustrate that the two
instances are variants of each other: one instance can be
derived from the other by repeatedly applying single step
transformations. While the example we present is simple,
it is based on a real vulnerability we discovered in Snort
(Section 6.1). Last, we present AGENT’s architecture that
is based on the idea of attack derivation.

Our example vulnerability is a published buffer overflow
in a commonly used FTP server (BlackMoon FTP server
for Windows, CAN-2002-0126 in [21]); exploiting the over-
flow may crash the server or present root privileges. The ex-
ploit causes the overflow by providing an overly-long argu-
ment for the FTP CWD (change directory) command. We
call this attack ftp-cwd.

The first instance of ftp-cwd we present is similar to in-
stances that can be found on many hacker sites (e.g., [1]).
Since this is a typical instance, we call it ftp-cwdtyp

(Fig. 1a). It contains four phases, each containing sev-
eral TCP packets: (i) TCP handshake, (ii) FTP login,
achieved by anonymous login, (iii) benign phase in which
the attacker browses the server using benign FTP com-
mands, and (iv) attack phase in which the attacker launches
the attack by sending a long CWD command.

To illustrate the derivation of one ftp-cwd instance
from another, we present a much shorter instance of
ftp-cwd (Fig. 1b). We called it the root of ftp-cwd (de-
noted ftp-cwdroot) because, with respect to our rules, it
derives all other ftp-cwd instances.

The ftp-cwdroot instance contains only the necessary

VictimAttacker

TCP Handshake

FTP Login

Benign FTP Commands

CWD aaaahhhhh...

FTP Login 
+

CWD aaaahhhhhh...

VictimAttacker

TCP Handshake

(a) The ftp-cwdtyp instance (b) The ftp-cwdroot instance

Figure 1. Two ftp-cwd variants.

data for a successful ftp-cwd attack; furthermore, this data
is condensed into a single TCP packet (except the TCP-
handshake packets). Putting the FTP messages required for
ftp-cwd (i.e., USER, PASS and CWD) in a single packet
is possible because (i) no server response is necessary to
carry out the attack, and (ii) FTP is an application-level pro-
tocol that is (and should be) indifferent to the number of
TCP packets used to deliver its messages. While the attacks
considered in this paper can be implemented using a sin-
gle packet, our computational model and AGENT can han-
dle multi-packet attacks.

While the ftp-cwdtyp and the ftp-cwdroot might look dif-
ferent, from the attacker point of view they are the same, if
an attacker can exploit the victim with ftp-cwdtyp, they can
also exploit the victim with ftp-cwdroot. Intuitively speak-
ing, one can infer ftp-cwdtyp from ftp-cwdroot, and vice
versa, as follows.

From here on, si denotes a TCP sequence and ai denotes
a TCP sequence that implements an attack A (also called an
instance of A). Consider the following two transformation
rules:

1. r1 (TCP-fragmentation): if a1 is an instance of an attack
A, and a2 is obtained from a1 by copying a1’s packets
and then fragmenting a single packet into two fragments,
then a2 is an instance of A.

2. r2 (FTP-padding): if a1 is an instance of an FTP attackA
that consists of at least one malicious FTP command af-
ter login (e.g., like the CWD command in the ftp-cwd at-
tack), and a2 is obtained from a1 by inserting a benign
FTP command between the login and the malicious com-
mand (but not the “QUIT” command), then a2 is an in-
stance of A.

We call these rules semantics preserving because they do
not alter the semantics of a1. According to the TCP speci-
fication [26], it is legal to fragment TCP packets as desired.
To the best of our knowledge, every FTP attack can be in-
flated, or padded, using benign FTP commands. If there
does exist an FTP attack that cannot be padded or its pack-
ets cannot be fragmented, then the rules are changed to only
allow legal modifications.



If ftp-cwdroot is an instance of the ftp-cwd attack, then
by using r1 and r2 it is possible to derive the conclu-
sion that the ftp-cwdtyp is also an instance of ftp-cwd.
We apply r1 on ftp-cwdroot to fragment the single at-
tack packet into the FTP login packets and the malicious
CWD packet of ftp-cwdtyp. Then, we apply r2 and add be-
nign FTP commands to the attack. Using natural deduc-
tion terminology, we say that the ftp-cwdtyp is derived from
ftp-cwdroot using the rules r1 and r2. More formally, we
write: ftp-cwdroot �{r1,r2} ftp-cwdtyp.

