Automatic Generation and Tuning of MPI Collective
Communication Routines -

Ahmad Faraj

Xin Yuan

Department of Computer Science, Florida State University
Tallahassee, FL 32306
{faraj, xyuany@cs.fsu.edu

ABSTRACT

In order for collective communication routines to achieve
high performance on different platforms, they must be able
to adapt to the system architecture and use different al-
gorithms for different situations. Current Message Pass-
ing Interface (MPI) implementations, such as MPICH and
LAM/MPI, are not fully adaptable to the system architec-
ture and are not able to achieve high performance on many
platforms. In this paper, we present a system that produces
efficient MPI collective communication routines. By auto-
matically generating topology specific routines and using an
empirical approach to select the best implementations, our
system adapts to a given platform and constructs routines
that are customized for the platform. The experimental re-
sults show that the tuned routines consistently achieve high
performance on clusters with different network topologies.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming— Distributed Programming

General Terms

Performance

Keywords

MPI, Cluster of Workstations, Tuning System, Empirical

1. INTRODUCTION

The Message Passing Interface (MPI) [15] provides a sim-
ple communication API and eases the task of developing
portable parallel applications. Its standardization has re-
sulted in the development of a large number of MPI based
parallel applications. For these applications to achieve high

*This work was partially supported by NSF grants ANI-
0106706, CCR-~0208892, and CCF-0342540.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’05, June 20-22, Boston, MA, USA.

Copyright (©) 2005, ACM 1-59593-167-8/06/2005 ...$5.00.

performance, it is crucial that the MPI library realizes the
communications efficiently.

In this paper, we consider MPI collective communication
routines, where multiple nodes participate in the communi-
cation operation. MPI developers have long recognized the
need for the communication routines to be adaptable to the
system architecture and/or the application communication
patterns in order to achieve high performance on a system.
Various forms of software adaptability are supported in most
MPI implementations. For example, MPICH-1.2.6 [21] uti-
lizes different algorithms based on message size when realiz-
ing all-to-all operation. However, the software adaptability
supported in the current MPI libraries, including MPICH
[16, 21] and LAM/MPI [9], is insufficient and these libraries
are not able to achieve high performance on many platforms.

There are inherent limitations in the current implementa-
tions of MPI collective communication routines. First, since
the library routines are implemented before the topology
information is known, it is impossible for the library to uti-
lize topology specific algorithms. Using topology unaware
algorithms can generally perform reasonably well when the
message size is small since the network can handle such cases
without significantly degrading the performance. However,
when the message size is large, the network contention prob-
lem can significantly affect the communication performance.
This is particularly true when nodes are not connected by
a single crossbar switch. Second, for any communication al-
gorithm, there are many system parameters that can affect
the performance of the algorithm. These parameters, which
include operating system context switching overheads, the
ratio between the network and the processor speeds, the
switch design, the switch buffer capacity, and the network
topology, are difficult to model. The library developer can-
not make the right choices for different platforms.

In this paper, we present a system that overcomes these
limitations. The system is based on two main techniques.
First, topology specific communication routines are auto-
matically generated by a routine generator that takes the
topology information as input. The routines are added to
an algorithm repository maintained by the system, which
also includes an extensive number of topology unaware al-
gorithms for each supported routine. Second, an empirical
approach is used to select the best implementation among
the different topology specific and topology unaware algo-
rithms. These two techniques enable our system to adapt
to different architectures and construct efficient collective
communication routines that are customized to the archi-
tectures.

The tuning system is developed for Ethernet switched
clusters. It currently tunes five MPI collective communica-
tion routines: MPI_Alltoall, MPI_Alltoallv, MPI_Allgather,
MPI_Allgatherv, and MPI_Allreduce. The routines produced
by the system run on LAM/MPI [9]. The experimental re-
sults show that the tuned routines are very robust and yield
good performance for clusters with different network topolo-
gies. The tuned routines sometimes out-perform the rou-
tines in LAM/MPI and MPICH [21] to a very large degree.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes the auto-
matic generation and tuning system. Section 4 reports the
performance results , and Section 5 concludes the paper.

2. RELATED WORK

The success of the MPI standard can be attributed to the
wide availability of two MPI implementations: MPICH(7,
16, 21] and LAM/MPI [9]. Many researchers have been try-
ing to optimize the MPI library [10, 12, 13, 17, 19, 20, 21]. In
[13], optimizations are proposed for collective communica-
tions over Wide-Area Networks by considering the network
details. In [17], a compiler based optimization approach is
developed to reduce the software overheads in the library. In
[10], MPI point—to—-point communication routines are opti-
mized using a more efficient primitive (Fast Message). Op-
timizations for a thread-based MPI implementation are pro-
posed in [20]. Optimizations for clusters of SMPs are pre-
sented in [19]. A combined compiler and library approach
was proposed in [12]. Our system differs in that it con-
structs high performance collective communication routines
by automatically generating topology specific routines and
by empirically selecting the best algorithms. The algorithm
repository maintained in our system includes many algo-
rithms developed by various research groups [2, 4, 11, 12,
14, 21]. This paper, however, focuses on the automatic gen-
eration and the automatic tuning of the algorithms, not on
the individual algorithm development.

The empirical tuning technique used in our system is a
variation of the Automated Empirical Optimization of Soft-
ware (AEOS) technique [23]. The idea of AEOS is to op-
timize software automatically using an empirical approach
that includes timers, search heuristics, and various methods
of software adaptability. This technique has been applied
successfully to various computational library routines [1, 6,
23]. The research that is closely related to our work is pre-
sented in [22], where the AEOS technique was applied to op-
timize collective communications. Our work differs from [22]
in a number of ways. First, our system considers algorithms
that are specific to the physical topology while algorithms
in [22] use logical topologies and are unaware of the phys-
ical topology. Second, the system in [22] tries to tune and
produce common routines for systems with different num-
bers of nodes. Our system is less ambitious in that we tune
routines for a specific physical topology. By focusing on a
specific physical topology, we are able to construct high effi-
ciency routines. Third, [22] mainly focused on one-to-all and
one-to-many communications and studied various message
pipelining methods to achieve the best performance. This
paper considers all-to—all and many—to—-many communica-
tions where pipelining is not a major factor that affects the
communication performance. For the types of communica-
tions investigated in this paper, selecting the right algorithm
for a given system and communication pattern is crucial for

achieving high performance.

