
 Gopsill, J. A., Snider, C., McMahon, C., & Hicks, B. (2016). Automatic
generation of design structure matrices through the evolution of
product models. AI EDAM, 30(4), 424-445.
https://doi.org/10.1017/S0890060416000391

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1017/S0890060416000391

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Cambridge
University Press at http://dx.doi.org/10.1017/S0890060416000391. Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1017/S0890060416000391
https://doi.org/10.1017/S0890060416000391
https://research-information.bris.ac.uk/en/publications/32bc8604-ccb1-4371-a582-49aa79733829
https://research-information.bris.ac.uk/en/publications/32bc8604-ccb1-4371-a582-49aa79733829

Automatic generation of design structure matrices through the

evolution of product models

JAMES A. GOPSILL, CHRIS SNIDER, CHRIS MCMAHON, AND BEN HICKS

Faculty of Engineering, University of Bristol, Bristol, United Kingdom

(RECEIVED October 1, 2015; ACCEPTED May 31, 2016)

Abstract

Dealing with component interactions and dependencies remains a core and fundamental aspect of engineering, where con-

flicts and constraints are solved on an almost daily basis. Failure to consider these interactions and dependencies can lead to

costly overruns, failure to meet requirements, and lengthy redesigns. Thus, the management and monitoring of these de-

pendencies remains a crucial activity in engineering projects and is becoming ever more challenging with the increase

in the number of components, component interactions, and component dependencies, in both a structural and a functional

sense. For these reasons, tools and methods to support the identification and monitoring of component interactions and de-

pendencies continues to be an active area of research. In particular, design structure matrices (DSMs) have been extensively

applied to identify and visualize product and organizational architectures across a number of engineering disciplines. How-

ever, the process of generating these DSMs has primarily used surveys, structured interviews, and/or meetings with en-

gineers. As a consequence, there is a high cost associated with engineers’ time alongside the requirement to continually

update the DSM structure as a product develops. It follows that the proposition of this paper is to investigate whether an

automated and continuously evolving DSM can be generated by monitoring the changes in the digital models that represent

the product. This includes models that are generated from computer-aided design, finite element analysis, and computa-

tional fluid dynamics systems. The paper shows that a DSM generated from the changes in the product models corroborates

with the product architecture as defined by the engineers and results from previous DSM studies. In addition, further levels

of product architecture dependency were also identified. A particular affordance of automatically generating DSMs is the

ability to continually generate DSMs throughout the project. This paper demonstrates the opportunity for project managers

to monitor emerging product dependencies alongside changes in modes of working between the engineers. The application

of this technique could be used to support existing product life cycle change management solutions, cross-company product

development, and small to medium enterprises who do not have a product life cycle management solution.

Keywords: Computer-Aided Design; Design Structure Matrices; Graph Theory; Metadata; Network Analysis

1. INTRODUCTION

Handling component interactions and dependencies remains

a core and fundamental activity, with engineers resolving

conflicts and satisfying constraints on an almost daily basis.

Failure to consider these interactions and dependencies can

lead to costly overruns, failure to meet requirements, product

recalls, and/or lengthy redesigns. For example, issues in the

length of cabling required in the A380 led to a $6.1 billion de-

lay for the project, while Toyota has had to recall 625,000 ve-

hicles because of faulty hybrid software (Calleam, 2011;

Bruce, 2015).

In each of these examples, the companies were introducing

innovative technologies to their product lines, which led to

these complex products containing many more components

that are more highly interconnected and dependent on one an-

other, structurally, behaviorally, and functionally (Hamraz &

Clarkson, 2015). This is further supported by Briggs (2012),

who details that the Boeing 787 Dreamliner consists of over

300,000 parts modeled in computer-aided design (CAD),

and the accompanying product data management system

commonly saw between 75,000 and 100,000 accesses a

week. This highlights the scale of CAD work being per-

formed by a company that has locations across the globe

and employs approximately 160,000 people. Due to this scale

and the accompanying complexity, the ability to monitor and

evaluate the interactions and dependencies between compo-

Reprint requests to: James A. Gopsill, Faculty of Engineering, University
of Bristol, 0.36 Queen’s Building, University Walk, Bristol BS8 1TR, UK.
E-mail: J.A.Gopsill@bristol.ac.uk

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2016), 30, 424–445.
Cambridge University Press 2016 0890-0604/16 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is
properly cited.
doi:10.1017/S0890060416000391

424

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

mailto:J.A.Gopsill@bristol.ac.uk
http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

nents at various system and subsystem levels remains a crit-

ical activity.

For these reasons, the development of supportive tools

and methods continues to be an active area of research,

with design structure matrices (DSMs) emerging as a com-

mon method. Originally conceived in the 1980s by Steward

(1981) as a branch of graph theory, DSM seeks to understand

the connected nature of engineering systems through a N�N

matrix of interactions between system elements (Eppinger,

1997). The system elements can consist of individual compo-

nents, assemblies of components, systems of components, en-

gineers, teams of engineers, processes, and/or organizational

structure to name a few. DSMs enable researchers to analyze

and visualize product, process, organisational, and multido-

main architectures of engineering products and projects.

Over the last 20 years, DSM analysis has been shown to pro-

vide insights into the product architecture of engineering

products as well as the design process, and has helped increase

engineering companies’ understanding of their product (see, for

e.g., Pimmler & Eppinger, 1994; MacCormack et al., 2006;

Sosa et al., 2007; Jarratt et al., 2011). This understanding pro-

vides the basis for companies to better manage change prop-

agation and risk, model change scenarios, and increase the

modularity of their product designs. In addition, analysis of

organizational architectures has resulted in companies being

able to increase the performance of their development teams

through restructuring in accordance with the product architec-

ture (Eppinger, 1997; Browning, 2009). DSM has also been

successfully applied to understand and evaluate supply net-

works as well as in integrating multiple complex systems

such as the internal combustion engine and electric recovery

and deployment system for hybrid vehicles (Fixson, 2005;

Chen & Huang, 2007; Gorbea et al., 2008).

In order to generate DSMs, it is first necessary to under-

stand the interactions between the system elements of interest.

To capture these interactions, the majority of reported studies

have used surveys, manual coding of engineering documents,

structured interviews, and/or meetings with engineers (Fig. 1).

In addition, many of the reported studies often use binary or

ordinal values to determine the level and/or type of depen-

dency between system elements. For example, Sosa et al.

(2003) used a range from –2 toþ2 in order to provide aweigh-

ted degree of dependency between system elements of a jet en-

gine, while Gorbea et al. (2008) used a binary value to indicate

the presence of dependencies between the component and

function domains of hybrid vehicles. Although the capture

of these data types has been shown to provide insightful results

in terms of the dependencies within product architectures, it is

argued that they may also be a limiting factor in providing

even greater insights due to the granularity and resolution in

which system dependencies can be assessed.

Because these data capturemethods involve considerable in-

teraction with engineers, there is inherently a cost associated

with the engineer’s time, potential error due to the subjectivity

and precision of recall of the responses from engineers, and

limitations in terms of determining the strength of the depen-

dencies. Due to the time commitment required, data gathering

is often a discrete activity that occurs at a single point in the

project. Hence, a DSM can be considered a snapshot of the

product architecture. For these reasons, it is contended that

there is a need to explore alternative means to generate

DSMs and, in particular, means that are automated, more ob-

Fig. 1. Data collection methods from the studies in Eppinger and Browning (2012).

Automatic generation of design structure matrices 425

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

jective and real time, and that could support or supplement ex-

isting manual elicitation strategies (Senescu et al., 2012).

In the case of mature products such as aircraft and motor

vehicles, the product architecture is generally well understood

and the majority of dependencies are known. These are often

captured through a combination of process models, product

data management, product life cycle management (PLM),

and associative CAD systems (Jarratt et al., 2011). However,

such a proactive approach is not often possible for new, low

value, or one-time large complex products/systems. It is

also argued that an automated and real-time DSM analysis

could provide additional support to existing solutions.