Three observations should be noted from the process il-
lustrated above:

1. r1 and r2 define a closure over a subset of ftp-cwd in-
stances. r1 and r2 can be used to derive not only the
ftp-cwdtyp instance, but also other instances of ftp-cwd.
These rules derive every instance of ftp-cwd that con-
tains several benign FTP commands and is fragmented
into several TCP packets. This observation motivates us
to automate the derivation process because this enables
identification of every ftp-cwd instance from the above
category and generation of such instances for NIDS test-
ing purposes.

2. There is no interference between r1 and r2. To derive
ftp-cwdtyp, it is possible either to first fragment the at-
tack and then to add FTP commands or first add the com-
mands and then fragment the attack. This observation
simplifies both the practical implementation of AGENT
(Section 4) and the theoretical aspects of our formal
derivation model (Section 5).

3. The inference process can be bi-directional. Consider the
shrinking rules: ←−r1 as de-fragmentation and ←−r2 as re-
moval of padding. It is easy to see how ftp-cwdroot can
be derived from ftp-cwdtyp. This bi-directional property
suggests that a derivation process can start from any at-
tack instance, so finding instances that elude a NIDS is
not overly sensitive to the derivation starting point. We
use this observation in the next section when we define
the starting points for our attack derivation model.

To translate the above observations into practice, we built
AGENT, a tool that derives attack instances from a repre-
sentative instance of the attack using a set of transforma-
tion rules. AGENT can be used to address both the black
and white hat problems (Section 6). AGENT is comprised
of the following components (Fig. 2):

1. Closure Generation. Given a set of rules and an attack
instance, AGENT computes the root of the instance (e.g.,
ftp-cwdroot from Fig. 1b), and generates all instances de-
rived from this root. Each instance is represented as a list
of TCP packets and contains both attack and response
packets. The instances are stored in a file which is passed
to the next stage.

Closure 
Generation

AGENT
attack derivation

model

Rules

Attack Instance

Eluding Instance Search

NIDS
(e.g., Snort)

Alert?
Instance 
Simulator

YES (check next instance)

Instance Feasibility Check (Optional)

attack 
segments only 

real victim 
responses

Instance 
Simulator

Real 
Victim

NIDS

attack + response
packets

Figure 2. AGENT Architecture.

2. Eluding-Instance Search. This stage finds an attack in-
stance that eludes Snort. To perform this search, we im-
plement an instance simulator that successively writes
the instances to the network. On the simulator’s machine
we installed Snort, which reads from the network. This
search stops when an undetected instance is found or
when all instances have been checked.

We implemented the simulator using C libraries that
construct raw TCP packets [35, 47]. The simulator plays
complete TCP sessions, including TCP handshake, at-
tacker and victim’s packets, and termination procedures.
It simulates an average of 350 instances per second on a
Pentium III, 850MHz.

3. Instance Feasibility Check. Here we used two machines
connected by a LAN to separate the attacker from the
victim. In this stage, we used the instance simulator to
send the attacker’s packets only, the victim responses
were generated by a real application. Strictly speak-
ing, this stage is unnecessary because AGENT is sound.
However, we include it to validate our own methodol-
ogy and to illustrate that the attacks we found work in
the wild.

4. AGENT Implementation
We discuss the core components of AGENT. First, we

describe the implementation of AGENT’s inference engine.
Then, we present the transformation rules we used and
how we constructed the attack instance used to start the
derivation process. Last, we discuss how we customized the
inference-engine to address the black and white hat prob-
lems.

4.1. Inference Engine
We implemented AGENT’s inference engine in Prolog

[42]. Starting from a set of known facts, a Prolog program
applies a set of inference rules to successively generate new
facts. Our implementation represents the root instance as a
Prolog fact and the inference rules as Prolog rules. A Prolog
rule specifies a set of conditions whose conjunction must
hold to derive a conclusion. For example, a rule may spec-
ify the conditions that must hold to conclude that two TCP
packets are fragments of another packet.



We represent an attack as a sequence of TCP packets that
contains both attack packets (sent by the attacker) and re-
sponse packets from the victim. We choose a TCP sequence
to represent an attack because the majority of known attacks
use TCP; for example, 88% of Snort rules target TCP com-
munication. Since this representation exposes both TCP pa-
rameters and application data, it is easy to manipulate at-
tacks using TCP transformations, application-level transfor-
mations, or both. However, TCP representation is not essen-
tial to AGENT; it is easy to define transformation rules us-
ing other representations, such as UDP or IP packets.