3. AUTOMATIC GENERATION AND TUN-
ING SYSTEM

The automatic generation and tuning system is designed
to construct efficient collective communication routines that
are customized for a particular platform and/or application.
For each communication routine supported by the system,
an extensive set of topology unaware and topology specific
algorithms is maintained. The system utilizes an empiri-
cal approach to determine the best algorithms among all
algorithms in the set for the communication operation un-
der different conditions. The combination of the automatic
generation of topology specific routines and the empirical
approach enables the system to fully adapt to a platform
and construct efficient customized routines.

Currently, the system supports five routines: MPI_Alltoall,
MPI_Alltoallv, MPI_Allgather, MPI_Allgatherv, and
MPI_Allreduce. The tuned routines use point-to-point prim-
itives in LAM/MPI. The system can be extended to pro-
duce routines that run on any communication library that
provides MPI-like point-to-point communication primitives.
Currently, the system only provides automatic routine gen-
erator for homogeneous Ethernet switched clusters. Hence,
the full system only works on Ethernet switched clusters.
The system can tune topology unaware algorithms on any
platform that supports LAM/MPI and allows users to sup-
ply their own topology specific routine generators, poten-
tially for other types of networks.

extensible drivers
agorithm PRI
regository |nd|v!dual searching
agorithm —— heuristics
topology/pattern LL:?\I/Z? ~
independent extensible
routines timin,
extensible woverall 1| mechgnisms
topology/pattern tuning driver
specific topo! o_gy/pattern i
routine specific
generator routines tuned
routine

Figure 1: System overview

As shown in Figure 1, there are five major components in
the system: the extensible topology /pattern specific routine
generator, the extensible algorithm repository, the search
heuristics, the extensible timing mechanisms, and the drivers.
The extensible topology/pattern specific routine generator
takes topology description and sometimes pattern descrip-
tion and generates topology/pattern specific routines. For
MPI_Alltoall, MPI_Allgather, and MPI_Allreduce, only the
topology description is needed. The pattern description is
also needed for MPI_Alltoallv and MPI_Allgatherv. This
module is extensible in that users can provide their own
routine generators with their own topology descriptors and
pattern descriptors to replace the system built-in genera-
tors. For each supported MPI routine, the algorithm repos-
itory contains an extensive set of algorithms to be used in
the tuning process. These algorithms include system built-
in topology/pattern unaware algorithms, topology/pattern
specific algorithms generated by the routine generator mod-
ule, and the results from the individual algorithm tuning
drivers. Each routine in the repository may have zero, one,

or more algorithm parameters. The repository is extensible
in that it allows users to add their own implementations.
The search heuristics determine the order in the search of
the parameter space for deciding the best values for algo-
rithm parameters. The extensible timing mechanisms deter-
mine how the timing results are measured. This module is
extensible in that users can supply their own timing mech-
anisms. The driver module contains individual algorithm
tuning drivers and overall tuning driver. The individual al-
gorithms tuning drivers tune algorithms with parameters,
produce routines with no parameters (parameters are set to
optimal values), and store the tuned routines back in the
algorithm repository. The overall tuning driver considers all
algorithms with no parameters and produces the final tuned
routine. Next, we will describe each module in more details.

3.1 Algorithm repository

We will first describe the cost model that we use to give
a rough estimate of the communication performance for the
algorithms. It must be noted that some parameters in the
cost model that can contribute significantly to the overall
communication costs, such as sequentialization costs and
network contention costs described below, are very difficult
to quantify. In practice, they cannot be measured accurately
since they are non-deterministic in nature. As a result, this
cost model can only be used to guide the selection of algo-
rithms in the tuning system repository, but cannot be used
to predict accurately which algorithm will be most effec-
tive for a given system setting. Our tuning system uses an
empirical approach to select the most effective implementa-
tions, and can even operate without the cost model. After
discussing the cost model, we will then introduce the algo-
rithms maintained in the repository, including both topology
unaware algorithms and topology specific algorithms.

Cost Model

The model reflects the following costs:
e Per pair communication time. The time taken to send
a message of size n bytes between any two nodes can be
modeled as a + nB, where « is the startup overhead, and (8
is the per byte transmission time.
e Sequentialization overhead. Some algorithms partition the
all-to-all type of communication into a number of phases. A
communication in a phase can only start after the comple-
tion of some communications in the previous phases. This
sequentialization overhead may limit the parallelism in the
communication operation. We use 6 to denote the sequen-
tialization overhead between 2 phases. For a communication
with m phases, the sequentialization overhead is (m — 1)6.
e Synchronization overhead. We use two types of synchro-
nizations in our algorithms: light-weight §; and heavy-weight
0n. A light-weight barrier ensures that a communication
happens before another while heavy-weight barrier uses a
system wide synchronization by calling MPI_Barrier. In
most cases, Jp, is larger than §;, which is larger than 6.
e Contention overhead. Contention can happen in three
cases: node contention v, when multiple nodes send to the
same receiver, link contention v; when multiple communica-
tions use the same network links, and switch contention ~s
when the amount of data passing a switch is more than the
switch capacity. We will use v = v, + 71 + s to denote the
sum of all contention costs.

Using this model, the time to complete a collective com-

munication is expressed in the above five terms («, 3, 6, 9,
and 7). The startup time and sequentialization overhead
terms are important for algorithms for small messages while
the bandwidth, synchronization costs, and contention over-
head terms are important for algorithms for large messages.

In the rest of the paper, we will assume that p is the
number of processes and n is the message size (passed as
a parameter to routines MPI_Alltoall, MPI_Allgather, and
MPI_Allreduce, that is, n = sendcount x size_of _element).
Each node in the system can send and receive a message si-
multaneously, which is typical in Ethernet switched clusters.

Algorithms for MPI_Alltoall

In the following, we assume by default that an algorithm
does not have parameters, unless specified otherwise.
Simple algorithm. This algorithm basically posts all re-
ceives and all sends, starts the communications, and waits
for all communications to finish. Let i — j denote the com-
munication from node i to node j. The order of communica-
tions for node i isi — 0,7 — 1, ..., ¢ — p— 1. The estimated
time for this algorithm is (p — 1)(a + ngB) + 7.

Spreading Simple algorithm. This is similar to the simple
algorithm except that the order of communications for node
tisi—i+1,1—i+2,..,%— (i+p—1) mod p. This com-
munication order may potentially reduce node contention.
The estimated time is the same as that for simple algorithm
except that the v term might be smaller.