Many cases remain where a PLM change management so-

lution may not be viable such as in small to medium enter-

prises where the expense may be too great. In addition, cross-

company collaborative engineering projects can often pro-

vide additional challenges in monitoring dependencies due

to the introduction of multiple disparate enterprise informa-

tion technology systems having to interface within one an-

other as well as issues with data security.

Therefore, the proposition for this paper is to investigate

whether an automated and continuously evolving DSM can

be generated from the changes to the digital models that

represent the product. Suchmodels includeCAD, finite element

analysis (FEA), and computational fluid dynamics (CFD). To

explore this proposition, this paper presents the results from a

DSM analysis of the evolution of product models for a formula

student team. The objectives of this paper are threefold:

1. automatically identify component and subsystem de-

pendencies across CAD models,

2. automatically identify cross-disciplinary dependencies

through the analysis of the full range of product models,

and

3. monitor the evolution of dependencies within the

product models.

The paper continues by providing details of the method of

data capture and the process by which DSMs have been auto-

matically generated. The process uses the co-occurrence of

product model edits to elicit potential candidates for depen-

dency. This is then evaluated through the creation of a

CAD, product model, and dynamic product model DSMs.

The results of these have been verified through comparison

with the product architecture as defined by the design team

and results from previous DSM studies. In addition, particular

attention is given to the affordances offered by dynamic

product model DSMs. The paper then concludes by high-

lighting the key findings from the DSM analysis and areas

of future work.

2. CAPTURING THE EVOLUTION OF PRODUCT

MODELS

The data set used in this study has been generated from the

evolution of product models produced by the Formula Stu-

dent team at the University of Bath. Formula Student (also

known as Formula SAE) is a motor-sport educational pro-

gram whereby teams of students from competing universities

create a single-seat race car that competes in various chal-

lenges set out by the competition organizers. The competi-

tions are held worldwide and include events in the United

Kingdom, United States, Australia, and Europe.

The team consisted of 33 engineering students in their final

year of study who have undertaken a range of engineering

courses, including automotive, aerospace, electrical, manu-

facturing, and mechanical. Therefore, it is argued that this re-

flects a highly multidisciplinary colocated engineering proj-

ect environment.

In addition, the team have developed a bespoke lightweight

CAD management tool that manages the naming convention,

relationships, and organization of the CAD models. This is

known as the bath automated parts system (BAPs). All

work on the models is performed on the shared network drive.

In order to monitor the evolution of the product models, a

Raspberry Pi (connected to the network) was used to monitor

the status of the shared network drive at 20-min intervals

(Raspberry Pi Foundation, 2015). More specifically, the folder

structure alongside the metadata attributes of all the product

models was captured. This included model size, date accessed,

and date modified. The data capture was performed over a

13-week period from March 2014 to June 2014.

Table 1 summarizes the properties of the data set with re-

spect to the various product models for the Formula Student

car. CAD models total 1432 models, which have been up-

Table 1. Summary of the formula student

engineering models

Description Value

Weeks of data capture 13

Total CAD models created 1,432

Total CAD models assigned within BAPs 541

Brake system 13

Complete assembly 1

Electrical 9

Engine & drivetrain 142

Frame & body 145

Miscellaneous 1

Standard parts 45

Steering 46

Suspension 113

Wheels, wheel bearings, & tires 26

Unassigned CAD models 891

CAD model updates 10,145

CFD models 227

CFD updates 681

FEA models 43

FEA updates 121

WAVE models 95

WAVE model updates 245

OptimumK models 44

OptimumK model updates 88

J.A. Gopsill et al.426

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

dated 10,145 times using the Siemens NX CAD package

(Siemens, 2015). Table 2 shows that the BAPs CADmanage-

ment tool classification covers 42% of the CAD models gen-

erated. Fifty-eight percent remains formally unclassified, and

suggests that there is a high volume of temporary models as

well as models that support other aspects of the design pro-

cess, such as FEA and CFD modeling.

The second most active area in terms of product model up-

dates are models generated from ANSYS CFX, with 227

unique simulation setup models and 681 updates (ANSYS,

2015). This is followed by the Ricardo WAVE one-dimen-

sional gas dynamics modeling, which models the behavior

of the internal combustion engine and has 95 simulation setup

models and 245 updates (Ricardo, 2015). Last in terms of rel-

ative model activity (number of updates) is the FEA and Op-

timumK (a dynamics simulation package) modeling, which

saw 43 and 44 unique models with 121 and 245 total updates,

respectively.

3. DSM GENERATION

In general, the generation of DSMs has involved the elicitation

of dependencies between systems and subsystems through ex-

pert opinion. In this paper, it is posited that models edited

within a certain time period of each other can be considered

to be candidates for a potential dependency. The probability

of this dependency being true, alongside the potential strength

of this dependency, is increased by a consistent reoccurrence

of the models being edited within defined time periods.

An initial proof-of-concept investigation was conducted by

Senescu et al. (2012), who sought to generate DSMs through

the writing, viewing, and exporting of engineering docu-

ments within a cloud-based information management tool.

The investigation concluded that dependencies were able to

be identified; however, a significant amount of false positives

were also identified due to pure chance of a document change

co-occurring and/or the concurrency of work within the proj-

ect. Therefore, this paper builds upon these results and pro-

poses a seven-stage process for generating DSMs through

the analysis of the co-occurrence of model edits, with each

stage featuring techniques to reduce the false positive identi-

fication within the DSM (Fig. 2).

Stage 1 involves selecting the appropriate models that will

be used as the basis for the DSM and is based on the level of

activity recorded. The process then enters an iteration loop

encompassing Stages 2 to 6, where a number of potential

DSMs are generated by varying the time period in which

co-occurrences can occur and the level of pruning. Pruning

refers to the removal of edges (dependencies in this case)

that are of a low weighting and is a method of removing noise

from the matrix. Stage 2 involves generating the dependency

matrix through the co-occurrence of model activity. In the

first instance, it has been assumed that the matrix is directed

(i.e., if Model A changes, then Model B changes). Stage 3

then examines this assumption and assesses the “directed-

ness” of the matrix through pairwise comparison of the di-

rected matrix elements (i.e., Model A to B and Model B to

A). A decision is then made as to whether to continue the

analysis with a directed or undirected matrix. This leads

into Stage 4, where the matrix is weighted. The objective of

the weighting is to evaluate the likelihood of a dependency

while attempting to filter potential false positive dependen-

cies introduced by the method of measuring co-occurrence

throughmodel edits. Once theweighting scheme has been ap-

plied to the matrix, pruning of the matrix can occur (Stage 5).

This is particularly important as the level of pruning can

greatly affect the partitioning of the matrix and a compromise

must be sought because excessive pruning of the matrix may

result in models becoming isolated. After the pruning, it is then

a case of partitioning the matrix to reveal the structure and

models with a high likelihood of being dependent (Stage 6).

Stage 7 of the process then evaluates the generated DSMs in

terms of the modularity, number of partitions, number of com-

ponents, and remaining matrix size in order to determine the

most appropriate time period and level of pruning for the given

data set. This also reveals the sensitivity of the analysis with re-

spect to the level of pruning and time period at which a co-oc-

currence is detected. This section continues by discussing each

stage of the process in further detail alongside an example of

the generation of the CAD DSM presented in this paper.

3.1. Initial model selection

The first stage of the process requires the specification of the

models to be analyzed. In this study, the CAD, CFD, FEA,

WAVE, and OptimumK models were specified as potential

candidates for the DSM. This is achieved by detecting the re-

spective file extensions for the product models. In addition,

the number of updates for each model is also used as a filter,

and Figure 3 shows the distribution of model activity for the

models in terms of the number of changes made to the model

and the number of days the model has been actively worked

upon (i.e., an update has to have been made on the day for

it to be counted). It can be seen that there is a slight positive

correlation with the number of days the model has been ac-

tively worked upon and the number of edits to the model.