4.2. Inference Rules
AGENT’s inference rules take a TCP sequence that im-

plements an attack A and returns a different sequence that
also implements A. The inference rules are, by definition,
sound: they always produce a sequence that implements A.
Soundness ensures that AGENT only derives instances that
are real attacks.

From our experience, defining sound rules is not a diffi-
cult task. However, one should consider three issues when
defining rules.

1. The attack application-level protocol. Obviously, FTP
rules (e.g., r2 in Section 3) are not sound with respect
to HTTP attacks. Hence, a rule set is specific to a given
application-level protocol.

2. The operating system on the victim’s host. Since pro-
tocol semantics may depend on a particular implemen-
tation [37], a rule may not preserve A’s semantics on all
operating systems. Hence, we customize the rule set for a
particular operating system. While this sounds complex,
in practice, it is an easy process: differences between op-
erating systems usually affect only a small number of in-
ference rules in the network or transport levels [37].

3. Interference among rules. A rule that preserves A’s se-
mantics when applied alone may not preserve the se-
mantics when applied with other rules. Like others [18],
we could not find an application-level transformation
that interferes with a transport level one; we encoun-
tered interference only at the TCP level, between the
TCP-permutation rule (permutes the packets of the se-
quence) and the TCP-retransmission rule (adds retrans-
mitted packets to the sequence). This interference occurs
because we define that a retransmitted packet appears af-
ter the original packet, so we cannot permute those two
packets. We address this issue in Section 4.4.

For each transformation we define two rules: expanding
and shrinking rules. A shrinking rule reverses the effect of
its corresponding expanding rule, and vice versa. For ex-
ample, adding a benign FTP command expands an FTP at-
tack, while removing such commands shrinks it. For trans-
formations that do not change the attack length (e.g., send-
ing TCP packets out-of-order) we artificially assign the ex-

panding rule (e.g., TCP-permutation) and the shrinking one
(e.g., TCP-sorting). Since overly shrinking an attack may
change its semantics, applying a shrinking rule may require
checking preconditions, which is not necessary for an ex-
panding rule. For instance, a rule that removes FTP com-
mands must ensure not to remove the malicious command.

Building a set of inference rules is a one time effort.
Since a single set usually can be shared by many attacks
with the same application-level protocol, the amortized cost
of this effort is low. However, there are cases in which a spe-
cific rule is unsound with respect to a specific attack. For ex-
ample, the HTTP-space-padding rule (Table 2) may nullify
a buffer overflow attack that requires an HTTP request with
a particular length. While we envision a large set of rules
distributed with AGENT, one should consider the sound-
ness of each rule with respect to the attack under consid-
eration. Our experience indicates that this can be done in a
straightforward manner.

Table 2 summarizes the TCP and application-level rules
that are currently supported by AGENT (detailed rule de-
scriptions are available in an earlier report [34]). At the TCP
level we cover transformations such as fragmentation, out-
of-order transmission (i.e., permutation), retransmission,
and header change (e.g., PUSH flag change). We devel-
oped transformations for three application-level protocols:
FTP [27], HTTP [10], and finger [50]. We chose FTP and
HTTP because they are common and used finger during
AGENT development because of its simplicity. Neverthe-
less, using finger we exposed the Evasive-RST vulnera-
bility in Snort (Section 6.1). To ensure soundness, we sim-
ulated the attack instances that evaded Snort on real servers
(BSD finger v0.17 and Apache HTTP server v1.3.28)
and verified that they work.

Our rules are also unique because they add a victim’s
TCP acknowledgments as part of the transformations. Since
a NIDS that performs a stateful TCP inspection (e.g., [3,
14]) uses acknowledgments to update its internal TCP state,
different orderings of attack packets and acknowledgments
induce different TCP states. Hence, even with a limited abil-
ity to influence the ordering between attack packets and vic-
tim’s acknowledgments, an attacker can create an ordering
that induces a TCP state in which a NIDS misses an at-
tack (e.g., Snort Evasive-RST vulnerability, Section 6.1).
The technical details about the way we added acknowledg-
ments appear in an earlier report [34]. We note, however,
that the issue of victim’s responses (both at the TCP and ap-
plication levels) as part of a transformation is yet to be fully
investigated.