2D mesh algorithm. This algorithm organizes the nodes as
a logical x X y mesh and tries to find the factoring such that x
and y are close to 4/p. The all-to—all operation is carried out
first in the dimension and then in the y dimension. For all
data to reach all nodes, the all-to—all operation is actually an
all-gather operation that collects all data from each node to
all nodes in each dimension. Thus, assume x =y = ,/p, the
message size for the all-gather operation in the x dimension
is pn and the message size for the all-gather operation in the
y dimension is p,/pn. The estimated time for this algorithm
is (P — D(a+pnB) + (P — D(a+py/pnB) +0 +~v =
2(y/p — 1)a+ (p— 1)pnB + 0 4 . Compared to the simple
algorithms, the 2D mesh algorithm sends less messages, but
more data. There is a 0 term in the estimated time since
communications are carried out in two phases.

3D mesh algorithm. This algorithm organizes the nodes
as a logical x X y x z mesh. Assume z = y = z = ¥/p.
The estimated time is 3(¢/p — 1)a + (p — 1)pnB + 260 + 7.
Compared to 2D mesh algorithm, this algorithm sends lesser
messages, but consists of three phases, which introduce a 260
sequentialization overhead.

Recursive doubling (rdb) algorithm. When the number
of processes is a power of two, the recursive doubling al-
gorithm is the the extension of the 2D mesh and 3D mesh
algorithms to the extreme: a lg(p)-dimensional mesh with 2
nodes in each dimension. This algorithm first performs an
all-gather operation to collect all data from all nodes to each
node. Each node then copies the right portion of the data to
its receiving buffer. Details about recursive doubling can be
found in [21]. When the number of nodes is a power of two,
the estimated time is lg(p)a+ (p — D)pnB+ (lg(p) — 1)0 + .
When the number of processes is not a power of two, the
cost almost doubles [21]. Compared to the 3D mesh algo-
rithm, this algorithm has a smaller startup time, but larger
sequentialization overhead.

Bruck algorithm. This is another lg(p)-step algorithm that

sends less extra data in comparison to the recursive doubling
algorithm. Details can be found in [2, 21]. When the number
of processes is a power of two, the estimated time is lg(p)a+
2lg(p)B+ (lg(p) —1)0 +~. This algorithm also works with
slightly larger overheads when the number of processes is
not a power of two.

The above algorithms are designed for communication of
small messages. Thus, the bandwidth and the contention
terms in the estimated time are insignificant. To achieve
good performance, the best trade-off must be found between
the startup overhead and the sequentialization overhead.
Next, we will discuss algorithms designed for large messages.

Ring algorithm. This algorithm partitions the all-to-all
communication into p — 1 steps (phases). In step i, node
j sends a messages to node (j + ¢) mod p and receives a
message from node (j —4) mod p. Thus, this algorithm does
not incur node contention if all phases are executed in a
lock-step fashion. Since different nodes may finish a phase
and start a new phase at different times, the ring algorithm
only reduces the node contention (not eliminates it). The
estimated time is (p — 1)(a +nB8) + (p — 2)0 + vn + 7s + V1.
Ring with light barrier algorithm. This algorithm adds
light-weight barriers between the communications in differ-
ent phases that can potentially cause node contention and
eliminates such contention. The estimated time is (p—1)(a+
nB) + (p — 2)0; + vs + 1. Compared to the ring algorithm,
this algorithm incurs overheads for the light-weight barriers
while reducing the contention overheads.

Ring with MPI barrier algorithm. The previous algo-
rithm allows phases to proceed in an asynchronous manner
which may cause excessive data injected into the network.
The ring with MPI barrier algorithm adds an MPI barrier
between two phases and makes the phases execute in a lock-
step fashion, resulting in a less likely switch contention. The
estimated time is (p—1)(a+nfB)+ (p—2)dn+;. Compared
to the ring with light barrier algorithm, this algorithm in-
curs heavy-weight synchronization overheads while reducing
the switch contention overheads.

Ring with N MPI barriers algorithm. Adding a bar-
rier between every two phases may be an over-kill and may
result in the network being under-utilized since most net-
works and processors can effectively handle a certain de-
gree of contention. The ring with N MPI barriers algo-
rithm adds a total of 1 < N_mpi_barrier < p — 2 barri-
ers in the whole communication (a barrier is added every
#}n”em phases). This allows the contention over-
heads and the synchronization overheads to be compromised.
The estimated time for this algorithm is (p — 1)(a + n3) +
Nop, + n + vs + 1. This algorithm has one parameter, the
number of barriers (N_mpi_barrier). The potential value is
in the range of 1 to p — 2.

Pair algorithm. The algorithm only works when the number
of processes is a power of two. This algorithm partitions the
all-to-all communication into p — 1 steps. In step ¢, node
j sends and receives a message to and from node j & i
(exclusive or). The estimated time is the same as that for the
ring algorithm. However, in the pair algorithm, each node
interacts with one other node in each phase compared to two
in the ring algorithm. The reduction of the coordination
among the nodes may improve the overall communication
efficiency. Similar to the ring family algorithms, we have
pair with light barrier, pair with MPI barrier, and

pair with N MPI barriers algorithms.

The ring family and the pair family algorithms try to re-

move node contention and indirectly reduce other contention
overheads by adding synchronizations to slow down commu-
nications. These algorithms are topology unaware and may
not be sufficient to eliminate link contention since communi-
cations in one phase may share the same link in the network.
The topology specific algorithm removes link contention by
considering the network topology.
Topology specific algorithm. We use a message scheduling
algorithm that we developed in [4]. This algorithm finds
the optimal message scheduling by partitioning the all-to—
all communication into phases such that communications
within each phase do not have contention, and a minimum
number of phases are used to complete the communication.
The algorithm estimated time depends on the topology.