In addition, one model in particular appears to exist outside

of the main group of model activity. Upon inspection of the

file name, it was revealed that this model embodies the full

CAD assembly of the car, and it is likely that the number of

Table 2. Reduction in models through filtering

based on level of edit activity

Model Type Filtered Nonfiltered

CAD (assigned) 296 541

CAD (unassigned) 17 891

CFD 7 227

FEA 3 43

OptimumK 0 7

Automatic generation of design structure matrices 427

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

Fig. 2. Process of automatically generating design structure matrices.

Fig. 3. Distribution of product model activity.

J.A. Gopsill et al.428

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

updates to this model reflects the number of model updates

arising from the various subassemblies of the product.

A closer inspection of the main groups model activity

(Fig. 3) reveals that the CAD models embody a much greater

activity and days of activity compared to the CFD, FEA, and

WAVE models. This provides evidence to suggest that the

CAD model plays a fundamental role in the Formula Student

project with the CFD, FEA, and WAVE models used to sup-

port the development of the product rather than lead the de-

sign of the product.

To continue the analysis further, this stage requires the user

to decide upon a suitable level of co-occurred activity given the

context. In this case, models with an activity of greater than

four updates have been selected. This includes the creation fol-

lowed by three more updates. The aim is to remove the models

that show little to no activity and, thus, may represent areas of

the product that cannot be altered by the team (e.g., a bought in

part such as the engine block and/or gearbox). Imposing a low

threshold for the number of updates helps prevent an overre-

duction in the size of data set. For the case of the CADmodels,

the data set consists of 541 formally classified models reduced

(cf. BAPs; Table 2) to 296 (55%) for further analysis while the

unclassified CAD models are reduced from 891 to 17.

3.2. Co-occurrence matrix generation

Once the filtered data set has been defined, the generation of

the DSM matrix can commence. This is achieved through the

analysis of the co-occurrence of product model changes

within the filtered data set. Figure 4 shows the process of

identifying the co-occurrence of model changes. Taking

Model A as the model of interest, the process identifies all

the timestamps where the model has changed and generates

a period in time where the occurrence of changes to and crea-

tion of other models are noted. Thus, if Model B has changed

within this period, then this is defined as a co-occurrence and

is a potential candidate for a dependency. The more often that

this occurs, the greater the likelihood of the existence of a de-

pendency. Currently, the impact of a change and the creation

of a new model within the time period are treated equally. The

maximum timeperiod is definedby the useralthough the period

can be shorter if model A changes again within its own time

period as demonstrated by the 4, 3, and 2 h in Figure 4.

Figure 4 also shows the three possible scenarios that can

occur. Scenario (i) occurs where Model A has changed and

within the time period, Model B has also changed. A co-oc-

currence of model activity is consequentially recorded. Sce-

nario (ii) occurs where Model B changes again within the

same time period. In this scenario, a co-occurrence has al-

ready been recorded, and therefore, further changes are not re-

corded because they exist within the same time period. Sce-

nario (iii) occurs where Model B changes within a period

of inactivity of Model A. In this case, there is no co-occur-

rence of model activity.

The analysis of co-occurrence results in a DSM as illus-

trated in Figure 5, where a change in the model in the row

vector has a likelihood of leading to a change in the model

in the column vector. As a result of the generation process,

the DSM is inherently directed where Model A can result in

a change in Model B, but Model B may not lead to a change

in Model A. This forms the initial matrix that, in the exam-

ple of the CAD DSM with a max time period of 1 h, has led

to a DSM consisting of 296 models and 32,508 directed co-

occurrences ranging from 1 to 77 in weight.

In creating this matrix, there is an inherent assumption that

the dependencies are directed, and thus, there is a need to as-

sess the truth of this assumption and whether an undirected

matrix could be equally effective in representing the data

set (Stage 3). There is currently a wider range of validated

partitioning algorithms in relation to undirected matrices,

while directed partitioning algorithms remains a maturing

field of research. Therefore, it is argued that, where possible,

an undirected matrix would be a preferred result.

In addition, with many co-occurrences having aweight of 1

also highlights the likelihood that a number of false positive

dependencies have been captured. Therefore, there is a need

to weight the resulting undirected/directed matrix so as to re-

duce the noise and help reveal key co-occurrences (Stage 4).

Fig. 4. Determining co-occurrence of model activity.

Automatic generation of design structure matrices 429

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

3.3. Evaluating the “directedness” of the matrix

Stage 3 assesses the directedness of the generated matrix.

This involves examining the number of one-way co-occur-

rences (10,850; i.e., a co-occurrence has been indicated

fromModel A to B but not from Model B to A) and the num-

ber of two-way co-occurrences (10,829; i.e., co-occurrences

have been detected for both directions from A to B and

from Model B to A). This is examined through the pairwise

comparison of the two-way co-occurrences (i.e., the weight-

ing of the co-occurrence from Model A to B and B to A)

and the distribution of the one-way co-occurrence values.

The results are shown in Figure 6. The pairwise comparison

of the two-way co-occurrences (Fig. 6a) reveals that there is

little difference between the co-occurrence values. It can be

seen that 72% of all the two-way co-occurrences have a dif-

ference of less than 2 (e.g., if the co-occurrence value for

Model A to B is 10, then the co-occurrence value for Model

B to A would be 8 or 12 for a difference to be 2). Similarly,

Figure 6b shows that the one-way co-occurrence values have

relatively low co-occurrence values, with 77% of one-way co-

occurrences also having a value less than 2 (e.g., if the co-oc-

currence value for Model A to B is 2 with no co-occurrence

detected in the direction of Model B to A). In both cases, it is

argued that there is little directionality within the matrix, and

Fig. 5. Illustration of the design structure matrix from the co-occurrence of model activity.

Fig. 6. Analyzing directedness of the computer-aided design structure matrices matrix.

J.A. Gopsill et al.430

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

the one-way co-occurrences are likely to be false positive de-

pendencies because they have low co-occurrence values.

From these results, it is argued that an undirected matrix can

be equally representative of the data as a directed matrix.

Therefore, all DSMs in this paper have been translated from di-

rected to undirected networks prior toweighting by combining

the number of co-occurrences for both directions (i.e., the sum

of the weights from Model A to B and Model B to A).

3.4. Matrix weighting

In order to further reduce the likelihood of false positives and

reveal the strongest candidates for dependencies, a matrix

weighting scheme has been applied. The aim of the scheme

is to reduce the potential influence of two or more designers

modifying one or more unrelated documents at the same time.

Two schemes are available, and the selection depends on

whether a directed or undirected matrix has been generated

from Stage 4.

For a directed matrix, each row vector is normalized by di-

viding the vector by the total number of changes made to the

model that the row represents; that is, the co-occurrence be-

tween Model A and Model B would be divided by the total

number of changes to Model A. This gives the ratio of co-oc-

currence between the twomodels in relation to the total model

activity of Model A.

For an undirected matrix, each cell is divided by the sum of

the total number of changes made to both models that the cell

represents, that is, the number of co-occurrences between

Model A and B divided by the sum of the total number to

changes made to Models A and B. The premise is that higher

ratios highlight a greater likelihood of the existence of a depen-

dency between the two models. The weighting scheme also

normalizes the co-occurrence of models and, thus, enables

comparison between the range of model activities observed.

In the case of the CAD DSM, the undirected weighting

scheme has been applied, and Figure 7 shows the impact of

the weighting scheme on the distribution of the model co-oc-

currence values. It is immediately apparent that the weighting

scheme increases the relative importance of some of the co-

occurrences, while in the original matrix, there is a sharp

drop off due to the large variability in the model activity

across the CAD models. Consequentially, it is argued that

the weighting scheme has potentially highlighted more of

the positive dependencies.

3.5. Matrix pruning

Pruning is where the co-occurrences of given weights are re-

moved from the DSM. In graph theory, this would be the re-

moval of edges of a certain weighting from a network. The

key objective of the pruning is to reduce the false positives

in the matrix while maintaining the structure of the matrix

and, in this case, revealing the candidate dependencies of

higher likelihood. In this case, co-occurrences of a low

weighting are removed because it is deemed that these are

false positive candidates for dependency. The appropriate

value at which to prune is determined later in Stage 7, where

an optimization takes place in order to determine the most ap-

propriate values for the time period and level of pruning.