4.3. Derivation starting point
The derivation process starts from an attack instance

called root. For an attack instance ai we compute the root
of ai by successively applying our shrinking rules to ai un-
til no more rules can be applied. In general, two different in-



Name Description

T
C

P

Fragmentation (r1) Fragments an attack packet into two packets. Adds victim acknowledgment after each new packet.
Permutation (r2) Permutes packets in a TCP stream. To be sound, the permutation preserves the original order between attack packets and

victim responses. Interference with TCP-retransmission is handled Section 4.4.
Retransmission (r3) A family of rules that add a retransmitted attack packet to the original stream. We focused on retransmission of evasive

RST packets: a packet is retransmitted with the RST flag set.
Header Change (r4) A family of rules that change the header of an attack packet. (was not used in practice in this paper).

A
pp

lic
at

io
n

finger padding (r5) Adds spaces before the username.
FTP Padding (r6) Adds benign FTP commands before a malicious command. For example, the rule adds “CWD /tmp\n” and “LIST”, but not

“QUIT” because it does not preserve semantics.
HTTP space padding (r7) Insert spaces after an HTTP method: for example, changes an HTTP request from “GET <URL>” into “GET___<URL>”
HTTP Multiple Requests
(r8)

Adds benign HTTP requests before a malicious request (e.g., “GET ... CMD.EXE”). Such a benign commands may be
“GET ... /INDEX.HTML”, but without a “Connection: close” option because this changes the attack semantics.

HTTP URL Encode (r9) Substitute printable characters in a URL with their equivalent ASCII values (was not used in practice in this paper).

Table 2. AGENT’s Inference rules (only expanding rules are shown).

stances of the same attack may produce two different roots.
Furthermore, the root of an instance may not be unique; it
may depend on the application order of the shrinking rules.
However, for the attacks and rules we consider in this pa-
per, we found a unique root that is common to all attack in-
stances. We further discuss the formal requirements from
shrinking rules and the definition of roots in Section 5.

4.4. Customizing the Inference Engine
Black Hat Customizations. Although AGENT enables

derivation of an infinite number of instances, in practice
the number of instances we can feed into a NIDS is finite.
Hence, it is necessary to select a finite subset of instances
that has a high probability of finding vulnerabilities. One
common strategy to construct this subset is a testing tech-
nique called equivalence partitioning [23]. In this technique,
one splits the test cases into classes such that each class rep-
resents cases that exercise different features of the software
under testing. Since attack transformations represent fea-
tures a NIDS should handle, we define a class by the com-
bination of transformations used to derive its instances.

We use three techniques to implement our equivalence
partitioning strategy. First, we apply the inference rules in
a depth-first order: we first apply application level rules be-
cause they are independent of transport rules, then we frag-
ment each instance, permute the instances we get, and add
retransmitted packets (Fig. 3). This order ensures that all in-
stances in a given derivation path belong to different classes;
since we apply TCP-retransmission after TCP-permutation,
this order also resolves the interference between those two
rules (Section 4.2). Second, we prune some of the deriva-
tion paths to prevent generation of a large number of in-
stances from the same class. For example, we prune in-
stances that only change the way an attack is fragmented;
we do not fragment packets shorter than 5 bytes. Third, we
split the testing process into phases that use different trans-
formations, so instances from different phases belong to dif-
ferent classes. Even though this strategy impairs AGENT’s
exhaustiveness, our experimental results show that it is an

effective way to find NIDS vulnerabilities (Section 6.1).
White Hat Customizations. In the white hat settings our

goal is to find a derivation path from the root to a given
instance (if one exists). To do so, we can start from the
root and derive instances until we hit the given instance.
Unfortunately, this approach is ineffective. First, it is dif-
ficult to determine when to stop searching. Second, if in-
stance is far from the root (e.g., the instances in Section 6.2),
such a search is infeasible. Hence, in the white hat settings,
AGENT performs a bottom-up search: it uses only shrink-
ing rules and shrinks the given instance until either it hits
a known root or no further shrinking is possible. In the lat-
ter case, we need to manually determine whether we found
a new root or the instance does not implement the attack.

5. A Formal Model for Attack Derivation
AGENT’s inference engine can be generalized into a

computational model for deriving attack instances. Our
computational model is based on natural deduction [28] and
can be used to formally define the black and white hat prob-
lems. As we discuss below, we believe that the model has
applications beyond NIDS testing.