Algorithms for MPI_Allgather

Since the M PI_Allgather communication pattern is a spe-
cial all-to—all communication pattern, most of the all-to—all
algorithms can be applied to perform an all-gather oper-
ation. Our system includes the following all-gather algo-
rithms that work exactly like their all-to-all counterparts
(same estimated time), simple, spreading simple, ring,
ring with light barrier, ring with MPI barrier, ring
with N MPI barriers, pair, pair with light barrier,
pair with MPI barrier, and pair with N MPI barriers.
The following all-gather algorithms have different estimated
times from their all-to—all counterparts: 2D mesh with an
estimated time of 2(,/p—1)a+ (p —1)nB+ 60+, 3D mesh
with an estimated time of 3(/p —)a+ (p — 1)nfB + 20 +~,
and Recursive doubling (rdb). When the number of
processes is a power of two, the estimated time of rdb is
lglp)a+ (p — 1)nB + (Ig(p) — 1)0 + . The repository also
includes the following algorithms:
Bruck algorithm. The Bruck all-gather algorithm is differ-
ent from the Bruck all-to-all algorithm. Details can be found
in [2, 21]. When the number of processes is a power of two,
the estimated time is similar to the recursive doubling algo-
rithm. The time is better than that of recursive doubling
when the number of processes is not a power of two.
Gather-Bcast algorithm. This algorithm first gathers all
data to one node and then broadcasts the data to all nodes.
Assume that the gather and broadcast operations use the
binary tree algorithm, the estimated time is lg(p)(a+mng3) +
(Ig(p) —1)0+ for gather and lg(p)(a+pnB)+(lg(p)—1)0+~
for broadcast.
Topology specific algorithm. We use an all-gather algo-
rithm that we developed in [3]. The algorithm numbers the
switches based on the order the switches are visited in Depth
First Search (DFS). Let switch s; be the i-th switch visited
in DFS and let the machines attached to switch s; be njo,
Ni1,...,Ni,m,;. Assume that the system has switches so, s1,
..sy Sk. The algorithm uses the following logical ring (LR)
communication pattern to realize the all-gather operation:
no,0 — No,1 — ... — NO,mg — N1,0 — N1,1 — ...
. Ngo — N1 — .. — nk,mk — T0,0- AS proven in
[3], this logical ring pattern is contention free. To complete
an all-gather operation, the algorithm repeats the logical
ring communication pattern p — 1 times. In the first iter-
ation, each node sends its own data to the next adjacent
node in the logical ring. In the following iterations, each
node forwards what it received in the previous iteration to

— 'I’Ll’ml —

its adjacent node. Details about this algorithm can be found
in [3]. The estimated time is (p —1)(a+nB)+ (p—2)0 + ~s.
Note that MPICH [16] uses a topology unaware logical ring
algorithm that operates in the same way as our algorithm.
However, without considering the network topology, the ring
pattern in the MPICH algorithm may result in severe net-
work contention, which degrades the performance.

Algorithms for MPI_Allreduce

Our implementations for MPI_Allreduce assume the reduc-
tion operation is commutative.

Reduce-Bcast algorithm. The algorithm first performs a
reduction to a node and then broadcasts the results to all
nodes. Assuming that the binary tree algorithm is used for
both operations, the time for both operations is lg(p)(a +
nB) + (lg(p) — 1)6 + .

All-gather based algorithm. The algorithm first gathers
all data to all nodes. Then, each node performs the reduc-
tion locally. This algorithm uses the tuned MPI_Allgather
routine, which can be topology specific.

Recursive doubling (rdb) algorithm. This algorithm is
similar to the all-gather based algorithm except that the
reduction operation is performed while the data are being
distributed. Since we ignore the computation costs, the esti-
mated time is the same as recursive doubling for all-gather.
MPICH Rabenseifner algorithm. This algorithm com-
pletes in two phases: a reduce-scatter followed by an all-
gather. The reduce-scatter is realized by recursive halving,
which has a similar estimated time as recursive doubling.
The all-gather is realized by recursive doubling. The time
for this algorithm is roughly 2 times that of rdb algorithm
for all-gather with a message size of % More details of the
algorithm can be found in [14].

Rabenseifner algorithm variation 1. This is a Rabenseifner
algorithm with the all-gather operation performed using the
tuned all-gather routine. This algorithm may be topology
specific since the tuned all-gather routine may be topology
specific.

Rabenseifner algorithm variation 2. In this variation, the
reduce-scatter operation is realized by the tuned all-to—all
routine with a message size of 2 and the all-gather operation
is realized by the tuned all-gather routine with a message
size of %.

Algorithms for MPI_Alltoallv

Most of the topology unaware all-to—-all algorithms can be
used to realize the MPI_Alltoallv operation. QOur system
contains the all-to—allv version of the following all-to-all
algorithms: simple, spreading simple, and the ring and
pair families algorithms.

Topology specific algorithms. There are two topology spe-
cific MPI_Alltoallv algorithms: greedy algorithm and all—
to—all based algorithm. These two algorithms are exten-
sions of the algorithms with the same names in the CCMPI
package we developed [12]. Since MPI_Alltoallv supports
many-to-many communication with different message sizes,
there are three issues in realizing this communication: bal-
ancing the load, reducing network contention, and minimiz-
ing the number of phases. The greedy algorithm focuses on
balancing the load and reducing network contention while
the all-to—all based algorithm considers all three issues when
scheduling messages. Details about these algorithms can be
found in [12].

Algorithms for MPI_Allgatherv

Most of the topology unaware all-gather algorithms are ex-
tended to the all-gatherv operation. The algorithms include
the simple, recursive doubling, ring and pair families
algorithms. The topology specific algorithm is based on the
topology specific all-gather algorithm.

3.2 Timing mechanisms

The timing mechanisms constitute the most critical com-
ponent in the tuning system as it decides how the perfor-
mance of a routine is measured. Since the measurement
results are used to select the best algorithms, it is essential
that the timing mechanism gives accurate timing results.
Unfortunately, the performance of a communication routine
depends largely on the application behavior. Our system
makes the timing module extensible in addition to providing
some built-in timing mechanisms. This allows users to sup-
ply application specific timing mechanisms that can closely
reflect the application behavior. The built-in timing mecha-
nisms follow the approach in Mpptest [8], where the perfor-
mance of multiple invocations of a routine is measured, and
the timing results are fairly consistent and repeatable for the
routines we currently support. We plan to add more built-in
timing mechanisms as we consider other MPI routines.

3.3 Search heuristics

The search heuristics decide the order that the parame-
ter space is searched to find the best algorithm parameters,
which decide the time to tune a routine. In the current
system, only the ring with N MPI barriers and pair with
N MPI barriers algorithms have one algorithm parameter,
N _mpi_barrier, which has a small solution space. Our cur-
rent system only supports a linear search algorithm, that
is, deciding the best solution for each parameter by linearly
trying out all potential values. The system handles multi-
ple parameters cases by assuming that the parameters are
independent from each other. The linear search algorithm
is sufficient for our current system. In the future, as we
consider other MPI operations and add algorithms with pa-
rameters that have larger solution spaces, we will add more
efficient search heuristics, such as hill climbing.

