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Abstract—In order to optimize high-speed systems, designers
need tools that automatically generate reduced-order SPICE
compatible models from geometric descriptions of interconnect
and packaging. In this paper, we consider structures small com-
pared to a wavelength, and use a discretized integral formulation
combined with an Arnoldi-based model-order reduction strat-
egy to compute efficiently accurate reduced-order models from
three-dimensional (3-D) structures. Several issues are addressed
including:

1) formulation to insure passivity in the reduced-order mod-
els;

2) efficient reduction using preconditioned inner-loop iterative
methods;

3) expansion about multiple s-domain points.
Results are presented on several industrial examples to demon-
strate the capabilities and speed of these new methods.

Index Terms— Interconnect, packaging, parasitics, passive
model order reduction, three-dimensional electromagnetic
simulation.

I. INTRODUCTION

I N ORDER TO simulate high-speed systems, designers need
accurate models of the interconnect and packaging that can

be included in a SPICE-level simulation. For many portions
of a design, the significant interconnect may be long and
uniform enough to be modeled using a two-dimensional (2-D)
approximation and transmission line theory. Unfortunately,
discontinuities in this 2-D interconnect, such as vias through
planes, chip-to-board-connect and board-to-board connectors,
require full three-dimensional (3-D) modeling. In the last few
years, much effort has been devoted to computing models
of 3-D structures directly from the interconnect or package
geometry, usually by combining a Maxwell’s equations solver
with some post-processing strategy.

One well-known approach for generating accurate circuit
models for 3-D structures is the partial element equivalent
circuit (PEEC) approach [1]. However, for complex 3-D
structures for which skin and proximity effects are important,
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the number of densely coupled circuit elements can be in the
tens of thousands. Such PEEC generated circuits are much too
expensive to include in a SPICE-level simulator. Recently, nu-
merically robust model order reduction techniques have been
developed toautomaticallygenerate a low order model from
large circuit models [2]–[6]. In their basic form, however, these
reduction methods require LU factorization of the original
dense circuit matrices whose computational complexity
is still too expensive. Additionally, since the interconnect is
passive, it is important that the reduced order model preserve
this property, but the original PEEC formulation is not in a
form to apply the provably passive model order reduction
approach of [5].

This paper describes a computationally efficient approach
to generating guaranteed passive low order models from large
PEEC-like circuit models. To begin, in Section II we review
the original PEEC discretization and recent work on passive
model reduction. In Section III, we modify the original PEEC
methods and follow the circuit solution technique known as
mesh analysis. In Section III-C, we derive a first order state-
space form of the mesh analysis system which can be used with
passive model reduction algorithms. The main contribution of
this paper comes in Section IV where we develop iterative
approaches for applying the model reduction algorithms in an
efficient manner for PEEC models of size exceeding 10. In
Section V, we present the results of our algorithm followed
by our conclusions.

II. BACKGROUND

In this section, we briefly review the PEEC method derived
in [1] and the passive model reduction algorithm from [5].

A. PEEC Formulation

The goal of parasitic interconnect extraction for a set of
conductors is to determine the relation between the currents
and the voltages at the terminals (or ports) of the conductors.
For a terminal-pair problem in the sinusoidal steady-state at
the frequency , this relation is described by the admittance
matrix, C where

(1)

where C are vectors of the terminal current and
voltage, respectively [7].

This section derives the linear system from Maxwell’s
equations which must be solved to determine the admittance
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Fig. 1. Discretization of a short section of thin conductor. The volume is
discretized into parallel filaments along the length. Surface is discretized into
panels shaded in gray.

relation, . We begin by deriving an integral equation from
Maxwell’s equations and then discuss the circuit-like dis-
cretization to generate a linear system.

1) Integral Equation Formulation:When considering struc-
tures small compared to a wavelength, the integral formulation
for Maxwell’s equations under Laplace transform reduces to

(2)

(3)

where is the Laplace frequency, is the interior of all
conductors, is the current density in is the surface of
all conductors and is the charge density on. Additionally,
the currents and charge obey the conservation equation

(4)

(5)

where is the inward normal on .
2) Discretization: The integral equations in the previous

section are those used in the original PEEC derivation [1].
We will follow the approach given there to generate a dis-
cretization of (2) and (3) and then derive the mesh formulated
approach.

To review the modeling of charge in the PEEC discretiza-
tion, the surface of each conductor is covered withpanels,
each of which hold a constant charge density. To model current
flow, the interiors of all conductors are divided into a 3-D grid
of filaments. Each filament carries a constant current density
along its length and this discretization of the interior captures
skin and proximity effects. For long, thin wires for which
the change in potential in the lateral dimensions is negligible,
filaments only along the length of the wire are used. An
example for a section of thin wire is shown in Fig. 1.

The approximation to the unknown current distribution can
then be written as

(6)

where is the current inside filament is a unit vector
along the length of the filament and is the weighting
function which has a value of zero outside filament, and

inside, where is the cross sectional area. By defining
the inner product of two vector functions,and , by

(7)

and following the method of moments [8], a system of
equations can be generated by taking the inner product of each
of the weighting functions with the vector integral equation,
(2).

In matrix form, (2) becomes

(8)

where C is the vector of filament currents, is the
diagonal matrix of filament DC resistances

(9)

is the dense, symmetric positive definite matrix of
partial inductances

(10)

and and are the averages of the potentials over the
filament end faces.