A natural deduction system is a pair 〈F, Φ〉 where F is
a set of facts, and Φ is a set of inference rules. Such a sys-

aroot

a1

a2

a3

a4

Application-level (r5-r8)

TCP-Fragmentation (r1)

TCP-Permutation (r2)

TCP-Retransmission (r3)

a5

A pruned derivation path 
(e.g., do not fragment 
packets that are smaller 
than 5 bytes).

Figure 3. Application order of inference rules.
Each node represents a generated instance.
In the black hat setting, only expanding rules
are used (Table 2).



tem enables derivation of new facts by applying the infer-
ence rules on already known facts. We say that Φ and a fact
f1 derives a new fact fn, denoted f1 �Φ fn, if there is a
derivation sequence 〈f1, . . . , fn〉 such that f1 ∈ F and ev-
ery fi+1 is a result of applying a derivation rule r ∈ Φ on
fi. We say that a derivation sequence 〈f1, . . . , fn〉 termi-
nates in fn if no rule can be applied to fn.

To ensure a finite number of derivation starting points
we make three assumptions on the rules in Φ: each rule has
an expanding and shrinking version (Section 4.2), a shrink-
ing version of a rule does not increase the length (in bytes)
of an instance, and a derivation sequence containing only
shrinking rules has no cycles. Note that these assumptions
hold for the rules we describe in this paper. While we be-
lieve that these assumptions hold in general, the thorough
investigation of their validity is left for future work.

Given a set of attack instances, {a1 . . . an}, we define for
each ai its derivation starting points, or roots. Intuitively, a
root is the most compact and simple representation of ai.
More formally, a root of ai is an instance that terminates a
derivation sequence containing only the shrinking rules in Φ
and that starts from ai. The three assumptions described in
the previous paragraph ensure that any sequence that starts
from ai terminates and that the set of roots for each ai is fi-
nite. We denote the set of roots for ai as rootsΦ(ai) and for
a set of instances as rootsΦ(a1, . . . , an)

Below we formally define a derivation model for an at-
tack as well as the black and white hat problems. For read-
ability, the definitions are based on a single attack instance,
but they can be trivially extended to a set of instances.

Definition 1 (Derivation Model of an Attack) Let ai be
an instance of an attack A and Φ be a set of sound infer-
ence rules with respect to A.

• A derivation model of A is a natural deduction system
〈rootsΦ(ai), Φ〉.

• The closure of a derivation model, denoted
ClΦ(rootsΦ(ai)), is the set of all TCP sequences
that are derived from rootsΦ(ai) using Φ’s rules.

Definition 2 (NIDS View) Let N be a NIDS. N’s view with
respect to an attack A, denoted SA

N , is the set of TCP se-
quences that N recognizes as A.

Definition 3 (Black Hat Problem) Let 〈rootsΦ(ai), Φ〉 be
an attack derivation model of A, and N be a NIDS. Let
SA

N be the view of N with respect to A. The black hat
problem is to find a TCP sequence that is derivable from
rootsΦ(ai), but is not in SA

N . More formally, find s ∈
ClΦ(rootsΦ(ai))\SA

N .

Definition 4 (White Hat Problem) Let 〈rootsΦ(ai), Φ〉
be an attack derivation model of A and s be a TCP se-
quence. The white hat problem is to determine whether
s ∈ ClΦ(rootsΦ(ai)).

Properties of the Attack Derivation Model. For an at-
tack A, we envision a derivation model that, with respect to
a set of rules, is sound: derives only TCP sequences that im-
plementA; complete: can derive any TCP sequence that im-
plements A; and decidable: given a TCP sequence, there is
an algorithm that determines whether or not the sequence is
derived from the root.

For the black hat problem, soundness means that any in-
stance we discover that evades the NIDS implies vulner-
ability in the NIDS; completeness means that eventually
the model will generate all instances that evades the NIDS.
In the white hat case, soundness means the lack of false
positives, and completeness means the lack of false nega-
tives. Decidability is important because without it, we can-
not solve the white hat problem.

Our derivation model is sound because, by definition, we
require that rules, and their combinations, are sound. With
respect to the inferences rules we explore in this paper, our
model is also decidable (Section 4.4). This does not mean
that it is decidable in general. For example, when we con-
sider code obfuscation rules [4], it is likely that the model
becomes undecidable.