Pruning the matrix also has the ability to disconnect mod-

els and groups of models from the rest of the matrix. In the

first case, the process removes this model from the rest of

the analysis, while in the second case, the group of models re-

main within the matrix as a separate group. These are com-

monly referred to as components in graph theory and can

be considered to be a form of partitioning for the DSM.

Even with a matrix that has been separated into a number

of components, further partitioning can take place in order

to uncover partitions within the components that remain.

Fig. 7. Distribution of weighted co-occurrences within the computer-aided design structure matrices.

Automatic generation of design structure matrices 431

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

In the case of the CAD DSM presented in this paper, the

pruning level was set at 0.25, and this resulted in the matrix

being reduced from 296 to 253 models due to disconnection

and the number of co-occurrences being reduced from 21,679

to 613. The significant reduction in the number of co-occur-

rences further highlights the level of false positive that are in-

troduced using this technique. In addition, the high number of

remaining models in the matrix after pruning (85.4%) shows

that the 613 remaining co-occurrences have the potential to

reflect the main structural elements of the matrix. In addition,

the pruning led to the creation of 13 components within the

matrix. Components are akin to modules within engineering

products, where the models within the component are highly

connected and dependent from the rest of the product archi-

tecture. The number of components can be considered to be

an indicator of how modular a product design is.

3.6. Matrix partitioning

Because the formation of the matrix involves the measure-

ment of the co-occurrence of model activity and correspond-

ingly results in potential false positive dependencies appear-

ing, it is argued that typical DSM partitioning techniques may

not be as suitable as other graph theory partitioning tech-

niques. This is because DSM partitioning techniques are

usually performed on data that is typically binary or ordinal,

and there is an assumed confidence in the values attained

from data capture because it is often through expert opinion.

In contrast, the co-occurrence measurements in this analy-

sis are transactional and continuous, as well as having a

chance of some of the candidate dependencies being false pos-

itives. Therefore, the structure of the data can be considered to

be more akin to communication transactions such as e-mail

and social media (Blondel et al., 2008; Pujol et al., 2009). In

this field, the Louvain community-partitioning algorithm has

been shown to perform well in identifying partitions of com-

munities. For these reasons, the Louvain method has been

adopted in this DSM generation process.

The Louvain community algorithms’ objective is to generate

a set of partitions for the matrix that returns the highest modu-

larity value. Modularity (Q) is an assessment of the quality of

the matrix partition and is defined as (Newman, 2004):

Q ¼
1

2m

X

ij

Aij �
kikj

2m

� �

@(ci, cj), (1)

wherem ¼ ð1=2Þ
P

ij Aij

� �

and is the number of co-occurrences

within the matrix; @ is the Kronecker delta function, which is 1

if a co-occurrence exists between two models and 0 otherwise;

(kikj)/2m is the probability that a co-occurrence may exist be-

tween two models, where ki is the number of models that

have co-occurrences with model i and ki is the number of

models that have co-occurrences with model j; and Aij is the

weighted co-occurrence between the two models in the matrix.

In order to obtain the highest modularity partition, the al-

gorithm iterates between two steps. The first assigns each

model to its own partition. This is then followed by the algo-

rithm sequentially moving one model to a different partition

and calculating the change in modularity. From this, the max-

imum modularity change can be identified.

The second step merges the models together to form a par-

tition of models and combines the co-occurrences of model

activity to form single co-occurrence links to the rest of the

matrix, and self-loops are used to identify internal co-occur-

rences between the models within the partition. The aim is to

achieve a partitioning whereby each partition is highly con-

nected internally and weakly connected to one another.

Thus, it can be considered a form of hierarchical clustering,

and the algorithm iterates until the modularity can no longer

be increased by partitioning the models. This paper uses the

community application programming interface implementa-

tion of the Louvain community-partitioning algorithm within

the NetworkX python package (Hagberg et al., 2008).

In the case of the CAD DSM, with a time period of 1 h and

pruning of 0.25, the partitioning achieves a modularity score

of 0.851 with 26 partitions being generated. This value is

comparatively high when compared to many other network

data sets where a modularity greater than 0.3 has been consid-

ered to be a “good” level of partitioning (Newman, 2004). Al-

though modularity has been typically been used as an indica-

tor of a “good” partition, it cannot provide complete

confidence because random networks are able to attain a

range of modularity scores (Newman, 2006). In this study,

the high score of 0.851 is expected given the typical hierarchi-

cal nature of product architectures that often have well-de-

fined system and subsystem boundaries.

3.7. Sensitivity of DSM generation to time period and

pruning values

As previously stated, one of the main challenges in automat-

ically generating DSMs through the co-occurrence of model

changes is determining the appropriate values for the time pe-

riod in which co-occurrences are detected and the level of

pruning. This is unlike a normal DSM approach, where there

is an assumed confidence in the validity of the dependencies

because they are typically elicited from a number of experts.

The process therefore incorporates a stage to determine the

most appropriate values and assess the sensitivity of the

DSM to these parameters. This involves optimizing the ma-

trix with respect to the following:

1. the quality of the partitioning achieved (i.e., a “good”

system and subsystem product architecture can be iden-

tified),

2. the number of partitions detected (i.e., the level of sub-

system granularity that can be attained),

3. the remaining size of the matrix after pruning (i.e., how

representative the DSM is to the entire product architec-

ture), and

4. the number of matrix components (i.e., how modular

the product design is).

J.A. Gopsill et al.432

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

First, the quality of the partitioning achieved by the process

is assessed by taking the modularity into consideration where

a higher value is preferable because this highlights that the

analysis is able to identify clear system and subsystem bound-

aries. Second, the number of partitions detected is also taken

into consideration where the greatest number of partitions is

sought because it provides the greatest granularity within

the matrix. In terms of the CAD files, the greatest granularity

would provide the lowest level of subsystem within the

product architecture. Third, the effect of pruning is taken

into account because increasing the pruning often leads to a

greater loss of models due to disconnection from the rest of

the matrix. Hence, it is desirable to ensure that a large propor-

tion of the original matrix remains after pruning; thus, the

DSM is as representative of the entire product architecture

as possible. Fourth, the number of matrix components pro-

duced by the pruning is considered. Here, fewer components

is preferable because components are disconnected from one

another, and thus, there is a potential loss in understanding of

the dependency between these components, yet it is also an

indicator for the number of separate modules within a prod-

uct’s design.

To achieve this, a range of time periods and levels of prun-

ing are considered exhaustively, and the modularity, number

of communities, remaining network size, and number of

components are determined. Figure 8 shows the results for

each of these parameters where the dashed rectangles high-

light the desired areas for each of the parameters. The effect

of sensitivity with respect to the four matrix metrics are the

following:

1. The partition modularity (Fig. 8a) has a positive corre-

lation between the time period and level of pruning in

order to sustain a high modularity score.

Fig. 8. Effect of time period and pruning on the community partition analysis.

Automatic generation of design structure matrices 433

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

2. The optimum number of communities is more sensitive

to both the level of pruning and time period with a max-

imum attained at 0.5 h and level of pruning of 0.3

(Fig. 8b).

3. Beyond a pruning level of 0.35, the remaining number

of models within the DSM decreases (Fig. 8c).

4. The number of components (Fig. 8d) follows a similar

pattern to the number of communities whereby it is both

highly susceptible to changes in the time period and

level of pruning.

Because the ideal time period and level of pruning differs

for each of the parameters, it can be seen that a compromise

must be made. In addition, black areas are a result of the entire

removal of the matrix by pruning.

To achieve this, the four metrics are combined as shown in

Equation (2) to determine an overall measure O, where M is

the modularity of the matrix partition,Np is the number of ma-

trix partitions, R is ratio of the network that remains after

pruning, and Nc is the number of matrix components. The

aim is to achieve the highest O, given a range of time periods

and pruning levels.