For the charge, the approximated charge density can then
be written as

where is the charge density of paneland 1 if
is on panel , zero otherwise.

The filaments are each made branches in a network circuit
graph and the junction between filaments are the nodes of the
graph. To enforce (5), the panels are added to the circuit at
nodes on the surface of the conductors. For the two section
example of Fig. 1, a simplified version of the network is shown
in Fig. 2. The network in the figure only has filaments which
carry current parallel to the length of the wire. As stated
before, for long, thin wires, the change in potential in the
lateral dimensions is negligible and one can short together the
three nodes in the vertical direction of Fig. 2. Note that for
the general case of a 3-D grid of filaments, there will be two
types of nodes: nodes on the exterior which connect panels
and filaments and nodes on the interior which connect only
filaments.

The last relation is that of the potential,, to the charge,
, from (3). Approximating the average over the face,, by

its value at the appropriate node point, the potential becomes

(11)

where C is the vector of the node voltages, C
is the charge on each ofpanels, and is the
potential coefficient matrix given by

(12)

where is the surface of panel is its area, is the th
node location, is the number of node points on the surface
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Fig. 2. Circuit for a short section of conductor. The panels are connected at the nodes between sections of filaments, and the sources are connected
at the terminals. Only some panels and filaments shown.

and is the number of internal node points with .
In the original PEEC derivation and for the rest of this section,
there is exactly one panel per node, , unlike what is
shown in Fig. 2. This condition will be relaxed in Section III.

can be divided separately into its contribution to the
internal and external nodes by

(13)

where and .
The above relations, (8), (11), and (5), respectively, give

the following linear system:

(14)

where , is the identity matrix of appropriate
dimension, are the terminal currents, is the
nodal incidence matrix providing the differencing of and

enforces the boundary condition (5).
This is the PEEC formulation of [1]. In the original work,

the elements were created as circuit elements and sent to
a circuit simulator which would effectively assemble and
solve (14).

It is worth noting that in the interior of conductors, (14)
does notexplicitly enforce current conservation as in (4). Thus,
while an exact solution to the integral equation will satisfy
current conservation, there is no guarantee that the discrete
version will also.

B. Guaranteed Passive Model Order Reduction

In this section we review recent techniques for generating
passive reduced order models directly from a large system such
as that in (14). These methods require that the original system
be written in a state space form such as theth order system

(15)

where C is the vector of states, , C are the
input and output vectors respectively,, , and ,

. The idea of model reduction is to derive a much
smaller th order system

(16)

with but which still accurately models the system
behavior.

In the area of circuit simulation, asymptotic waveform
evaluation (AWE) [9] has popularized the use of model
reduction via moment matching. In AWE, the admittance
function of the reduced system is chosen to match a number
of moments, or terms in the Taylor series about 0, of the
original system. More specifically, the admittance is given by
eliminating in (15)

(17)

where the moments are obtained from

Thus for (16), we seek , such that
. The original AWE algorithm

suffered from numerical ill-conditioning that prevented its use
beyond a few moments. Additionally, since represents a
passive circuit, we require also be passive. Recently, a
numerically robust, guaranteed passive model order reduction
algorithm (PRIMA) has been developed in [5]. The idea is to
use an Arnoldi algorithm shown in Algorithm 1 to generate
a set of orthogonal vectors, [10]. These vectors are
applied in a congruence transform [11] to preserve passivity.
This corresponds to a reduced system with ,

, , and . In [12], such
an approach is shown to match 2 moments and the main
result in [5] is that this reduced order model is passive under
the following conditions:

1) ;
2) 0 for all ;
3) 0 for all .
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Note that the PRIMA algorithm generates passive reduced
order models which match moments at 0 for multiple
input, multiple output systems. The extension of this algorithm
to generate passive models which match moments at multiple
values of is presented in [13].

Algorithm 1 (Block Arnoldi process):
arnoldi (input ; output )

Let
(QR Factorization )

for

for

(QR Factorization )

III. A F ORMULATION FOR MODEL ORDER REDUCTION

In order to automatically generate low order models from
the large PEEC discretizations, we derive a state-space formu-
lation which obeys the conditions for passivity in Section II-B.
Unfortunately, using nodal analysis as in (14) makes passive
model order reduction difficult since positive semidefiniteness
(conditions 2 and 3 in Section II-B) is difficult to determine. In
addition, (14) does not explicitly enforce current conservation
on the interior. Also, for efficient quasistatic inductance calcu-
lation in [14], it was shown that the nodal formulation is poorly
conditioned and this slows iterative algorithm convergence.
For these reasons, in this section we derive a mesh analysis
version of (14) which also enforces current conservation. The
advantages for iterative solution will become apparent for
multipoint model-order reduction in Section IV-B.

A. An Alternate PEEC Formulation

In this section, we modify the PEEC formulation before
applying mesh analysis. While these changes may be implied
by, but not stated, in [1] or have become standard over time,
they are included here for completeness.

To begin, we wish to alter (14) to allow multiple panels to
be connected to a single surface node. The panel discretization
can then be refined independently of the filament discretization
to capture, for instance, the sharp changes in charge density
at a conductor edge or corner which does not necessarily
correspond to changes in the potential. With multiple panels
per node, , and we now write . To enforce
current conservation on the surface, (5), the charge on all the
panels at a node must be summed. In addition, the potential
of all the panels at a node must equal the node potential.
Equation (14) then becomes

(18)

where has been divided corresponding to internal and
external nodes, sums the charges at each node
and copies the potential at a node to all its corresponding
panels.