To prove completeness we would need to show that our
derivation model computes all TCP sequences that adhere to
a formal definition of the notion “a TCP sequence that im-
plements A”. Since, to our knowledge, such a formal defi-
nition does not yet exist, proving completeness is not possi-
ble. However, a derivation model can be used to inductively
define “implementing A”: a TCP sequence implements A
if and only if it can be derived from another TCP sequence
that implementsA. First, an expert determines the induction
base, a TCP sequence implementing A and transformation
rules that preserve A’s semantics, then our model defines
the set of all TCP sequences that implement A. We believe
that such formalism for the notion “implementingA” is cru-
cial for studying and understating NIDS capabilities. When
another formal model for defining attack instances is devel-
oped, it will be possible to either use our model as a formal
reference or compare our model to the new one.

6. Using AGENT in Practice
We present the results of using AGENT for NIDS testing

and attack analysis.

6.1. NIDS Testing Using AGENT
We used AGENT to generate instances of known attacks

and to feed them into Snort (v2.0.1). When Snort missed
an instance, we stopped and investigated Snort code to find
out the reason. We generated instances of three known at-
tacks: (i) finger-root, used to gain root sensitive information
from a victim (CVE-1999-0612), (ii) perl-in-cgi, used to
execute arbitrary commands on a Web server (CAN-1999-
0509), and (iii) ftp-cwd, a buffer overflow used to gain root
access to an FTP server (CAN-2002-0126).



Name Description Implications: it is possible to eludes Snort for any
Evasive RST Snort accepts an out-of-window TCP RST packet, and stops

tracking a live TCP connection.
TCP-based attack. Fixed in Snort v2.0.2.

Flushing1 Snort misses a signature that is fragmented over several TCP
packets.

attack whose signature can be inflated by an
application-level rule.

HTTP space padding Exploits Snort’s default configuration together with its nature to
report only a single alert per TCP packet. Snort misses the attack
or generates a general alert instead of the perl-in-cgi alert.

Web-CGI attack. With a default configuration, Snort
misses the attack; with a user-defined configuration,
Snort generates a general HTTP alert rather than the
specific alert for the attack.

HTTP multiple requests1 Snort analyzes only a single HTTP request per TCP packet. Web-CGI attack. Fixed in Snort v2.1.0.
FTP Padding Snort does not recognize a certain type of regular expressions. attack with a signature such as “foo*bar”. Fixed in

Snort v2.0.6.

1Concurrently to our work, Sommer and Paxson also reported this vulnerability [40].

Table 3. Snort bugs found by AGENT. See earlier report for details [34].

For each attack we tested, AGENT found instances that
eluded Snort. These instances exposed vulnerabilities in dif-
ferent sections of the Snort code: the TCP engine, the HTTP
decoder, and the pattern matching mechanism. Some of the
vulnerabilities have been fixed and others will be fixed in
the upcoming releases of Snort. Table 3 presents a summary
of vulnerabilities our testing effort exposed.

We chose Snort as a target NIDS for several reasons.
First, Snort comes with more than 1500 signatures, so it was
easy to find the signatures for our chosen attacks. Second,
Snort is considered a state-of-the-art NIDS. Snort perfor-
mance is comparable to that of a commercial NIDS [7, 46,
48], and it seems to be aware of many evasion techniques
that were reported in the past [5, 12, 30]. Therefore, Snort
uses techniques such as IP and TCP reassembly, HTTP en-
coding, TTL checks, and balanced data structures. Third,
since it is maintained regularly, we assumed that it would
be non-trivial to find instances that elude it.

Testing Effort Summary. Based on our equivalence-
partitioning testing strategy (Section 4.4), we performed a
total of seven testing phases that yielded five vulnerabili-
ties. We started with a simple attack and with a rule set that
derived a small number of instances. To cover more classes,
in each phase we either added rules to AGENT or changed
the attack.

Table 4 presents a summary of our seven test phases. In
the first two phases, we used finger-root with only transport
rules. In the second phase, AGENT exposed the Evasive-
RST vulnerability. We continued to use the finger-root at-
tack, but added the finger-padding rule. Using this rule
alone did not yield new vulnerabilities (Phase 3), but com-
bining it with transport rules exposed the Flushing vulner-
ability (Phase 4). We continued with perl-in-cgi and each
HTTP rule we used exposed a vulnerability in Snort’s HTTP
decode engine (Phases 5 and 6). Finally, we tested Snort
with instances of the ftp-cwd attack and discovered the FTP
padding vulnerability (Phase 7).

