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Abstract— A Digital Twin (DT) of a production plant is a
digital replica of the plant’s physical assets which contains the
structure and the dynamics of how the devices and process
operate. Simulation-based DTs (SBDTs) are those based on
online first-principles simulation models. In these systems,
model parameter estimation techniques keep an online plant
simulator in the same state as the targeted device or process. As
a result, non-measured information of the current state of the
plant can be obtained from the model. SBDTs can be used for a
number of important applications and they have various
advantages compared to DTs based on data-driven models.
However, wider industrial adoption of SBDTs is hindered by
laborious development of their underlying first-principles
simulation model as well as by a lack of integrated lifecycle-wide
implementation methods and simulation architectures. This
paper focuses on applying previously presented methods for
reducing implementation effort of SBDTs. Firstly, laborious
simulation model development is tackled by applying an
automatic model generation method.  Secondly, an integrated
implementation methodology of a lifecycle-wide online
simulation architecture is followed for developing the SBDT. A
SBDT of a laboratory-scale process is implemented to
demonstrate the proposed method.   The results show a higher
level of fidelity compared to previous publications.

Keywords— digital twin; dynamic process simulation; first-
principles model lifecycle, simulation-based digital twin;

I. INTRODUCTION

Recent advances in modelling and simulation technology
and in industrial interoperability standards have resulted in the
development of Digital Twins of production plants [1], [2]. A
Digital Twin (DT) is a digital replica of the physical assets of
an industrial plant which contains the structure and the
dynamics of how the devices and the process operate [3]. They
are a powerful application for decision support of operational
process plants in sectors such as chemical, power generation,
mineral processing, pulp & paper and oil & gas. Commercial
DT solutions for process plants are commonly based on data-
driven models developed purely from the measured data of the
targeted industrial plant [3], [4]. DTs based on data-driven
approaches rely on black-box models built to capture relations
between the inputs and outputs of the plant [5]. These systems
can be applied to obtain production forecasts or to detect
certain production anomalies. However, since they are based
only on measurement data obtained from the plant, they
cannot be used to forecast abnormal plant operation states not
covered by the available collected data. Additionally, they
require expert interpretation and are thus difficult to scale up
[5]. Moreover, applications based on data-driven DTs depend

entirely on the automation and the monitoring systems data to
provide information of the current plant state.

In contrast, simulation-based DTs (SBDTs) are based on
online first-principles simulation models [4]–[6]. First-
principles models (FPMs) rely on engineering, physics or
chemical descriptions to represent the behavior of the plant
[7]. As shown in Fig. 1, in SBDTs, a simulation model runs
together with the plant, while estimation techniques keep the
simulation state in the same state as the targeted device or
process [8]. These simulation configurations are also known
as online model-based applications [5]. A SBDT can be used
to obtain high-fidelity predictions, including production
forecasts of operating regions from which no measurement
data is available [9]. Furthermore, SBDTs can be used for
developing operator training simulation systems, for
production optimization, or for troubleshooting and failure
diagnoses. SBDTs are a holistic and powerful application for
plant operation support of modern industrial plants.  However,
developing the FPM of a SBDT can be time-consuming and
expensive [5]. Although research on the reuse of existing
simulation models may lead to a significant  reduction of
effort and cost [10], development of FPMs remains laborious
[5]. Moreover, the lack of systematic approaches for SBDTs
implementation, which address complex integration of the
process with simulation systems and methods, limit wider
industrial adoption of SBDTs [8].

In this paper, these SBDT shortcomings are addressed by
applying a combination of previously studied implementation
methods. In particular, laborious FPM development is tackled
by exploring the utilization of automatic model generation
(AMG) methods. Existing AMG methods utilize data from
engineering sources that are accessible already during the
process design phase. These sources include piping and
instrumentation diagrams (P&ID), equipment technical data
sheets and control application programs [11]–[13]. This paper
builds on our recent work, which proposes an AMG method
based on the utilization of 3D plant model information [14].
This method is applied for automatically generating the FPM.
Furthermore, a lifecycle-wide online simulation architecture
[8] is followed to integrate the SBDT with the physical plant.
The goal of this paper is to propose and test a method for
generating a SBDT from an automatically generated FPM.
This paper is structured as follows. Section II provides an
overview of related work. Section III presents the proposed
method for automatic generation of SBDTs. The presented
method is tested by implementing a SBDT of a laboratory-
scale process. The description of the example implementation
and its results are presented in Section IV. The conclusions are
presented in Section V.