Next, to enforce current conservation on the interior (4),
first replace the panel charge with the current into the panel,

. Now, enforcing current conservation on the interior
involves replacing the set of equations involving with

0

(19)

Combining each of the 2 2 blocks in (19) into single blocks
gives

(20)

where

Additionally, in (12), was chosen to correspond to the
node to which the panel is connected. Here, instead,is a
collocation point at the center of the panel. Also, a Galerkin
scheme could be used for which

(21)

B. A Mesh Analysis Formulation

Instead of using a nodal analysis approach to derive cir-
cuit equations, consider using mesh analysis as described in
[7]. The mesh approach has been used in the context of
interconnect analysis in [14] and [15].

To describe mesh analysis, a mesh is a loop of branches in
the network graph. Each mesh is assigned an unknown current,

, which circulates around its branches. In mesh analysis,
these mesh currents are the unknown quantities rather than the
node voltages, , as in nodal analysis. For a planar graph, a
linearly independent set of meshes is exactly all loops which
do not enclose any other branches. For nonplanar graphs,
algorithms are given in [16].

To derive a mesh analysis version of (20), both the sources
and the panels are made explicit branches in the network graph.
To assign branch voltages to the panel branches, note that the
panel node voltages in (11) are voltages relative to infinity.
By adding infinity to the network as a zero volt node, we can
view the panel branches as connecting the panel to the zero
volt node at infinity. Then the panel branch voltages are given
by

(22)

With this definition for the panel branch voltages, de-
scribes the constitutive relations for both filaments and panels

(23)
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Fig. 3. A circuit describing the mesh quantities for a two-conductor TEM line terminated with a loadZL.

For a simple structure such as two thin wires connected
through a source at one end and a load at the other, the
network graph illustrating a few sample meshes is shown in
Fig. 3. The mesh currents can be divided into three separate
types:

those involving only filaments on the interior;
those on the surface which include both a filament
and two panels;
and those involving only panels for nodes with mul-
tiple panels.

and both pass through the node at infinity. Note also
that the source branch generates a mesh which contains only
the source and panels.

In mesh analysis, Kirchoff’s voltage law, which implies that
the sum of branch voltages around each mesh in the network
must be zero, is represented by the matrix

(24)

where is the mostly zero vector of source voltages. The
three block rows of correspond to the three types of meshes,

, and , respectively. To simplify the notation, let

(25)

so that . Note that the nonzero terms of
correspond to sources applied at the terminals, defined as
in (1). The relation between these quantities can be written as

(26)

where is an easily constructed terminal incidence matrix.
The matrix also relates the mesh currents to the branch

currents via

(27)

Equations (23), (24), and (27) combine to give a system in
only the unknown mesh currents

(28)

By applying source voltages, the system in (28) could be
solved to compute the admittance matrix, , for specified
frequencies, . However the goal of this work is to instead
generate reduced order models from this large system.

C. Deriving a State-Space Realization

We seek to apply methods of model order reduction to (28).
We thus need to derive a first order state-space realization of
the second order system (28). Care must be taken to derive
a realization that has appropriate properties for passive model
order reduction. Additionally, for computation with in (15),
we wish the corresponding for (28) to be both sparse and
nonsingular for expansions about 0.

1) A Nonsingular : To derive a first order system,
choose new state variables as . These new variables can
be related to using (23) and (27)

(29)

Using (23), (24), and (29) in (28) gives a first order system

(30)

where and the second row of (30) is (29)
multiplied by .

From (26), the terminal currents and voltages are related
to their corresponding mesh quantities by ,

. Letting and separating out terms
multiplying gives the desired state-space form

(31)

where , , and and are
defined as the block matrices of (31). Thiscan be shown to
be nonsingular under the condition that no node is connected to



230 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY—PART B, VOL. 21, NO. 3, AUGUST 1998

the circuit via only panels [17]. In circuit language, there can
be no cut-sets of capacitors. Unfortunately, the point at infinity
is a such a node. From another point of view,represents
the DC solution of the system and applying sources between
terminals as in Fig. 3 does not specify a DC path to ground
(point at infinity).

To make the solution unique, for each conductor of the
geometry, must be specified over some terminal. Such a
condition is enforced in circuit terms by requiring that at least
one source for each conductor is connected to the point at
infinity.

Also note that while is nonsingular, need not be for
moment matching about finite. In fact is generally singular
since contains one row of zeros for every mesh of.

2) A Realization for Practical and Passive Model Order
Reduction: With the nonsingular of (31), the matrix-vector
products of the form needed for model order reduction
are now possible. Note that since the densematrix of (29)
has been moved into is now sparse and computing the
part of the product , is inexpensive. Even though com-
puting now involves , this form will have advantages
as discussed in the next section.

Additionally, with along the diagonal of , (31) satis-
fies the conditions for passive model reduction of Section II-B.
In particular, to show that is positive semidefinite for
conditions 3, first note that since is positive definite, then

is also. If is generated via a Galerkin approach, then it
too is positive definite, and since is a block diagonal matrix
consisting of blocks which are each positive semidefinite, then
so is . Since the matrices cancel for , a
similar argument holds for condition 2.