3.4 Drivers

The process for tuning MPI_Alltoall, MPI_Allgather, and
MPI_Allreduce is different from that for tuning MPI_Alltoallv
and MPI_Allgatherv, and that is depicted in Figure 2. The
process contains four steps. In the first step, the system
prompts the user for inputs, which include (1) the routine(s)
to tune, (2) whether to consider topology specific routines,
(3) which routine generator to use (users can choose the
built-in generator or supply their own generator), (4) the
topology description file, (5) the timing mechanism (users
can choose among the built-in ones or supply their own
timing program). In the second step, the system gener-
ates the topology specific routines if requested. In the third
step, algorithms with parameters are tuned. The tuning
is carried out as follows. First, for a set of fixed message
sizes (currently set to 1B, 64B, 512B, 1KB, 2K B, 4K B,
8K B, 16K B, 32K B, 64K B, 128K B, and 256K B), the lin-
ear search algorithm is used to find the optimal value for
each parameter for each of the sizes. The system then walks
through each pair of adjacent message sizes. If the best pa-
rameter values are the same for the two sizes, the system

will use the parameter values for all message sizes in the
range between the two sizes. If different best parameter val-
ues are used for the two points of the message sizes, a binary
search algorithm is used to decide the crossing point where
the parameter value should be changed. For each operation,
the system assumes the same algorithm when the message
size is larger than or equal to 256 K B. This step generates a
tuned routine for the particular algorithm with the best pa-
rameter values set for different ranges of message sizes. This
tuned routine is stored back in the algorithm repository as
an algorithm without parameters. In the last step, all algo-
rithms with no parameters are considered. The process is
similar to that in step 3. The only difference is that instead
of tuning an algorithm with different parameter values, this
step considers different algorithms. Figure 3 (a) shows an
example of the final generated all-to-all routine.

Step 1: Prompt the user for the following information:
1.1 Which routine to tune;
1.2 Whether to include topology specific routines;
1.3 Which routine generator to use;
1.4 The topology description file;
1.5 Which timing mechanism to use;

Step 2: Generate the topology specific routines.

Step 3: Tune algorithms with parameters.

3.1 Decide the best par. values for a set of msg sizes
(currently 1B, 64B, 256B, 1KB, 2KB, 4KB, 8KB,
16KB, 32KB, 64KB, 128KB, 256KB).

3.2 Find the exact message sizes when the best
parameter values are changed (binary search).

3.3 Generate one routine with the best parameters set
and store it in the algorithm repository.

Step 4: final tuning, generate the final routine.

/* only considers algorithms with no parameters */
4.1 Decide the best algorithm for a set of message sizes
(currently 1B, 64B, 256B, 1KB, 2KB, 4KB, 8KB,

16KB, 32KB, 64KB, 128KB, 256KB).

4.2 Find the exact message sizes when the best
algorithms are changed using (binary search).

4.3 Generate the final routine with the best algorithms
selected for different message ranges.

Figure 2: A tuning process example

When tuning MPI_Alltoallv and MPI_Allgatherv, the sys-
tem also asks for the pattern description file in addition
to other information. The routine generator uses both the
topology and pattern information and produces a routine
for the specific topology and pattern. Tuning algorithms
with parameters in the third step is straight-forward, the
system just measures the performance of all potential val-
ues for a parameter for the specific pattern and decides the
best parameter values. Finally, the last step considers all
algorithms and selects the best algorithm. The system po-
tentially generates a different implementation for each invo-
cation of a routine. To produce a compact routine for an
application, the system allows the pattern description file to

int alltoall_tuned(...) {

if ((msg_size >= 1) && (msg_size < 8718))
alltoall_simple(...);

else if ((msg_size >= 8718) && (msg_size < 31718))
alltoall_pair_light_barrier(...);

else if ((msg_size >= 31718) && (msg_size < 72032))
alltoall_pair_N_mpi_barrier_tuned(...);

else if (msg_size >= 72032)
alltoall_pair_mpi_barrier(sbuff, scount, ...);

}

(a) An example tuned MPI_Alltoall routine

int alltoallv_tuned(...) {
static int pattern = 0;
if (pattern == 0) {
alltoallv_tspecific_alltoall(...); pattern++;
} else if ((pattern >= 1) && (pattern < 100)) {
alltoallv_ring(...); pattern ++;
} else { MPI_alltoallv(...); pattern4++; }

(b) An example tuned MPI_Alltoallv routine

Figure 3: Examples of tuned routines

contain multiple patterns, which may correspond to the se-
quence of invocations of the routine in the application. This
pattern file can be created by profiling the program execu-
tion. The tuning system then creates a sequence of tuned
implementations for the sequence of patterns. To reduce the
code size, before a tuned routine is generated for a pattern,
the pattern is compared with other patterns whose routines
have been generated. If the difference is under a threshold
value, the old tuned routine will be used for the new pat-
tern. Figure 3 (b) shows an example of the final generated
all-to—allv routine for an application.

4. EXPERIMENTS

no n‘l n7 n16n1‘7 n23 n0 nzl njﬁ n6 n2 n30
N\ \
n3l

n24 n25

(b)

Figure 4: Topologies used in the experiments

The experiments are performed on Ethernet-switched clus-
ters. The nodes in the clusters are Dell Dimension 2400 with
a 2.8GHz P4 processor, 128MB of memory, and 40GHz of
disk space. All machines run Linux (Fedora) with the 2.6.5-
1.358 kernel. The Ethernet card in each machine is Broad-
com BCM 5705 with the driver from Broadcom. These ma-
chines are connected to Dell Powerconnect 2224 and Dell
Powerconnect 2324 100Mbps Ethernet switches.