II. Related work

A. The digital twin concept and its applications
A DT can be described as a digital copy of a physical asset

that contains models of its structure and of its behavior  [3],
[6]. According to the definitions presented in [15], [16], DTs
fulfill the following characteristics: 1) They are a real-time
reflection of the physical asset. This is achieved through
continuous synchronization between the real asset and the DT
states. 2) They are fully integrated with the real asset and they
can interact with current and historical data of the physical
asset, enabling continuous improvement of the DT. 3) A DT
can directly compare and analyze predicted and measured
values of the physical asset. As a result, a DT can be used for
simulating, monitoring, optimizing and verifying various
activities in the entire asset lifecycle.

Various examples have been implemented in different
industrial domains since the concept of DT was firstly
introduced over a decade ago [17]. In the automotive and
aerospace industries, DTs have been used as an ultra-high
fidelity simulated replica of a vehicle, which can be used for
anomaly diagnoses and for predicting future states and
remaining useful life [4], [18]. In construction industry, DTs
have been implemented after combining virtual models with
physical data in order to obtain more accurate structure fatigue
information of buildings [19]. In the industrial manufacturing
domain, DTs of production assets have been applied for
product lifecycle management. Consequently, DTs
implemented for the manufacturing industry aim to mirror the
entire lifecycle of end-products. As a result, DT applications
in fracturing have been focused on product lifecycle design
and services [2], [20]. On the other hand, DTs of the
manufacturing plant [16], [17], [21] have been mainly based
on plant virtualization to achieve improved flexibility,
scalability and efficiency.

B. Digital twins for process industry
The industrial process domain is comprised mainly by the

chemical, power generation, mineral processing, food
processing, pulp & paper and oil & gas industries [22]. In this
domain, simulation-based applications, which fulfill the DT
characteristics previously listed, have been extensively used
during decades. These applications, known as online model-

based applications (OMBAs) [5] are online simulation
systems based on an up-to-date condition of the physical plant.
Although they can be implemented early during the plant
design, they are mainly used during the operation and
maintenance phases when it is possible to interface them with
the real plant through connections between the simulation
system and the control application of the plant. OMBAs are
able to continuously update their state in order to closely
represent the current state of the process. This is achieved
through online and offline estimation of their underlying
model parameters, as shown in Fig. 1.  OMBAs have become
the DTs of process plants as they have been used for various
applications, including  plant monitoring [23] and production
forecasting [8].

Commercial DTs for industrial processes [24], [25] focus
on building the model of the physical process following data-
driven techniques [3], [4]. Although these models are fast to
develop, drawbacks of data-driven-based DTs presented in
Section I hinder their utilization for important industrial
applications such as virtual sensors and operator training
simulation. In contrast, SBDTs can be used for these critical
applications but there are few commercial SBDT examples.
The work in [26] is one of the earliest SBDT implementations.
However, since it mainly focuses on proposing a method for
online FPMs estimation, important SBDT implementation
details such as its simulation system architecture are not
tackled by this study. The work presented in [9] resulted in a
commercial SBDT solution [27] which utilizes a combination
of FPMs and statistical models for representing the physical
system. However, industrial adoption of SBDT such as [26],
[27], has been hampered by high development costs of FPMs
and by a lack of implementation methodologies which ease
development of SBDTs [5], [8].

Automatic generation of the simulation model of SBDT
could be applied to increase cost-efficiency and to reduce
development and maintenance time of the underlying FPMs
[22]. Furthermore, lifecycle-wide implementation
methodologies of OMBAs could be applied to tackle
laborious integration between the simulation system and the
process plant [8]. This paper leverages on the integration of
these approaches in order to propose a method for enabling
automatic generation of SBDTs of an industrial process plant
for operation support.

Fig. 1. Simulation-based digital twin and its applications during the operation and maintenance phases of the plant lifecycle. Virtual Sensor refers to the
application in which non-measured information of the current state of the process can be derived from the underlying FPM of the SBDT.