O ¼
MNpR

Nc

: ð2Þ

Figure 9 shows the result of this search for an optimal set of

parameters and reveals a number of regions, such as 1 h and a

0.25 level of pruning and 6.5 h and a 0.35 level of pruning. In

this paper, it has been decided that 1 h and a pruning level of

0.25 is the most suitable parameter set. For the purpose of this

study, the four matrix assessment metrics have not been

weighted, but it may be desirable to do so.

3.8. Summary

The previous sections have presented a detailed description

of the seven-stage process undertaken to generate the DSMs

alongside an example of generating a DSM for the CAD

models from the Formula Student data set. Although

much of the process can be automated, a number of deci-

sions have to be made given the context of the data set

that is to be analyzed. First, the initial model filtering was

based upon activity. In this paper, this was specified as a

minimum of four updates. Second, it is also necessary to de-

cide whether to continue with a directed or undirected co-

occurrence matrix. Through investigation of the one- and

two-way co-occurrence values, an undirected matrix was

chosen. Third, this decision concerns the time period and

level of pruning of the matrix. In order to make a reasoned

decision on these values, the process introduces a search

stage where these values can be chosen based on four mea-

sures: the modularity, the number of partitions, the number of

components, and the remaining matrix size. The sensitivity

of these parameters has been discussed based on equal

weightings of the four measures. This revealed a suitable

time of 1 h and pruning level of 0.25.

4. RESULTS AND DISCUSSION

As previously discussed in Section 2, the data set considered

in this study involves the design of a Formula Student car and

Fig. 9. Determining the appropriate time period and pruning values.

J.A. Gopsill et al.434

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

the evolution of the associated CAD, CFD, FEA, and WAVE

models. Correspondingly, three DSMs are constructed using

the process described in Section 3. The first DSM is a CAD

model only DSM. The second comprises CAD, CFD, FEA,

and WAVE product models, with the OptimumK models

not being considered due to a lack of file activity being re-

corded. The third DSM is a dynamic product model DSM

that captures the evolution of dependencies across all product

models in real time as the project progresses from week to

week. The following discussion centers on the validity of

the DSMs through comparison with the existing product ar-

chitecture as defined by the team and results from previous

DSM studies, and the additional insights that could be

brought by an automatic DSM process.

4.1. CAD DSM

The properties of the CAD DSM are summarized in Table 3.

The table shows that a high proportion of the models remain

after the pruning stage (85.5%) with a core number of co-

occurrences remaining (2.83%). This highlights that a signif-

icant number of candidate dependencies are likely to have

been false positives. The modularity score of 0.85 highlights

that a high level of structure exists within the matrix and sug-

gests that the product architecture can be clearly separated

into a number of subsystems. In addition, the high number

of components (13) demonstrates that the products design is

also highly modular in parts, an insight that would be difficult

to ascertain through the existing hierarchical structure of the

CADmodels as the dependencies could span system and sub-

system boundaries. However, a total of 12 additional parti-

tions were generated through Louvain partitioning, which

highlights that there are a number of highly integrative sub-

systems within the product architecture.

Figure 10 shows the impact of the partitioning on the DSM

structure. Initially, it appears that there is no structure to the

DSM (Fig. 10a), but postpartitioning, a high-level of structure

is shown to exist (cf. Fig. 10b). This high level of structure

within the generated DSM is comparable to the DSMs gener-

ated by Sosa et al. (2003) and Gorbea et al. (2008) for a jet

engine and hybrid vehicle, respectively. This result is also

in line with manually curated DSMs that have been produced

by Van Beek et al. (2010) and Maurer (2007) within the For-

mula Student context.

It has been noted by Eppinger and Browning (2012) that

one of the key benefits of DSM is the ability to visualizse

and interrogate subsystem dependencies through figures

such as Figure 10b. However, it is also noted that this DSM

can be considered very large in terms of the number of ele-

ments being visualized when compared to more traditional

DSMs, which commonly feature between 10 and 100 matrix

elements (Eppinger & Browning, 2012) Consequentially,

such a matrix might require additional support in terms of na-

vigation in order for an engineer to comprehend all the depen-

dencies but also demonstrates the greater level of granularity

afforded by the automatic process.

Table 3. Summary of CAD

analysis

Description Value

Undirected matrix

Models 293

Co-occurrences 21,679

Pruned matrix

Models 253 (85.5%)

Co-occurrences 613 (2.83%)

Components 13

Partitions 25

Modularity 0.850

Fig. 10. Community partitioning on the co-occurrence of computer-aided design models.

Automatic generation of design structure matrices 435

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

It is immediately apparent that the partitions generated

from the co-occurrence of file activity have identified many

dependencies that are cross system and subsystem. Therefore,

it is argued that the analysis provides further insights into the

design of the Formula Student car that the current CAD man-

agement system does not provide. While BAPs manage and

monitor the product architecture, the automatic DSM process

offers potential for identifying dependencies beyond purely

architectural (Figure 11). These partitions could relate to

functional, structural, and/or process dependencies.

Focusing on the partitions generated by the automated DSM

process, four key insights can be drawn.Amore complete over-

view of the partition breakdown is presented in Table 4.

1. Areas of the product exist that are highly interdependent

across all the team-defined subsystems. Hence, a

change in one of these models could require significant

rework across many subsystems and might be an area

that requires careful monitoring, particularly in later

stage design.

2. There are a number of smaller partitions that consist of

only one team-defined subsystem. Thus, a change in

one of these partitions may only require changes to a

small subset of parts in the product and potentially an

engineer from a single discipline.

3. There are a number of partitions that arise from one sub-

system, and this may indicate that the subsystem can be

Table 4. Summary of CAD analysis

Partition Dependency Interpretation

0 Functional dependency between the steering system and suspension system, CADmodels may influence the

steering and dynamic performance of the car

1, 7, 12, 17, & 25 Interdependent frame and body system, a potential single module of product

2, 4, & 5 Dependency between frame and body, potential structural interfaces between systems

3 Dependency between engine and drivetrain and frame and body components, potential engine fixtures

locations with respect to the frame

6 Engine and drivetrain module with interfaces with some standard components

8 & 22 Interdependent steering system partition, potential single module of the product

9 Engine and drivetrain, suspension system, and wheels dependency, potential functional dependency

affecting dynamic vehicle performance (e.g., body role)

10, 14, 16, 18, 21, & 23 Interdependent engine and drivetrain or wheel system, potential single module of product

13, 20 Interdependent standard parts partition, potential identification of standard parts from nonclassified parts

15 Dependency between suspension and wheel systems, potential structural and functional dependency

19 Interdependent braking system partition, potential single module of the product

25 Dependency between frame and body systems, potential identification of standard parts from nonclassified

parts

Fig. 11. Comparison of bath automated parts system and design structure matrices structures.

J.A. Gopsill et al.436

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

further decomposed. For example, further decomposition

might be useful for the purpose of resource allocation.

4. The partitioning has identified distinct subsystem de-

pendencies. Partition 3 is one such example, where spe-

cific models of the Engine & Drivetrain are related to

models of the Frame & Body. This is a logical outcome

because the engine fixtures are located to specific areas

of the frame.

From this evaluation, it is argued that the DSM provides in-

sights that are consistent with the known structure of the For-

mula Student vehicle, and the results are consistent with

DSMs generated from more traditional approaches. In addi-

tion, a number of additional benefits have been revealed by

using an automatic DSM generation process. Therefore, this

provides confidence in the proposed approach to produce

DSMs.

The partitioning of the matrix also enables the models to be

meaningfully grouped by the intensity of the dependencies.

This is in effect moving up a level in the hierarchy of the

product architecture, and the results are shown in Figure 12.

The rows and columns represent the partitions from the pre-

vious matrix (Fig. 10), and the color provides a visual indica-

tion of the level of dependency between the partitions. The

matrix is symmetric as it remains undirected.