Topo. | MPI_Alltoall

MPI_Allgather

MPI_Allreduce

(a) | Simple (n < 8718)

Pair light barrier (n < 31718)
Pair N MPI barriers (n < 72032)
Pair MPI barrier (else)

2D Mesh (n < 10844)
Topo. specific LR (n < 75968)
Pair MPI barrier (else)

Tuned all-gather (n < 112)
Rdb (n < 9468)

Rab. variation 1 (n < 60032)
MPICH Rab. (n < 159468)
Rab. variation 2 (else)

(b) | Bruck (n < 112)

Ring (n < 3844)

Ring N MPI barriers (n < 6532)
Ring light barrier (n < 9968)
Pair N MPI barriers (n < 68032)
Pair MPI barrier (else)

3D Mesh (1n < 208)
Topo. specific LR (else)

Rab. variation 1 (n < 17)
Rdb (n < 395)

MPICH Rab. (n < 81094)
Rab. variation 2 (else)

(c) | Bruck (n < 86)
Simple (n < 14251)
Pair MPI barrier (else)

3D Mesh (n < 3999)
Topo. specific LR (else)

Tuned all-gather (n < 17)
Rdb (n < 489)

Rab. variation 1 (n < 20218)
Rab. variation 2 (else)

Table 1: Tuned MPI_Alltoall, MPI_Allgather, and MPI_Allreduce

We conduced experiments on many topologies. In all ex-
periments, the tuned routines are robust and offer high per-
formance. Due to space limitation, we will report selected
results on three representative topologies, which are shown
in Figure 4. Figure 4 (a) is a 16-node cluster connected by
a single 2324 switch. Parts (b) and (c) of the figure show
32-node clusters of different logical topologies but the same
physical topology, each having four switches with 8 nodes
attached. Most current MPI implementations use a naive
logical to physical topology mapping scheme. We will refer
to these three topologies as topology (a), topology (b), and
topology (c).

We compare the performance of our tuned routines with
routines in LAM/MPI 6.5.9 and a recently improved MPICH
1.2.6 [21] using both micro-benchmarks and applications.
The tuned routines are built on LAM point-to-point prim-
itives. To make a fair comparison, we port MPICH-1.2.6
routines to LAM. We will use MPICH-LAM to represent
the ported routines. We will use the term TUNED to denote
the tuned routines. In the evaluation, TUNED is compared
with native LAM, native MPICH, and MPICH-LAM.

4.1 Tuned routines and tuning time

Table 1 shows the tuned MPI_Alltoall, MPI_Allgather, and
MPI_Allreduce for topologies (a), (b), and (c¢). In this table,
the algorithms selected in the tuned routine are sorted in
the increasing order based on their applicability to the mes-
sage sizes. For comparison, the algorithms in LAM/MPI
and MPICH are depicted in Table 2. Since topologies (a),
(b), and (c) have either 16 nodes or 32 nodes, only the al-
gorithms for 16 nodes or 32 nodes are included in Table 2.
There are a number of important observations. First, from
Table 1, we can see that for different topologies, the optimal
algorithms for each operation are quite different, which in-
dicates that the one-scheme-fits-all approach in MPICH and
LAM cannot achieve good performance for different topolo-
gies. Second, the topology specific algorithms are part of
the tuned MPI_Allgather and MPI_Allreduce routines for all
three topologies. Although the topology specific all-to-all
routine is not selected in the tuned routines for the three
topologies, it offers the best performance for other topologies
when the message size is large. These indicate that using

topology unaware algorithms alone is insufficient to obtain
high performance routines. Hence, an empirical approach
must be used with the topology specific routines to con-
struct efficient communication routines for different topolo-
gies. Third, although the MPICH algorithms in general are
much better than LAM algorithms, in many cases, they do
not use the best algorithms for the particular topology and
for the particular message size. As will be shown in the
next subsection, by empirically selecting better algorithms,
our tuned routines sometimes out-perform MPICH routines
to a very large degree.

routine LAM MPICH

Alltoall Simple Bruck (n < 256)
Spreading Simple (n < 32768)

Pair (else)

Allgather | Gather-bcast | Rdb (n * p < 524288)

Topo. unaware LR (else)

Allreduce | Reduce-bcast | Rdb (n < 2048)
MPICH Rab. (else)

Table 2: LAM/MPI and MPICH algorithms for
MPI_Alltoall, MPI_Allgather, and MPI_Allreduce

tuned routines | topo. (a) | topo. (b) | topo. (c)
MPI_Alltoall 1040s 6298s 6295s
MPI_Allgather | 1157s 6288s 6326s
MPI_Allreduce | 311s 261s 296s
MPI_Alltoallv 64s 177s 149s
MPI_Allgatherv | 63s 101s 112s

Table 3: Tuning time (seconds)

Table 3 shows the tuning time of our current system. In
the table, the tuning time for MPI_Allreduce assumes that
MPI_Alltoall and MPI_Allgather have been tuned. The time
for MPI_Alltoallv is the tuning time for finding the best rou-
tine for one communication pattern: all-to—all with 1KB
message size. The time for MPI_Allgatherv is the tuning
time for finding the best routine for one communication pat-
tern: all-gather with 1KB message size. The tuning time
depends on many factors such as the number of algorithms

to be considered, the number of algorithms having param-
eters and the parameter space, the search heuristics, the
network topology, and how the timing results are measured.
As can be seen from the table, it takes minutes to hours to
tune the routines. The time is in par with that for other em-
pirical approach based systems such as ATLAS [23]. Hence,
like other empirical based systems, our tuning system can
apply when this tuning time is relatively insignificant, e.g.
when the application has a long execution time, or when the
application is executed repeatedly on the same system.

4.2 Performance of individual routine

MPI_Barrier(MPI_.COMM_WORLD);

start = MPI_Wtime();

for (count = 0; count < ITER_.NUM; count ++) {
MPI_Alltoall(...);

}

elapsed_time = MPI_Wtime() - start;

Figure 5: Code segment for measuring the perfor-
mance of an individual MPI routine.

We use an approach similar to Mpptest [8] to measure the
performance of an individual MPI routine. Figure 5 shows
an example code segment for measuring the performance.
The number of iterations is varied according to the mes-
sage size: more iterations are used for small message sizes
to offset the clock inaccuracy. For the message ranges 1B-
3KB, 4KB-12KB, 16KB-96KB, 128KB-384KB, and 512KB,
we use 100, 50, 20, 10, and 5 iterations, respectively. The
results for these micro-benchmarks are the averages of three
executions. We use the average time among all nodes as the
performance metric.