Note that the block structure of (31) is similar to the nodal
form, (19) and at this point in the development the advantages
of pursing a mesh form are not apparent. Even though both are
different realizations of the same system, a nodal form may
have benefits over a mesh form. One advantage of (19) is that
if there are no internal nodes, then the correspondingof (19)
is nonsingular and smaller than the mesh formulated. The
nonsingular could be used for expansions about .
The results pursuing model order reduction for (19) will not
be described here, but the interested reader is referred to [18].

Since is a diagonal matrix, and and are sparse,
then is now sparse. However, to form the first block of
requires order operations and memory since
is dense. Similarly, to form the second block, requires

operations and memory to form , and then order
operations to invert. For complex geometries with tens of
thousands of filaments and panels, such growth rates are se-
verely limiting. In the next section we discuss a more efficient
technique for generating reduced order models from (31).

IV. M ODEL REDUCTION FOR THE

FULL QUASISTATIC PROBLEM

In this section we describe fast algorithms for computing a
reduced order model for (31). In Section IV-A, an approach
using the expansion point 0 is presented. This produces a
straightforward algorithm, however the models produced are

inadequate. To remedy, Section IV-B develops an approach
using nonzero expansion points. While significantly more
expensive, the generated models are more compact as we will
see in Section V.

A. Expansions about 0

To apply the PRIMA algorithm, or any moment matching
scheme about , one must compute matrix-vector prod-
ucts with the matrix . For instance, an Arnoldi type
algorithm requires 1 such products to produce an order
model. However, because the partial inductance matrixand
potential coefficient matrix, , which appear in , are both
large and dense, many multiplications bycan be prohibi-
tively expensive. In particular, if done directly, multiplication
by would require an initial dense matrix factorization
which is operations. For modern packaging structures,
for which exceeds ten thousand, such a factorization is
prohibitive.

Efficient model reduction hinges on avoiding this expensive
factorization. Fortunately, the expensive factorization can be
avoided by noting that the computation is equiva-
lent to solving for the panel charges,, given a set of voltages,

. It is thus possible to use a preconditioned, Krylov-subspace
iterative method to solve as outlined in Algorithm 2
[19]. Note that the dominant cost of each iteration is the
computation of a dense matrix-vector product, , to acquire
the next vector in the subspace.
Algorithm 2 (Iterative Scheme for )

guess
Initialize the search direction

for
Select span

such that the new solution

minimizes
if tolerance, return solution

In the standard approach, for every product, the iterative
algorithm would be called to solve , generating a new
subspace, , and a new set of search
directions, . If the number of products is large, the ad-
vantage of an iterative method would be degraded by the large
number of total products necessary. However, even though

is different for each solve, it may be that the space spanned
by is similar, as is illustrated in Fig. 4.
One is thus lead to consider reusing the search directions from
the previous solves [20]–[22]. While the recycled vectors are
not optimal for the next , the cost of computing the solution
along those directions is negligible compared to a single
product. The recycled algorithm using the Krylov-subspace
method known as generalized conjugate residual (GCR) [19]
can be found in a general form in [20] and specifically for a
constant matrix in [17].

The operations of the iterative algorithm can be
reduced further by using a multipole-accelerated iterative
algorithm [23] whose cost and memory has been shown to
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Fig. 4. Two-dimensional illustration of the search direction space for two
different calls to the iterative algorithm. Here, the search directionsPw

k and
Pŵ

k are close so the spaces they span are similar.

grow only as . Similarly, the computation of the product
can be performed in operations also via the

multipole-algorithm [14].

B. Efficient Multipoint Approximation

As we shall see in Section V, moment matching about
0 described above generates poor results. For this reason we
wish to consider expanding about some other point or points.
Such multipoint expansions have been explored previously
for explicit moment matching in [24], and for the Krylov
subspace techniques in [25], [12]. Recently, a provably passive
multipoint rational Arnoldi algorithm has been derived for the
reduction of RLC circuits with multiple inputs and outputs
[13].

For expansions about points 0, the moments become

Thus, to apply any multipoint scheme for the large dense
systems of (31), one must be able to compute not only
rapidly, as in the last section, but also

(32)

Again, (32) is too large for direct factorization and one is led
to iterative solution.

Iterative Solution:

(33)

is particularly expensive because each matrix vector product
of an iterative algorithm requires an inner solve for .
Thus, the model reduction algorithm would have three levels
of nested loops:

1) Arnoldi iteration;
2) for each Arnoldi iteration, an iterative solve of (32);
3) at each iteration for (32), a solution with .

Fortunately, this last inner iteration can be avoided by
realizing that computation of (32) is very close to solving the
mesh formulated circuit of (31) at a single frequencygiven
an input vector . Thus we can return to solving the second
order form, (28), to compute , and then compute

separately. However, (33) differs from (31) sinceis not
generally zero, yet the last entry in the input for (31) is always

zero. Thus, to eliminate , we use

(34)

in place of (29) and arrive at

(35)

After solving (35), can be directly computed from
(34). This approach avoids the inner computation of but
more importantly, it returns us to the familiar mesh matrix,
(28), to which we can apply the effective preconditioning
techniques developed for inductance extraction in [14].