It can be seen in Figure 12 that partitions beyond 15 appear

to not have dependencies with the other partitions, and this is

due to the fact that these are small components that were gen-

erated by the pruning of the matrix, and the potential depen-

dencies were removed as false positives. Partitions 1 to 9 do

show dependencies between one another, and in particular,

there appears to be a high dependency between Partitions 3

and 5, and 5 and 9. This suggests, that Partition 5 is a funda-

mental integrating partition of CADmodels and, hence, likely

to be a core subsystem of the product, which in this case is the

Frame & Body. A change in this partition is likely to have a

substantial impact across many other partitions within the

DSM.

4.2. Product model DSM

Similarly to the CAD DSM, the properties of the product

model DSM are given in Table 5. Consistent with the CAD

DSM, the pruning of the matrix achieved a greatly reduced

number of dependency candidates (80%) while maintaining

a high proportion of the original matrix (75%). Again, the

modularity value of 0.769 is comparable with the CAD

DSM with 30 components being generated and 45 partitions.

Figure 13 shows the results from the partitioning of the ma-

trix using the DSM process. Similar to results shown in the

Fig. 12. Induced matrix from grouping the partitioned computer-aided design models.

Table 5. Summary of CAD, CFD,

FEA, and WAVE DSM

Description Value

Undirected matrix

Models 488

Co-occurrences 51,245

Pruned matrix

Models 367 (75.3%)

Co-occurrences 1,020 (1.99%)

Components 30

Partitions 45

Modularity 0.769

Automatic generation of design structure matrices 437

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

CAD DSM (Fig. 10), Figure 13a shows a seemingly random

matrix while the partitioning result in Figure 13b reveals that

there is a significant level of structure within the product

model DSM. However, in contrast to the CAD DSM, there

appears to be greater interdependency between the partitions,

which is shown by an increase in co-occurrences that exist

outside the partitions denoted by the blue squares.

To investigate this result further, the model types have been

mapped to the partitions generated from the DSM. Figure 11

shows the results of this mapping with four interesting fea-

tures being exposed.

1. Eachmodel type has a partition that consists solely of its

respective model. This is a logical output because many

of the components within the product may not require

an in-depth analysis in relation to CFD, FEA, or

WAVE modeling.

2. The existence of a single WAVE model partition is un-

related to the rest of the other modeling types. Because

WAVEmodels involve the analysis of the internal com-

bustion parameters of the internal combustion engine,

the modeling looks to optimize the engine mapping ra-

ther then look to change the design of the engine itself.

Therefore, this is confirmation that the DSM has the

ability to detect this as a separate partition and further

provides evidence of the technique’s validity. This is

may also be the case for some of the CFDmodels where

they may be testing new components that did not be-

come part of the final Formula Student car.

3. Identification of dependencies between areas of the

CAD model and the FEA and CFD models in this

analysis highlights that a change in any of these models

may require further FEA and CFD analysis to be per-

formed.

4. It is argued that a single partition consisting of CAD,

CFD, and FEA models may be an area that will require

monitoring by project management because any change

with these models may lead to considerable rework

across multiple engineering disciplines

As with the CAD DSM, the product model DSM can use the

partitions to group the models and form a secondary matrix of

these partitions. Figure 14 shows the results of this induced

product model matrix, and the result is similar to that of the

CAD DSM induced matrix. Above Partition 16, there are

no dependencies observed between the partitions because

these are the components that have been generated from Prun-

ing 16, and below Partition 16 show the inner partitions of the

larger components within the network, and it can be seen that

there exists potential dependencies between these partitions.

In particular, Partition 16 shows the greatest number of de-

pendencies between the other partitions, and looking back

to Figure 15, it can be seen that this partition is the largest

in terms of number of models, and this may highlight the

key interfacing components within the product.

4.3. Dynamic network analysis of models

The final aspect that has been investigated is the potential of

automatically generating DSMs during the engineering proj-

ect. This has been achieved through the generation of product

model DSMs based on the weekly model activity during the

Formula Student project.

Figure 16 provides a summary of the matrix statistics and

how they evolve throughout the weeks of the project. It is im-

mediately apparent that a gap exists within the updates of the

product models between Weeks 7 and 8, and this is due to

the students going for Easter vacation and work ceasing on

the project. Figure 16a shows that there is a consistency in

the level of work being performed on the CAD, CFD, and

FEA models, while the WAVE model activity only appears

between Weeks 4 and 6. Figure 16b shows the statistics for

Fig. 13. Community partitioning on the co-occurrence of product models.

J.A. Gopsill et al.438

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

the DSMs created for each week. An interesting feature of the

DSMs is the variability in the size of the matrix between the

weeks and modularity score for the partitioning. It appears

that there is a limit in generating “good” partitions with low

model activity. This is a logical result, and the lack of model

co-occurrence activity makes the identification and distinc-

tion between positive and false positive dependencies more

challenging. It could also be more difficult to detect subsys-

tem structures on a weekly basis because the team are focus-

ing on different elements of the product architecture. Thus,

the partitions may be more reflective of the areas of work ra-

ther than identifying a particular product subsystem as with

the previous CAD and product model DSMs.

Figure 17 shows the DSMs forWeeks 2 to 7 of the Formula

Student project. The challenges of low model activity and the

ability to generate a DSM is more apparent when one com-

pares Figures 17c and 17d. Figure 17c clearly has fewer active

models, and if it were to be compared to the entire DSM from

Section 4.2, this may show the mode of working of the team

as well as the specific area of work. In addition, comparing

these DSMs to the previous CAD and product model

DSMs, it can be seen that there appears to be a great deal

Fig. 15. Composition of product model design structure matrices partitions based on model type.

Fig. 14. Induced matrix from grouping the partitioned product model design structure matrices.

Automatic generation of design structure matrices 439

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

more interdependencies between the partitions that are gener-

ated. This may be because the analysis is focusing upon a

week of activity where it is suggested that the team are focus-

ing on integrating models within a few areas of the product at

a time. Because the analysis has used the same time period

and pruning for the consistency across the analysis, it may

be the case that these values may not be suitable for the anal-

ysis of individual weeks, and hence, there may be more false

positive within these DSMs.

Figure 18 provides further details on the composition of the

partitions from Weeks 2 to 7 of the Formula Student project.

From comparison of these weekly compositions, four inter-

esting features emerge.

1. Week 2 (Fig. 18a) reveals partitions consisting of models

from all the subsystems in the product. In particular, Par-

tition 1 focuses on the Suspension, Frame & Body and

Steering System, so it is suggested that these components

are forming the initial chassis for the car. Moving to Par-

tition 2, this solely consists of standard parts and parts that

could not be classified through their naming convention.

This provides evidence to suggest that the nonclassified

parts are part of the standard library of parts of the car.

Partition 2 consists of parts from the rest of the subsys-

tems for the car, and this could be the initial placeholders

for the arrangement of the subsystems within the car.

2. Concentrated working on particular subsystems has

been identified in Week 3 (Fig. 18b) and Week 4

(Fig. 18c) though the majority of the partitions consist

of one model type. This may also indicate that these

subsystems require a certain level of maturity before

being introduced to the rest of the product architecture.

3. Partition 1 in Week 4 (Fig. 18c) highlights a particular

area of multidisciplinary collaboration between the

Frame & Body development of the CAD alongside

the associated CFD and CFD and FEA analysis.

4. A change in the mode of working within the team

emerges afterWeek 4.Weeks 3 and 4 (Fig. 18b,c) focused

on specific areas alongside CFD and FEA analysis;

Weeks 4–7 (Fig. 18d–f) show a high-level of integrative

working between the various subsystems of the car. Ini-

tially, the majority of partitions within Weeks 4 and 5

(Fig. 18c,d) consist of either two or three different subsys-

tems, which could be used to identify specific dependen-

cies between subsystems. The level of integrativeworking

continues to grow in Week 7 where both the number of

partitions and number of subsystems within each partition

increase. This shows that as the project and product de-

velop, the more integrative the work becomes.