We will report results for MPI_Alltoall, MPI_Allgather,
and MPI_Allreduce. The performance of MPI_Alltoallv and
MPI_Allgatherv depends on the communication pattern. The
two routines will be evaluated with applications in the next
subsection. Since in most cases, MPICH has better algo-
rithms than LAM, and MPICH-LAM offers the highest per-
formance among systems we compare to, we will focus on
comparing TUNED with MPICH-LAM. Before we present
the selected results, we will point out two general observa-
tions in the experiments.

1. Ignoring the minor inaccuracy in performance mea-
surement, for all three topologies and all three oper-
ations, the tuned routines never perform worse than
the best corresponding routines in LAM, MPICH, and
MPICH-LAM.

2. For all three topologies and all three operations, the
tuned routines out-perform the best corresponding rou-
tines in LAM, MPICH, and MPICH-LAM by at least
40% at some ranges of message sizes.

Figure 6 shows the performance of M PI_Alltoall results
on topology (a). For small messages (1 < n < 256), both
LAM and TUNED use the simple algorithm, which offers
higher performance than the Bruck algorithm used in MPICH.
When the message size is 512 bytes, MPICH changes to the
spreading simple algorithm, which has similar performance
to the simple algorithm. TUNED, LAM, and MPICH-LAM

have similar performance for the message size in the range
from 256 bytes to 9K bytes. Figure 6 (b) shows the results
for larger message sizes. For large messages, TUNED of-
fers much higher performance than both MPICH and LAM.
For example, when the message size is 128KB, the time for
TUNED is 200.1ms and the time for MPICH-LAM (the best
among LAM, MPICH, and MPICH-LAM) is 366.2ms, which
constitutes an 83% speedup. The performance curves for
topology (b) and topology (c) show a similar trend. Fig-
ure 7 shows the results for topology (b). For a very wide
range of message sizes, TUNED is around 20% to 42% bet-
ter than the best among LAM, MPICH, and MPICH-LAM.

Figure 8 shows the performance results for MPI_Allgather
on topology (c). When the message size is small, TUNED
performs slightly better than other libraries. However, when
the message size is large, the tuned routine significantly out-
performs routines in other libraries. For example, when the
message size is 32KB, the time is 102.5ms for TUNED,
1362ms for LAM, 834.9ms for MPICH, and 807.9ms for
MPICH-LAM. TUNED is about 8 times faster than MPICH-
LAM. This demonstrates how much performance differences
it can make when the topology information is taken into con-
sideration. In fact, the topology specific logical ring algo-
rithm, used in TUNED, in theory can achieve the same per-
formance for any Ethernet switched cluster with any num-
ber of nodes as the performance for a cluster with the same
number of nodes connected by a single switch. On the other
hand, the performance of the topology unaware logical ring
algorithm, used in MPICH, can be significantly affected by
the way the logical nodes are organized.

MPICH ——
@ d
£
o -
£
Fool]
1r X ;;,_;1
e .
i T g -
0 ‘ ‘ ‘ ‘
1 32 64 128 256 512
Message size (bytes)
(a) Small message sizes
1400 : ‘ ‘
MPICH —— ’
1200 |- YV —
MPICH-LAM ---x----
1000 | TUNED - i
7 .
E so00f |
[}
£ 600 |
}—
400 | |
200 + |
Y = o A ‘

8K 16K 32K 64K 128K 256K 512K
Message size (bytes)
(b) Medium to large message sizes

Figure 6: MPI_Alltoall on topology (a)
Figure 9 shows the results for MPI_Allreduce on topology

(c). TUNED and MPICH-LAM have a similar performance
when the message size is less than 489 bytes. When the

1400 T T
MPICH ——
1200 + LAM - A
MPICH-LAM -
1000 | TUNED —=
£ 800} s
[*/)
£ 600 / g 4
[~ .
400 b X]
’:,’X a
200 | e 1
0 i R I I I
2K 4K 8K 16K 32K
Message size (bytes)
(a) Medium message sizes
18000 MPICH
.
16000 | LAM
14000 FMPICH-LAM - *oooe]
TUNED - p
& 12000 3
£ 10000 E
£ 8000 1
= 6000 1
4000]
2000 q

0 ‘
32K 64K 128K 256K 512K
Message size (bytes)

(b) Large message sizes

Figure 7: MPI_Alltoall on topology (b)

=0 MPICH
T

45 LAM -

40 MPICH-LAM - | A

35 TUNED a ,’ ,* i
2 30t i S
},Ej 25 = A
E oo} E

15 b E

10 | g

0 = = .)

1 32 64 128256512 1K 2K 4K 8K
Message size (bytes)
(a) Small message sizes

25000 T
MPICH ——
LAM -)
20000 FMPICH-LAM - *eo-o Ya
TUNED E /
m L
E 15000
g
= 10000
5000 -
0 == e o = e

8K 16K 32K 64K 128K 256K 512K
Message size (bytes)
(b) Medium to large message sizes

Figure 8: MPI_Allgather on topology (c)

70 —

MPICH ——
60 L LAM -
MPICH-LAM -
50 TUNED = E
= /
E 40 E
(]
E 30 b
= q
20 - E
10 b

256512 1K 2K 4K 8K 16K 32K
Message size (bytes)
(a) Small to medium message sizes

1400 ;
MPICH ——
1200 + LAM - A
MPICH-LAM -
1000 | TUNED s yau
@ Vo
E 800 a
£ 600 | K]
£ W
400 4
X &
200 [X* * g 1
0 ooz & = ‘ ‘
32K 64K 128K 256 512K

Message size (bytes)
(b) large message sizes

Figure 9: MPI_Allreduce on topology (c)

message size is larger, TUNED out-performs MPICH-LAM
to a very large degree even though for a large range of mes-
sage sizes, both TUNED and MPICH-LAM use variations of
the Rabenseifner algorithm. For example, for message size
2048 bytes, the time is 2.5ms for TUNED versus 4.3 ms for
MPICH-LAM. For message size 64KB, the time is 55.9ms
for TUNED versus 102.4ms for MPICH-LAM.

4.3 Performance of application programs

We use three application programs in the evaluation: IS,
FT, and NTUB. IS and FT come from the Nas Parallel
Benchmarks NPB [5]. The IS (Integer Sort) benchmark
sorts N keys in parallel and the FT (Fast Fourier Transform)
benchmark solves a partial differential equation (PDE) using
forward and inverse FFTs. Both IS and FT are communi-
cation intensive programs with most communications per-
formed by M PI_Alltoall and M PI_Alltoallv routines. We
use the class B problem size supplied by the benchmark suite
for the evaluation. The NTUB (Nanotube) program per-
forms molecular dynamics calculations of thermal proper-
ties of diamond [18]. The program simulates 1600 atoms for
1000 steps. This is also a communication intensive program
with most communications performed by MPI_Allgatherv.