In general, Krylov-subspace iterative methods applied to
solving (28) can be significantly accelerated byprecondi-
tioning if there is an easily computed good approximation
to the inverse of . We denote the approximation
to by , in which case preconditioning the
iterative algorithm is equivalent to solving

(36)

for the unknown vector . The mesh currents are then com-
puted with . Clearly, if is precisely ,
then (36) is trivial to solve, but then will be very expensive
to compute.

To follow the approach of [14], consider preconditioning
with a block diagonal version of . Thus, the precondi-
tioner will be an LU factored version of

(37)

where and are block diagonal.
One can improve this preconditioner by noting that for fast

capacitance extraction in [23], [26], it was found that block
diagonal preconditioning for is not adequate to capture the
strong coupling involved in charge interaction. For that reason,
in [23], [26] a local-inversion preconditioner was developed.
Since we know this preconditioner works well for, we
wish to use it in (37). Each row,, of the local inversion
preconditioner is formed by directly inverting a smallmatrix
corresponding only to those panels near panel. The row in
this inverse corresponding to panelis then used as the row

of the preconditioner, .
For the local inversion preconditioner to be effective inside

the mesh formulated preconditioner of (37), it must be positive
definite. While this preconditioner is not guaranteed to be
positive definite, we have found from experiment that it
produces good results implying it must be “close” to positive
definite. This can be explained by realizing that the inverse
of each of the small matrices described above is close to
a capacitance matrix and capacitance matrices are diagonally
dominant. This implies that each row of is likely to be
diagonally dominant, so is likely to be positive definite.

The preconditioner of the form (37) requires an approxi-
mation for , but is an approximation of . Thus, (37)
would become

(38)
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Fig. 5. Impedance looking into a matched transmission line for various
reduced order models and the original discretized system.

requiring aninversionof , destroying its sparsity. would
be too dense to LU factor efficiently as a submatrix of (37).

Fortunately this inversion can be avoided. Recall that the
form of (28) was desirable because it avoided the inverse
of . Now, to avoid the inversion of we can return to
the first order form, (31), for the preconditioning step. More
specifically, the preconditioning step requires computing

(39)

Instead solve

(40)

and discard . The matrix is sparse and can be computed
rapidly with LU factorization.

C. Recap

To recap, we noted that the dominant cost of applying
Arnoldi-based model order reduction was in the repeated
computation of where, for a nonzero expansion point

. Since the submatrices of are
and which are dense matrices of dimension 10to

10 a practical algorithm must avoid computation
such as the explicit formation of or . In
Section IV-A for , we used an iterative algorithm to
avoid forming in the computation of . Applying a
preconditioned iterative algorithm was straightforward since it
was identical to capacitance computation as explored in [23].
Since many solves must be performed, a recycling algorithm
was employed for further speedup. In Section IV-B, for
0, iterative solution is not as straightforward to compute
the portion of the product. Since is
contained within , iterative solution would require
two levels of nested solve. Fortunately, we can return to a
pure mesh form for this computation and then the iterative
solve is instead for . Not only does this form
avoid the nested solve, but also provides a good method
of preconditioning from the previous work for inductance
extraction. To apply these preconditioning ideas to include
the added capacitive portion of , we saw that the best

Fig. 6. Relative error for models for matched transmission line.

Fig. 7. Flop count for different methods of computingP�1x.

preconditioning approach for capacitance required us to return
to the block form for just the preconditioning step.

V. RESULTS

In this section, we present results from model order re-
duction. First we investigate the models produced and then
observe the efficiency of the iterative solution algorithms.1

A. Expansions about 0

Consider generating a reduced order models of order 10,
20, 40, and 80, for a matched 2-D transmission line. The lines
are copper and have a rectangular cross section with a width
of 37 m and height 15 m. They are vertically spaced with
a 42 m center-to-center spacing. From Figs. 5 and 6, as the
model order is increased, a model which matches to higher
frequency is generated. For a reduced order model with 1%
error, a twentieth order model is valid up to 6 GHz, a fortieth
order model up to 12 GHz, and an eightieth order model past
20 GHz (to about 26 GHz).

1Note that, due to its simplicity of implementation, our implementation uses
a collocation approach rather than a Galerkin approach to compute the entries
of P . Such an approach is not guaranteed to give a positive semidefinite
P + P

T but has yet to cause nonpassive models.
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Fig. 8. A ladder circuit to model 2-D TEM transmission line.

(a) (b)

Fig. 9. Responses of various models for the transmission line. (a) Exact and reduced ladder circuit. (b) Exact and reduced PEEC.

Next, to demonstrate the efficiency of the recycled iterative
scheme, consider refining the discretization of the transmission
line of the previous example and extracting a fiftieth order
model. Fig. 7 shows the number of floating point operations
(flops) required for direct factorization with back substitution,
a nonrecycled Krylov-subspace method, a recycled Krylov
method, and multipole-accelerated recycled Krylov method,
for various levels of discretization. Our implementation, called
FASTPEP, uses direct matrix-vector products and thus the
multipole-accelerated times are projected based on flop counts
from multipole-accelerated capacitance and inductance codes
[23], [14]. The residual error tolerance of the iterative al-
gorithm had to be chosen as 10 so that the difference
between models produced by the iterative scheme versus
direct factorization differed by less than 1% up to 100 GHz.
As can be seen from Fig. 7 for an original 15 409 state
system, the recycled scheme performs an order of magnitude
faster than direct factorization, and similarly, the multipole
algorithm would provide another order of magnitude speed
up. Note that the CPU time comparison would be similar
to the flop count comparison for the direct factorization and
direct recycled iterative scheme, however the overhead in
arranging the multipole computation would shift its curve
slightly upward.