These results highlight the potential of automatically generat-

ing DSMs as engineering projects progress and the potential

insights that they could provide to support engineering proj-

ect management and the design process. In addition, a better

understanding of how the multitude of dependencies evolve

and develop within a product could also be produced, and

having a library of DSMs from past product developments

could be used to support and monitor the development and

progression of new products.

4.3. Summary

The results from DSMs generated from the Formula Student

project has provided considerable evidence to suggest that

the process of generating DSMs through the co-occurrence

of product model updates provides valid and useful informa-

tion for engineering project management. In addition, the re-

sults show the potential for this process to produce dynamic

product model DSMs, which would have previously been a

time consuming and potentially costly endeavor. Table 6 pro-

vides a summary of the key features that have been identified

through the generation of the CAD, product model, and dy-

namic product model DSMs.

Fig. 16. Model activity and design structure matrices statistics for the dynamic design structure matrices.

J.A. Gopsill et al.440

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

Fig. 17. Partitioning results for Weeks 2 and 7 of the formula student project.

Automatic generation of design structure matrices 441

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

5. FUTURE WORK

In generating the process and interpreting the results, a number

of avenues have been revealed for potential future work. The

first avenue lies in applying this technique within an industrial

context as a current limitation of this study is that the data set is

one of a university-based project. Two challenges are foreseen.

The first is that for the study reported in this paper, the team

Fig. 18. Partitioning composition for Weeks 2 and 7 of the formula student project.

J.A. Gopsill et al.442

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

was colocated, and thus, the co-occurrence of work was per-

formed within the same time zone. In contrast, large engineer-

ing projects may potentially have many concurrent work pack-

ages that are being worked upon in a distributed manner across

multiple time zones. The second concerns the time it takes for

changes to occur within various product models. For example,

small CAD changes can take within the region of 2 min while

CFD analyses could take days to run and complete. Thus, CAD

models are open to more co-occurrence events than CFD,

which the analysis has yet to adjust for.

Although there remain a few limitations, it is also argued

that the analysis in its current form could support small to me-

dium enterprises where these challenges may not be manifest

and the cost of implementing PLM systems is too great. In ad-

dition, it would be interesting to compare this process along-

side existing DSMs practices within engineering companies

as well as their change management processes.

The second avenue of future research lies in the delivery of

the results. As discussed previously in Section 4.1, the DSMs

generated by this technique are much larger than more tradi-

tional DSMs, where the number of elements are typically in

the hundreds, while this technique could produce DSMs

with thousands of elements. Therefore, novel methods in in-

teracting and navigating these DSMs to support engineers in

their understanding of the multitude of dependencies that

have been identified would be interesting to explore further.

The third is in the assessment of the impact of providing this

information into Formula Student projects in future years. An

interesting research question is to understand how the results

of this analysis could be used to inform and support future en-

gineering projects. In addition, expert evaluation of the DSMs

generated through this process could be used to ascertain

whether the dependency is functional, structural, or procedural.

With this additional information, future work could seek to au-

tomatically determine and further verify the type of dependency

alongside the existence of a dependency as the engineering proj-

ect evolves. The Formula Student projects also provides a con-

sistent project and engineering process where DSMs can be

generated year on year, and it would be interesting to investigate

the consistency of the DSM from team to team to explore how

teams performing the same task impact the DSM.

The fourth and final avenue concerns whether the type and

locality of the dependency can be uncovered through the anal-

ysis of the changes in content between product models. In ad-

dition, the dynamic DSM analysis has focused on the time

slices of engineering activity, and analysis of the cumulative

activity may provide additional insights in terms of the evolu-

tion of the dependency structure as well as the engineering

process that has been followed.

6. CONCLUSION

Managing component interactions and dependencies remains

a core and fundamental element of engineering and is faced

by engineers on an almost daily basis. Being able to detect

and monitor these interactions and dependencies continues

to be a challenging area for engineering project management,

and one that is set to become even more challenging as the

number of components, component interactions, and compo-

nent dependencies of products is continually increasing.

This paper has sought to complement existing techniques by

extending the well-established DSM method through the crea-

tion of a process that automatically generates DSMs from the

evolution of product models. This process has been applied

to the evolution of the product models associated with a For-

mula Student project in order to assess the validity and addition

insights that could be brought by an automatic DSM process.

Three DSMs were generated from the Formula Student

data set, a CAD DSM, a product model DSM, and a dynamic

product model DSM. The results reveal that the process is

able to produce a DSM that is representative of the vehicle

when compared to the existing subsystem definition and is

comparable to DSMs generated by traditional methods. In ad-

dition, areas of high dependency and isolated subsystems of

the vehicle have been identified, and this information could

be used to support resource allocation and change manage-

ment within the project. Finally, the key affordance offered

by the process is the ability to provide dynamic DSMs in

real time to an engineering project. This would be previously

impractical using traditional DSM generation practices, and

the results have shown that they can indicate changes in the

Table 6. Summary of CAD, CFD, FEA, and WAVE DSM

CAD DSM

1. Areas of the product exist that are highly interdependent across all the

subsystems that have been defined.

2. There a number of smaller partitions that consist of only one subsystem.

3. There are a number of partitions that arise from one subsystem and this

may indicate that the subsystem can be usefully further decomposed.

4. The partitioning has identified distinct subsystem dependencies.

Product Model DSM

1. Each model type has partitions that solely consist of their respective

models.

2. The existence of a single WAVE model partition, which is unrelated to the

rest of the other modeling types

3. Identification of dependencies between areas of the CAD model and the

FEA and CFD models where this analysis highlights that a change in any

of these models may require further FEA and CFD analysis to be

performed

4. A single partition consisting of CAD, CFD, and FEA models

Dynamic Product Model DSM

1. Partitions in Week 2 consist of models from all subsystems in the product

that may indicate the generation of the initial layout of the vehicle

2. A change in the mode of working in Weeks 3 and 4 indicating

concentrated work on areas of the vehicle

3. Identification of areas in the product architecture that require

multidisciplinary collaborative work

4. A change in the mode of working that indicates a high-level of integrative

working between the various subsystems of the vehicle

Automatic generation of design structure matrices 443

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

mode of working within the project and provide insights into

how dependencies between subsystems have emerged.

ACKNOWLEDGMENTS

Thework reported in this paperwasundertakenas part of theLanguage

of Collaborative Manufacturing Project at the University of Bath and

theUniversity ofBristol, which is funded byEngineering and Physical

Sciences Research Council (EPSRC) Grant EP/K014196/2.

REFERENCES

ANSYS. (2015). Ansys cfx. Accessed at http://www.ansys.com/Products/
Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/
ANSYS+CFX

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast
unfolding of communities in large networks. Journal of Statistical Me-

chanics: Theory and Experiment 2008(10), P10008.
Briggs, D. (2012). Establish digital product development (dpd) low end

viewer (lev) and archival standard for 787 project. Proc. Collaboration
& Interoperability Congr. (CIC), Denver, CO, May 21–23.

Browning, T.R. (2009). Using the design structurematrix to design programor-
ganizations. Handbook of Systems Engineering and Management (Sage,
A., & Rouse, W., Eds.), 2nd ed., pp. 1401–1424. Hoboken, NJ: Wiley.

Bruce, C. (2015). Toyota recalls 625k Prius models for faulty hybrid soft-

ware. Accessed at http://www.autoblog.com/2015/07/15/toyota-recalls-
625k-prius-faulty-hybrid-software/

Calleam. (2011).Airbus—a380. Accessed at http://calleam.com/WTPF/?p=4700
Chen, S.-J.G., & Huang, E. (2007). A systematic approach for supply chain

improvement using design structure matrix. Journal of Intelligent Manu-

facturing 18(2), 285–299.
Eppinger, S.D. (1997). A planning method for integration of large-scale en-

gineering systems. Proc. Int. Conf. Engineering Design, pp. 199–204,
Tampere, Finland.