Table 4 shows the execution time for using different li-
braries with different topologies. The tuned library consis-
tently achieves much better performance than the other im-
plementations for all three topologies and for all programs.
For example, on topology (a), TUNED improves the IS per-
formance by 59.8% against LAM, 338.1% against MPICH,
and 61.9% against MPICH-LAM. Notice that the execution
time on topologies (b) and (c) is larger than that on topol-
ogy (a) even though there are 32 nodes on topologies (b)
and (c) and 16 nodes on topology (a). This is because all

library topo. (a) | topo. (b) | topo. (¢)
LAM 15.5s 38.4s 36.5s
I | MPICH 42.5s 58.2s 51.5s
S | MPICH-LAM 15.7s 35.5s 33.4s
TUNED 9.7s 28.4s 28.6s
LAM 409.4s 320.8s 281.4s
F | MPICH 243.3s 365.8s 281.1s
T | MPICH-LAM 242.0s 246.0s 305.6s
TUNED 197.7s 206.0s 209.8s
N | LAM 214.3s 304.1s 179.6s
T | MPICH 49.7s 244.5s 88.7s
U | MPICH-LAM 47.2s 236.8s 80.9s
B | TUNED 35.8s 47.6s 45.0s

Table 4: Execution time (seconds)

programs are communication bounded and the network in
topologies (b) and (c) has a smaller aggregate throughput
than that in topology (a).

5. CONCLUSION

In this paper, we present an automatic generation and
tuning system for MPI collective communication routines.
By integrating the architecture specific information with an
empirical approach, the system is able to produce very effi-
cient routines that are customized for the specific platform.
The experimental results confirm that the tuned routines
out-perform existing MPI libraries to a very large degree.
We are currently extending the system to produce other
MPI collective communication routines and exploring vari-
ous timers so that more accurate timing results can be used
to guide the tuning process.

6. REFERENCES

[1] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel.
Optimizing Matrix Multiply using PHiPAC: a
Portable, High-Performance, ANSI C Coding
Methodology. In Proceedings of the ACM SIGARC
International Conference on SuperComputing, 1997.

[2] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D.
Weathersby. Efficient Algorithms for All-to-all
Communications in Multiport Message-Passing
Systems. IEEE Transactions on Parallel and
Distributed Systems, 8(11):1143-1156, Nov. 1997.

[3] A. Faraj, P. Patarasuk, and X. Yuan. Bandwidth
Efficient All-to—All Broadcast on Switched Clusters.
Technical Report, Department of Computer Science,
Florida State University, May 2005.

[4] A. Faraj and X. Yuan. Message Scheduling for
All-to—all Personalized Communication on Ethernet
Switched Clusters. IEEE IPDPS, April 2005.

[5] NASA Parallel Benchmarks. Available at
http://www.nas.nasa.gov/NAS/NPB.

[6] M. Frigo and S. Johnson. FFTW: An Adaptive
Software Architecture for the FFT. In Proceedings of
the International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), volume 3, page
1381, 1998.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-Performance, Portable Implementation of the

10

(19]

20]

(21]

MPI Message Passing Interface Standard. In MPI
Developers Conference, 1995.

W. Gropp and E. Lusk. Reproducible Measurements
of MPI Performance Characteristics. Technical Report
ANL/MCS-P755-0699, Argonne National Labratory,
Argonne, 1L, June 1999.

LAM/MPI Parallel Computing.
http://www.lam-mpi.org.

M. Lauria and A. Chien. MPI-FM: High Performance
MPI on Workstation Clusters. Journal of Parallel and
Distributed Computing, 40(1), January 1997.

L. V. Kale, S. Kumar, K. Varadarajan, “A Framework
for Collective Personalized Communication,”
IPDPS’03, April 2003.

A. Karwande, X. Yuan, and D. K. Lowenthal.
CC-MPI: A Compiled Communication Capable MPI
Prototype for Ethernet Switched Clusters. In ACM
SIGPLAN PPoPP, pages 95-106, June 2003.

T. Kielmann, et. al. Magpie: MPI’s Collective
Communication Operations for Clustered Wide Area
Systems. In ACM SIGPLAN PPoPP, pages 131-140,
May 1999.

R. Rabenseifner. A new optimized MPI reduce and
allreduce algorithms. Available at
http://www.hlrs.de/organization /par/services/models
/mpi/myreduce.html, 1997.

The MPI Forum. The MPI-2: Extensions to the
Message Passing Interface, July 1997. Available at
http://www.mpi-forum.org/docs/mpi-20-html/
mpi2-report.html.

MPICH - A Portable Implementation of MPI.
http://www.mcs.anl.gov/mpi/mpich.

H. Ogawa and S. Matsuoka. OMPI: Optimizing MPI
Programs Using Partial Evaluation. In
Supercomputing’96, November 1996.

I. Rosenblum, J. Adler, and S. Brandon.
Multi-processor molecular dynamics using the Brenner
potential: Parallelization of an implicit multi-body
potential. International Journal of Modern Physics, C
10(1):189-203, Feb. 1999.

S. Sistare, R. vandeVaart, and E. Loh. Optimization
of MPI Collectives on Clusters of Large Scape SMPs.
In Proceedings of SC99: High Performance
Networking and Computing, 1999.

H. Tang, K. Shen, and T. Yang. Program
Transformation and Runtime Support for Threaded
MPI Execution on Shared-Memory Machines. ACM
Transactions on Programming Languages and
Systems, 22(4):673-700, July 2000.

R. Thakur, R. Rabenseifner, and W. Gropp.
Optimizing of Collective Communication Operations
in MPICH. ANL/MCS-P1140-0304, Mathematics and
Computer Science Division, Argonne National
Laboratory, March 2004.

S. S. Vadhiyar, G. E. Fagg, and J. Dongarra.
Automatically Tuned Collective Communications. In
Proceedings of SC’00: High Performance Networking
and Computing, 2000.

R. C. Whaley and J. Dongarra. Automatically tuned
linear algebra software. In SuperComputing’98: High
Performance Networking and Computing, 1998.