B. Quality of the Models

The methods of the last section provide efficient generation
of a reduced order model, and in this section we investigate
the quality of the generated models.

To compare to an analytic result, consider the 2-D transmis-
sion line of uniform cross section and length 1 cm described
in the last section. The line is divided into 40 sections along

its length. Each section has a nine filament bundle, and each
node has 12 panels leading to a 1704 element circuit. The line
is shorted at the far end instead of being matched in order to
emphasize the resonances. The admittance is then computed
through a number of the resonant frequencies of the line using
both the full model and a twenty-first order reduced model.

For comparison, given the exact per unit length 2-D line
parameters, and , a similar 40 section ladder circuit is
constructed as shown in Fig. 8. The resistance per unit length
is chosen to roughly match the actual resistance at the first
resonance (and thus not at DC!). The admittance is computed
for both this eightieth order model and also a twenty-first order
reduced model. The four admittance functions are shown in
Fig. 9. The solid lines in each figure represent the full PEEC
model and the full ladder model. The solid lines show qualita-
tively the same results: there is a periodic resonance with the
first occurring when the 1 cm structure is half a wavelength
long. The resonant peaks show a decay for the PEEC model
since it captures skin effects. Similarly, one might hope that
because the frequency behavior of the two is roughly the same,
the model order reduction results for similar order would be the
same. However, the twenty-first order reduced models are very
different. The PEEC twenty-first order model loses accuracy
before the third resonance, however the ladder model does not
begin to degrade until the sixth.

To understand this phenomenon, Fig. 10(a) and (b) plot
the poles of the admittance function for the four cases. In
Fig. 10(a), the poles of the exact admittance lie evenly spaced
on a vertical line in the plane. Since the model order
reduction was performed about 0, one would expect
a trend of pole matching starting at the origin and moving
outward as shown. In Fig. 10(b), the full PEEC model has
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(a) (b)

Fig. 10. Pole locations for (a) RLC ladder model and (b) the PEEC models. Note axis scaling.

Fig. 11. Closeup of origin on linear scale for the pole locations of the PEEC
models. Solid black circle marks origin.

two sets of vertically spaced poles. The complex conjugate
pairs with real part in are exactly pole-zero
cancelled and do not affect the frequency response perhaps
due to symmetry in the two conductor geometry. The conjugate
pairs with real part near correspond to the vertical
line of poles in Fig. 10(a) and are the dominant poles of the
system, responsible for the resonances in Fig. 9. Note that
they do not lie along a vertical line due to skin effects. In
addition, there are also a large number of purely real poles.
By noting the scaling of the plot, these real poles are the closest
to the origin (see closeup in Fig. 11). For this reason, moment
matching about the origin captures these poles first instead of
the poles responsible for the resonant behavior.

The real poles result from the discretization of the conductor
into bundles of filaments in order to capture skin and proximity
effects. Because the system is driven from external terminals,
it is difficult to excite the modes corresponding to the many
interior filaments. For this reason, the effect on the frequency
response of the large cluster of real poles near the origin is
weak; in fact all of these poles are nearly or exactly cancelled
by zeros. In addition, as the order is raised beyond 21, most
additional poles are matched near the origin resulting in very
slow convergence to the full model.

C. Improving the Model

The cluster of real, weak poles near the origin is not limited
to the transmission line example and has been observed in most
examples. We thus seek a geometry independent means of
avoiding the matching of the weak poles near the origin. One
approach is to expand about which would select the
weak poles last and model generation would involve .
But for most discretizations, there are multiple panels at the
nodes, and thus is singular. The nodal formulation approach
could be used for such expansions as pursued in [18].

Another approach is to use some multipoint scheme [24],
[25] as developed in Section IV-B. Results of this approach
are described next.

D. Results of Multipoint Model Order Reduction

With multipoint models computationally tractable, we can
begin to investigate generating low order models. In this
section we give results of expansions about nonzeroto give
insight into the properties of the resulting models specific to
interconnect analysis. The general topic of multipoint model
generation via Krylov subspace methods is addressed in detail
in [12].

1) Expansion Points:In this section we explore choosing
a single nonzero as an expansion point and discuss the quality
of the resultant reduced order models. We then further improve
the models by using multiple expansion points.

From Section V-B where 0, the poles, , closest to
the origin were captured first. This was a natural conclusion of
matching moments about the origin. One can also explain this
occurrence by viewing the Arnoldi process as it was originally
developed as method of eigenvalue computation on . It
is well known that the Arnoldi algorithm will converge fastest
to eigenvalues, , which are well separated from other
eigenvalues, and slower to clustered eigenvalues [27]. Since
poles clustered close to the origin are very well separated under
the map they will be captured first.

Now consider choosing and 0. For 0,
poles for which is well separated come first. Since all the
poles have 0, no pole will be closer than the distance
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Fig. 12. Poles of reduced model for 2-D two conductor TEM line fors0 =

1011.

. In particular, the weak poles at the origin appear more
as a cluster and we would expect to capture the poles along
the imaginary axis more readily. Additionally, the choice of a
real expansion point implies solution of (35) will not involve
complex arithmetic.