III.METHOD

In the proposed method, automatic generation of SBDTs
is achieved by applying methods for automatic generation of
the underlying FPM.  AMG approaches use information
mapping algorithms to generate a simulation model based on
the targeted system information. These algorithms
automatically map the accessed data into the model logic
specified by the simulation language utilized [28]. There are a
number of AMG methods available. These methods utilize
different data sources for automatic model generation,
including P&ID [12], [29], [30], 3D plant models [14] and
control application programs [31]. Fig. 2 shows how, in the
proposed method, different AMG methods can be applied and
combined in order to enable automatic SBDT development.
The phases depicted with numbers in Fig. 2 are described as
follows:
0) During the preliminary planning of the plant, the steady

state simulation model is created based on the initial
process design and on nominal equipment information
available from equipment data sheets. Steady state
simulations are used for preliminary process design. They
can only determine time-independent system response to a
specific set of inputs [32]. For this reason, dynamic
simulation models are required for implementing SBDTs.

1) At the process plant design phase, the dynamic simulation
model, including a preliminary version of the control
application model, can be automatically generated based
on the steady state model [30]. The steady state model can
also be used for providing initial conditions to the dynamic
simulation model.

2) Information from P&ID and I/O tables of the automation
system design are utilized for generating a more detailed
model of the process and of the control application,
respectively. In cases in which the steady state model is
not available, the simulation model of the process and of

the control application can be automatically generated
from P&ID, equipment data sheets and I/O tables as it is
proposed in [11], [12], [29].

3) 3D plant model information is utilized for detailed
configuration and parametrization of the process
simulation model. In particular, parameters such as the
structural and geometrical data of the process equipment
and especially of its pipeline layout is used, for example,
to calculate head losses due to elbows or branches in the
pipeline, thereby increasing the accuracy of the simulation
results. Alternatively and similarly as in step 2, the
simulation model of the process can be automatically
generated using information only from the 3D plant model
and process nominal information extracted from the
equipment data sheet, as it is presented in [14].

4) During the plant commissioning, the control application
model is utilized for generating a preliminary version of
the real control application program of the process plant.
The preliminary version of the control application can be
utilized for virtual commissioning and eventually
improved for its deployment on the distributed control
system of the plant [33].

5)  During operation and maintenance phases of the process
plant lifecycle, the automatically generated simulation
model of the plant is connected to the automation system,
to the monitoring application as well as to the
manufacturing execution system (MES) and enterprise
resource planning (ERP) systems of the plant. This
communication enables continuous synchronization of the
simulation model and the current process state.
After the automatic generation of the FPM, during step 5,

the SBDT requires integration with other plant information
systems. This integration is a non-trivial task as the simulation
system must be connected in a non-disruptive manner while
the process plant is under operation. Furthermore, different
simulation methods, required for model initialization and for
model estimation must also be integrated to the simulation

Fig. 2.  Simulation-based Digital Twin of the process plant over the plant lifecycle.



system. Consequently, in the proposed method, the online
simulation architecture presented in [8] is utilized to achieve
efficient system integration. This architecture, originally
designed for adaptation of previously existing models, is
applied for the automatic generation of SBDTs.

AMG tackles laborious FPM development. However, the
results of the automatically generated FPM of the SBDT does

not always fully correspond to the current process
measurements. One possible reason for this is that the physical
system was not built exactly according to the design
specification that was used to generate the FPM, or if the
design specification lacked some detail. Another possible
reason is that the physical system has been in use and some
parameters such as friction have changed over time. Thus, in
the proposed method, FPM parameters are optimized using
the physical system historical data for the simulation model to
represent the current behavior of the SBDT.

Finally, the SBDT needs to remain an accurate twin of the
physical plant throughout the operation and maintenance
phases of the plant lifecycle. Therefore, continuous alignment
of the SBDT plant states is needed. This is accomplished by
applying online model parameter estimation. This technique
is required to achieve a permanent state synchronization of the
SBDT with the targeted process by dynamically calibrating
the FPM state based on a comparison of process
measurements with simulation model results. Different
parameter estimation methods can be utilized. However, one
of the most frequently implemented techniques in industrial
systems is implicit dynamic feedback, due to the relative ease
of implementation and general applicability [34]. Fig. 3 shows
the described steps of the method proposed in this work.