We believe that AGENT’s success in finding vulnerabil-
ities arises from a combination of features. Since AGENT

is sound, it generates only instances that are real attacks.
Hence, we tested millions of instances and did not waste
time determining whether or not a given TCP sequence is
a real attack. Since AGENT generates all instances from
a given set of rules or generates a subset of the instances
based on feature testing (Section 4.4) , it finds vulnerabil-
ities that are exposed only by a small number of instances
(e.g., Phase 4). Last, AGENT exposes vulnerabilities that
requires a combination of transport and application level
transformations (e.g., Phase 7).

Phases 1 and 3 illustrate the implications of AGENT
exhaustiveness. In these phases, AGENT generates all in-
stances from a set of rules (i.e., no pruning). In Phase 1,
Snort identifies all instances, so we can assert that Snort cor-
rectly reassembles TCP streams with six characters or less.
After Phase 3 we can assert that Snort’s pattern matching al-
gorithm correctly ignores spaces before a signature. These
are simple claims, but they provide important information
about Snort reliability. To the best of our knowledge, such
reliability claims are unknown in the context of network in-
trusion detection. We hope that in the future AGENT will
be able to assert more complex properties.

AGENT also has a few limitations. In Phase 4, AGENT
found the first instance that eluded Snort only after gener-
ating more than a million instances. If we uniformly sam-

Phase Attack Used Φ: Rules
Used

(Table 2)

Generated
Instances

% of
eluding

instances

Vulnerability
Discovered
(Table 3)

1 finger-root {r1, r2} 1,631 0 None
2 finger-root {r1, r2, r3} 3,628,960 33 Evasive RST
3 finger-root {r5} 25 0 None
4 finger-root {r1, r2, r5} 6,820,346 0.15 Flushing
5 perl-in-cgi {r7} 677,960 > 99 HTTP Space

Padding
6 perl-in-cgi {r8} 100 99 HTTP Multi-

ple Requests
7 ftp-cwd {r1, r6} 178,585 23 FTP Padding

Table 4. Testing effort summary.



ple the instances derived in this phase, we should have
found such an instance after about 10,000 samples (0.15%
of 6,820,346). This observation suggests a way to im-
prove AGENT efficiency by using random sampling meth-
ods (e.g., [22]).

6.2. Attack Analysis Using AGENT
To report a bug in a NIDS, one usually includes a trace of

packets (e.g., captured by tcpdump [47]) that demonstrates
an attack the NIDS misses. The first task of the NIDS de-
velopment team is to verify that this trace is a real attack.

We demonstrated that AGENT can automate this
task. We created 10 ftp-cwd attack instances by ran-
domly applying the FTP-padding, TCP-fragmentation,
TCP-permutation, and TCP-retransmission rules (Ta-
ble 2) on the ftp-cwdroot instance (Fig. 1b). While
the ftp-cwdroot instance contains 100 bytes in a sin-
gle TCP packet (except the handshake packets), our in-
stance contains an average of 3270 bytes in 693 packets.
Then, we duplicated the instances and created 10 be-
nign ones. In a benign instance we changed one byte
to nullify the attack (e.g., we changed a sequence num-
ber of a packet, so the packets cannot be reassembled). We
obtained 20 instances of which only 10 of them are real at-
tacks.

We used AGENT as a white hat tool (Section 4.4) to
distinguish between attack and benign instances. For each
attack instance, AGENT found a derivation sequence to
the root in about 0.5 seconds with an average length of
509 rules. For every benign instance, AGENT exhaustively
searched for a derivation sequence but could not find one,
on average, such a search took 70 seconds. Essentially,
AGENT proved that, with respect to the rules we consider
in this paper, a benign instance is not a real attack.

This experiment illustrates AGENT’s ability to analyze
complex attack instances. Manually distinguishing these in-
stances would have required a tremendous effort. One might
be able to automate such a process using a NIDS cross-
testing technique [22], but such a technique cannot provide
a sequence of transformations used to obfuscate an attack
or assert that such a sequence does not exist.

7. Future Work
We are expanding our knowledge-base of rules. We are

exploring other link, transport, and payload level rules, to
model attackers’ knowledge. In particular, we intend to in-
vestigate code obfuscation rules that enable attackers to
change binary code of network exploits. We also intend to
explore techniques for proving that the rules cover all pos-
sible ways to modify an attack.

We intend to explore other usages of our attack deriva-
tion model. For example, the model can be used to parti-
tion attack instances into families according to the transfor-

mations used to create them, or characterize and compare
NIDS based on the mutations they handle.
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