The results for various for a PEEC model for a 2-D TEM
transmission line are shown in Figs. 12 and 13. We see that

does slightly better compared to 0 of Fig. 10
but still places multiple poles near the origin, and
does not seem to capture any single pole accurately. To explain

, the expansion point is too far away, and the
entire region of poles appears as a distance cluster for which
convergence to any one pole is slow. While it may be possible
to find a better choice for , these results
demonstrate that choosing an appropriate real expansion point
a priori is difficult.

Instead, consider choosing C. In fact, choosing purely
imaginary expansion points is the common choice since it is
the response along the axis which is of interest. As with
choosing the origin, the poles nearest the expansion point
will tend to appear in the model first. For model reduction
for interconnect analysis, we can exploit that the only large
dense cluster of poles is at the origin, and thus by choosing an
imaginary expansion point away from the origin, the algorithm
will not stagnate as for 0.

The advantage of complex comes at a cost. Solving
(35) will involve complex arithmetic and is thus four times
as expensive as the real case. However, to maintain a real
reduced order model, moments must be matched at conjugate
pair points, and . It was pointed out in [28] that the

and resulting from solving
(35) at and , respectively, generate only two independent
vectors, and , for the Arnoldi algorithm. These directions
can be computed with a single solve of (35) and thus the cost
of a complex expansion point is only double that of a real one.

For the TEM example, we choose and
in Fig. 14 we see that model order reduction matches the

Fig. 13. Poles of reduced model for 2-D two conductor TEM line fors0 =

1012.

dominant poles starting at 10 and moving outward
as desired. Note that the model is close to optimal in the
sense that almost every pole matched corresponds to a pole
responsible for the resonant peaks.

To take advantage of the efficient approach developed here
for multipoint expansions, consider matching many moments
at multiple points along the imaginary axis. Consider choosing
six points, 0, 10 , 10 , 10 ,
10 , 10 and matching 1, 4, 4, 4, 4, 4 moments at
each, respectively. The results for this 21st order model are
shown in Fig. 15 where we see that this approximation accu-
rately captured the dominant poles to a frequency comparable
to that for the RLC ladder network of Figs. 10(a) and 9(a).

While the results in Fig. 15 were the underlying goal of
this section, the choice of expansion points and number of
moments to match at each did not come without trial and
error. For instance, consider an 11th order model matching
two moments at each point instead of four in the previous
example. The results in Fig. 16 show that even though the
model roughly captured the poles, it did not capture their
magnitude well and thus did not give a very accurate frequency
response. Comparing to Fig. 15, perhaps the influence ofall
the weak poles near the origin has an effect at these higher
frequencies and more moments should be matched at zero.
This is not the case as shown in Fig. 17. We now match
five moments at 0 instead of 1, and while the response
for the first two resonances near 0 improved, near the
third around 40 GHz, it has worsened. Also, the pole for
the second resonance has moved away from its exact value
but the magnitude of the resonance is close to the exact.
Both of these examples indicate that strictly observing pole
locations is not a direct measure of error in the frequency
response.

These examples illustrate the need for sophisticated methods
of error analysis and expansion point and order selection.
For the provably passive multipoint Krylov-subspace Arnoldi
schemes used here, some of ideas of Grimme [12] might
work here.
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(a) (b)

Fig. 14. Admittance and poles of reduced model for 2-D two conductor TEM line for complex expansion point.

(a) (b)

Fig. 15. Admittance and poles of reduced model for 2-D two conductor TEM line for complex expansion pointss0 = 0, �j1 � 1011, �j2 � 1011,
�j3 � 1011, �j4 � 1011, �j5 � 1011 and matching 1, 4, 4, 4, 4, 4 moments at each.

(a) (b)

Fig. 16. Admittance and poles of reduced model for 2-D two conductor TEM line for complex expansion pointss0 = 0, �j1 � 1011, �j2 � 1011,
�j3 � 1011, �j4 � 1011, �j5 � 1011 and matching 1, 2, 2, 2, 2, 2 moments at each.
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(a) (b)

Fig. 17. Admittance and poles of reduced model for 2-D two conductor TEM line for complex expansion pointss0 = 0, �j1 � 1011, �j2 � 1011,
�j3 � 1011, �j4 � 1011, �j5 � 1011 and matching 5, 2, 2, 2, 2, 2 moments at each.

Fig. 18. An 18-pin backplane connector.

The point of the above discussion was to describe the need
for automatic multipoint methods, but such methods could not
be applied unless the algorithms of this paper make problems
for 10 computationally possible. Next we show that
indeed they do.

2) Results for a Practical Example:Finally, consider a
real example to show the computational efficiency of
multipoint expansions via the algorithms of this chapter.
We generate a fiftieth order model for half of the backplane
connector of Fig. 18. The discretization generated 1560 panels
and 480 filaments. For simplicity, only one input and one
output is modeled, , corresponding to exciting only one
of the middle pins. Assume we desire an accurate frequency
response up to 10 . Since poles tend to be matched
outward from the expansion point, we match 48 moments
about a midpoint 10 and then two at
0 to insure accurate capture of the DC behavior. To match
moments at multiple points, as in the previous section, we use

Fig. 19. Various reduced order models for the self-admittance of a middle
pin from part of the back plane connector.

the algorithm in [13]. The self-admittance of the excited pin
is shown in Fig. 19. The result is compared to a much higher
order model of size 250. The fiftieth order model matches
well up to around 15 GHz, compared to the poor response of
a fiftieth order model for which all moments were matched at

0. The poles captured in the reduced model are shown in
Fig. 20. The many real poles in the original model are greater
than 10 and are out of range of the plot.