IV.EXPERIMENTS AND RESULTS

The proposed method was tested on the laboratory-scale
heat production plant (HPP) described in detail in [8]. In order
to assess the proposed methodology, design information of the
HPP is used to automatically generate its FPM. Available
design data sources of the HPP include the P&ID (see Fig. 5),
equipment data sheets and the 3D plant model (see Fig. 6). The
3D model of the physical system, developed in AutoCAD
Plant 3D [35], was created after measuring physical
dimensions of the real process. The AMG method followed to
automatically generate the FPM of the HPP is presented in
[14]. In this method, process structure, dimensioning and
component connection information is extracted from the
machine-readable export of the 3D design tool. This
information is combined with equipment nominal information
obtained from their data sheets and then used to automatically
generate and configure a dynamic thermal-hydraulic
simulation model. The SBDT was implemented on Apros [36],
a flowsheet-based tool for modelling and dynamic simulation
of thermal-hydraulic processes.

After the simulation model is automatically generated, the
implementation approach described in [8] is followed to
integrate the simulation tool with the HPP process. Then, the
simulation model is optimized utilizing the offline
optimization method of the architecture described in [8]. As
previously explained, this optimization is needed to readjust
model parameters so that its behavior corresponds to the one
described by historical data of the process. The method for the
selection of parameters to be adjusted by the optimization and
online estimation methods is described in [37]. Fig. 7 shows
the comparison of the process measurements with the
automatically generated model (AGM) results before and after

Fig. 3. Proposed method for automatic generation of SBDT.

Fig. 4. Heat production plant used as a testbed of the proposed method

Fig. 5. P&ID of the HPP process.

Fig. 6. 3D model of the HPP process
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its optimization. These results correspond to transients caused
by a change on the level setpoint L200 of the tank B200 and its
corresponding inflow F100. Results show that the model
generated following the AMG method presented in [14]
closely follows the process results. However, the optimization
method significantly improves the AGM fidelity. As a result,
the AGM can be used as the underlying model of a SBDT. This
is a significant improvement compared to the to the current
state of the art on AMG [11], [12], [29], [30] in which the
achieved fidelity of the resulting model limits its application
only for factory acceptance tests and for virtual
commissioning.

In order to complete the SBDT generation, the optimized
AGM is connected to the real plant and initialized following
the approach in [8]. Finally, the online parameter estimation
method is started. The estimation method utilized is based on
dynamic feedback estimation and it is described in detail in
[34]. This method continuously adjusts model parameters in
order to keep the simulated state in the same state as the
operational process. Fig. 8 shows the online model parameter
estimation results of the automatically generated SBDT.  These
results correspond to transients caused by changes on the L200
level setpoint of the tank B200 and its corresponding inflow
F100. Results show that the SBDT based on the optimized
AGM is able to closely follow the real process. At this point,
the optimized AGM becomes the SBDT of the plant and it can

be used for operation and maintenance support, as a virtual
sensor or to obtain high fidelity predictions based on the
current state of the process.

V. CONCLUSIONS

This paper presented a method for automatic generation of
SBDTs of industrial process plants. In this work, laborious
FPM development is addressed by utilizing an AMG method
[14] which uses data from the 3D plant model to automatically
generate the FPM of the SBDT.  Furthermore, time-consuming
system integration is addressed by applying a lifecycle-wide
online simulation architecture [8]. This architecture enables
also the possibility to apply model optimization and online
estimation methods. The experimental results show that the
fidelity of the AGM can be significantly improved after
applying the optimization method of the architecture presented
in [8]. The optimized AGM can be utilized for implementing a
SBDT due to the high-fidelity achieved after applying the
proposed approach. As discussed at the results section, this is
a significant improvement on the current state of the art on
AMG. Furthermore, the method proposed in this work shows
that it is possible to reduce implementation effort required for
the development of industrial SBDTs in order to increase
industrial adoption of these systems.

Fig. 7. Comparison of the automatically generated model (AGM) results before and after its optimization using the simulation architecture presented in [9].

Fig. 8.  Online model parameter estimation results of the automatically generated SBDT.
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