Eppinger, S.D., & Browning, T.R. (2012). Design Structure Matrix Methods

and Applications. Cambridge, MA: MIT Press.
Fixson, S.K. (2005). Product architecture assessment: a tool to link product,

process, and supply chain design decisions. Journal of Operations Man-

agement 23(3), 345–369.
Gorbea, C., Spielmannleitner, T., Lindemann, U., & Fricke, E. (2008). Anal-

ysis of hybrid vehicle architectures using multiple domain matrices.DSM
2008: Proc. 10th Int. DSM Conf., pp. 375–387, Stockholm, November
11–12.

Hagberg, A.A., Schult, D.A., & Swart, P.J. (2008). Exploring network struc-
ture, dynamics, and function using NetworkX. Proc. 7th Python in Sci-

ence Conf. (SciPy2008), pp. 11–15. Pasadena, CA, August 11–15.
Hamraz, B., & Clarkson, J. (2015). Industrial evaluation of fbs linkage a

method to support engineering change management. Journal of Engi-
neering Design 26(1–3), 24–47.

Jarratt, T.A.W., Eckert, C.M., Caldwell, N.H.M., &, P.J. (2011). Engineering
change: an overview and perspective on the literature. Research in Engi-

neering Design 22(2), 103–124.
MacCormack, A., Rusnak, J., & Baldwin, C.Y. (2006). Exploring the struc-

ture of complex software designs: an empirical study of open source and
proprietary code. Management Science 52(7), 1015–1030.

Maurer, M.S. (2007). Structural awareness in complex product design. PhD
Thesis, University of Munich.

Newman, M.E.J. (2004). Analysis of weighted networks. Physical Review E

70(5), 056131.
Newman, M.E.J. (2006). Modularity and community structure in networks.

Proceedings of the National Academy of Sciences 103(23), 8577–8582.
Pimmler, T.U., & Eppinger, S.D. (1994). Integration Analysis of Product De-

compositions. Cambridge, MA: MIT Press.
Pujol, J.M., Erramilli, V., & Rodriguez, P. (2009). Divide and conquer: par-

titioning online social networks. Accessed at http://arxiv.org/abs/0905.
4918

Raspberry Pi Foundation. (2015). Raspberry pi—home page. Accessed at
http://www.raspberrypi.org

Ricardo. (2015). Wave—1d engine gas dynamics, 2015. Accessed at http://
www.ricardo.com/en-GB/What-we-do/Software/Products/WAVE/

Senescu, R.R., Head, A.W., Steinert, M., & Fischer,M.A. (2012). Generating
a network of information dependencies automatically. Proc.14th Int. De-
pendency and Structure Modelling Conf., DSM12, pp. 139–152, Stan-
ford, CA, September 12–13.

Siemens. (2015). Nx: Siemens plm software. Accessed at http://www.plm.
automation.siemens.com/en_us/products/nx/

Sosa, M.E., Eppinger, S.E., & Rowles, C.M. (2003). Identifyingmodular and
integrative systems and their impact on design team interactions. Journal
of Mechanical Design 125(2), 240–252.

Sosa, M.E., Eppinger, S.D., & Rowles, C.M. (2007). A network approach to
define modularity of components in complex products. Journal of Me-

chanical Design 129(11), 1118–1129.
Steward, D.V. (1981). The design structure system: a method for managing

the design of complex systems. IEEE Transactions on Engineering Man-

agement 28(3), 71–74.
Van Beek, T.J., Erden, M.S., & Tomiyama, T. (2010). Modular design of

mechatronic systems with function modelling. Mechatronics 20(8),
850–863.

James Gopsill is a Senior Research and Teaching Associate

in the Department of Mechanical Engineering at the Univer-

sity of Bristol. As a member of the Design & Manufacturing

Futures Lab, his research interests cover the application of ar-

tificial intelligence, machine learning, and big data analytics

to support engineering design and knowledge management.

In addition, he has an interest in rapid prototyping technolo-

gies and the development of tools to support their application

within the engineering design process. He has published

more than 25 journal and conference papers and has received

two outstanding contribution awards.

Chris Snider is a Senior Research and Teaching Associate in

the Department of Mechanical Engineering at the University

of Bristol. Working within the engineering design and man-

ufacture group and extensively with industry, his research in-

terests cover development of engineering design processes,

design support tools and methods, design thinking and be-

havior, engineering informatics, virtual and physical proto-

typing, and engineering management. In particular, his re-

search focuses on monitoring and analysis of engineering

processes throughout their life cycle, as well as effective de-

sign and development within constrained design situations.

He has published more than 25 journal and conference papers

and has won three international best paper awards.

ChrisMcMahon is a Professor of engineering design in the De-

partmentofMechanicalEngineeringat theUniversityofBristol, a

post he has held since September 2012. He previously worked at

theUniversity from1984 to 2002. From2002 to 2012, heworked

at the University of Bath as Reader and then Professor and Direc-

tor of its Innovative Design andManufacturing Research Centre.

Prior to 1984 hewas a production and design engineer in the rail-

way and automotive industries. His research interests are in engi-

neering design, especially concerning the application of compu-

ters to the management of information and uncertainty in design,

design automation, product life cyclemanagement, design educa-

tion, anddesign for sustainability, areas inwhichhehaspublished

over 250 refereed papers, a textbook, and a number of edited

books. Professor McMahon is a Chartered Engineer, Fellow of

the Institution of Mechanical Engineers (UK), and a founder

J.A. Gopsill et al.444

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
http://www.autoblog.com/2015/07/15/toyota-recalls-625k-prius-faulty-hybrid-software/
http://www.autoblog.com/2015/07/15/toyota-recalls-625k-prius-faulty-hybrid-software/
http://www.autoblog.com/2015/07/15/toyota-recalls-625k-prius-faulty-hybrid-software/
http://calleam.com/WTPF/?p=4700
http://calleam.com/WTPF/?p=4700
http://arxiv.org/abs/0905.4918
http://arxiv.org/abs/0905.4918
http://arxiv.org/abs/0905.4918
http://www.raspberrypi.org
http://www.raspberrypi.org
http://www.ricardo.com/en-GB/What-we-do/Software/Products/WAVE/
http://www.ricardo.com/en-GB/What-we-do/Software/Products/WAVE/
http://www.ricardo.com/en-GB/What-we-do/Software/Products/WAVE/
http://www.plm.automation.siemens.com/en_us/products/nx/
http://www.plm.automation.siemens.com/en_us/products/nx/
http://www.plm.automation.siemens.com/en_us/products/nx/
http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

member of the Design Society, for which he was President from

2010 to2013.He is an activememberof the scientific committees

of various international journals and conferences.

Ben Hicks is a Chartered Engineering and Professor of me-

chanical engineering at the University of Bristol. He is

Head of Engineering Systems and Design and leads the De-

sign and Manufacturing Futures Lab. His expertise spans ma-

chine and manufacturing systems design, including self-repli-

cating machines, modeling machine–material interaction,

virtual prototyping, and engineering informatics. Dr. Hicks

has published over 190 journal and conference articles, is a

past member of EPSRC’s Strategic Advisory Team, and recip-

ient of the IMechE Water Arbitration Prize for best original

paper.

Automatic generation of design structure matrices 445

http://dx.doi.org/10.1017/S0890060416000391
Downloaded from http:/www.cambridge.org/core. University of Bristol Library, on 25 Oct 2016 at 11:32:50, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0890060416000391
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

	Automatic generation of design structure matrices through the evolution of product models
	Abstract
	INTRODUCTION
	CAPTURING THE EVOLUTION OF PRODUCT MODELS
	DSM GENERATION
	Initial model selection
	Co-occurrence matrix generation
	Evaluating the ‘‘directedness’’ of the matrix
	Matrix weighting
	Matrix pruning
	Matrix partitioning
	Sensitivity of DSM generation to time period and pruning values
	Summary

	RESULTS AND DISCUSSION
	CAD DSM
	Product model DSM
	Dynamic network analysis of models
	Summary

	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