To observe the computational efficiency of the precondi-
tioned iterative algorithm, consider one solve of (35) using the
simple block preconditioner in (37) for a finer discretization
of the connector resulting in 5112 panels and 2592 filaments.
The results shown in Fig. 21 are good compared to no pre-
conditioning.

One can improve the block preconditioner by using the
preconditioner of (40) which uses a local inversion precon-
ditioner for the capacitive part. For (40), the iteration count is
smaller as shown in Fig. 22 and also the number of nonzeros
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Fig. 20. Poles of reduced model and higher order model for part of the back
plane connector.

Fig. 21. Convergence of iterative solver for one solve ofMZEMM
T using

a block diagonal preconditioner.

Fig. 22. Convergence of iterative solver for one solve ofMZEMM
T using

different preconditioners.

is considerably less as shown in Table I. The table and figure
also include a block preconditioner with smaller blocks than
in Fig. 21. This smaller block preconditioner had roughly the
same number of nonzeros in the unfactored matrix as the local

TABLE I
NONZEROS AND CPU TIME FOR FACTORIZATION OF ONLY THE PRECONDITIONER.
LOCAL INVERSION IS FOR ABLOCK DIAGONAL ^L AND LOCAL INVERSION BASEDC

Fig. 23. Convergence of iterative solver forMZEMMT using recycling.
Numbers for each line correspond to solve number. With more vectors from
recycling, the later solves converge faster.

inversion preconditioner, yet it was worse in all respects, as
shown in the table.

The local inversion preconditioner required less time, fewer
iterations and had many fewer nonzeros in the factored matrix.
Since the CPU time to factor each of these is so small,
choosing a denser preconditioner could significantly improve
results. Such an optimization will not be pursed here. Note
that for a denser preconditioner, the CPU time advantage of
the local inversion preconditioner would become considerably
more significant.

Just as for 0, if many moments are to be matched at
a given , then the Krylov subspace from previous moments
can be reused. Consider now computing multiple moments at

10 .
For each iterative solve, we see that the number of iterations

decreases as shown in Fig. 23. The 23 solves required a total of
422 matrix-vector products, compared to the roughly
1081 that would be required without recycling, representing
over a factor of two speedup. This speedup is counterbalanced
by the memory consumption in storing the back vectors. For
the above problem, storage of the denseand matrices with
5112 panels and 2592 filaments requires 263 MB. Storage of
the back vectors with 6858 complex entries each requires 46
MB, which is over 17% of the total storage. For this small
problem, such memory is acceptable, but for larger problems
which require multipole or precorrected-FFT acceleration,
such consumption is unacceptable. By noting that the most
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Fig. 24. CPU flops required to generate a fiftieth order model.

Fig. 25. Flop count projections for use of a multipole algorithm for the dense
matrix vector product for the fiftieth order connector model.

benefit from recycling comes from the first few solves in
Fig. 23, the storage of these back vectors could be stopped
when memory consumption is a concern.

For the overall computational efficiency, Fig. 24 shows
the total CPU floating point operations (flops) required to
generate a fiftieth order model for thefull connector for various
levels of discretization. As can be seen, if (35) were solved
by direct factorization, the flops would grow as , but
with the iterative solver, the growth is only . Note
that for a modest problem size still under elements, the
iterative algorithm is an order of magnitude faster than direct
factorization.

With efficient iterative solution in place, the Multipole
algorithm could be directly applied to bring the operation count
and memory growth to . The benefits of such an approach
are shown in Figs. 25 and 26. We see that using multipole
acceleration is roughly a factor of five improvement in both
time and memory over dense matrix vector products.

VI. CONCLUSION

In this paper, we developed a mesh formulated approach for
passive model order reduction of the full quasistatic Maxwell’s
equations. We found that model reduction about 0
stagnates, that is, the reduced order transfer function along

Fig. 26. Memory use projections for use of a multipole algorithm for the
dense matrix vector product for the fiftieth order connector model.

the axis converges slowly to the exact transfer function.
This behavior was attributed to the large clusters of poles near
the origin, a common feature of the PEEC RLC method. A
common solution to such a problem is to match moments
about some 0. Computations for the Arnoldi algorithm
for 0 however, would be extremely expensive due to the
required nested dense iterative solve.

The advantage of the mesh formulation became apparent for
computing multipoint expansions because the first order state-
space form could be reformulated in a pure mesh form. From
a pure mesh form, effective preconditioning and multipole
acceleration could be applied to give an algorithm of nearly

flop and memory growth which, for 10 , was
50 times faster and consumed 5 times less memory than
direct factorization. Such growth rates make such algorithms
essential as problems near 10 .

While we saw that an accurate low order model could be
generated for the backplane connector, the method is not fully
automatic in regard to error control. An accurate model was
generated only after comparing the response of the reduced
model to the exact model. Unfortunately, the exact response is
generally not available for comparison. It is thus not clear how
to fully automate the generation of a good model. Methods to
investigate include [24] and recently [12].
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