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Automatic Generation of
Fast Discrete Signal Transforms

Sebastian Egner and Markus Püschel

Abstract—This paper presents an algorithm that derives fast
versions for a broad class of discrete signal transforms symboli-
cally. The class includes but is not limited to the discrete Fourier
and the discrete trigonometric transforms. This is achieved by
finding fast sparse matrix factorizations for the matrix representa-
tions of these transforms. Unlike previous methods, the algorithm
is entirely automatic and uses the defining matrix as its sole input.
The sparse matrix factorization algorithm consists of two steps:
First, the “symmetry” of the matrix is computed in the form of
a pair of group representations; second, the representations are
stepwise decomposed, giving rise to a sparse factorization of the
original transform matrix. We have successfully demonstrated
the method by computing automatically efficient transforms in
several important cases: For the DFT, we obtain the Cooley–Tukey
FFT; for a class of transforms including the DCT, type II, the
number of arithmetic operations for our fast transforms is the
same as for the best-known algorithms. Our approach provides
new insights and interpretations for the structure of these signal
transforms and the question of why fast algorithms exist. The
sparse matrix factorization algorithm is implemented within the
software packageAREP.

Index Terms—Discrete cosine transform, discrete Fourier trans-
form, fast algorithm, group representations, monomial represen-
tations, symmetry, trigonometric transforms.

I. INTRODUCTION

FAST algorithms for discrete signal transforms have been a
major research topic in the last decades leading to a large

number of publications. Because of their wide-spread appli-
cations in digital signal processing, particular effort has been
spent on the discrete Fourier transform (DFT) and the different
types of trigonometric transforms, i.e., discrete cosine and sine
transforms (DCTs and DSTs), as classified by Wang and Hunt
[1]. Important algorithms for the DFT include the “fast Fourier
transform” (FFT) found by Cooley and Tukey (first discovered
by Gauss [2]) [3], Rader’s algorithm for prime size [4], Wino-
grad’s algorithms [5], as well as [6]–[8]. An overview on FFT
algorithms can be found in [9] or [10]. Important algorithms for
the trigonometric transforms were found by Chenet al. [11],
Wang [12], Yip and Rao [13], [14], Vetterli and Nussbaumer
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[8], Lee [15], Feig [16], Chan and Ho [17], Steidl and Tasche
[18], and Feig and Winograd [19].

Most of the algorithms cited above are given as a factoriza-
tion of the respective transform matrix into a product of highly
structured, sparse matrices. If an algorithm is given another way,
e.g., by equations, it is possible to rewrite the algorithm in the
form of a sparse matrix product.

All of these algorithms have been found by insightful manip-
ulation of the entries of the transform matrices using algebraic
relationships of these numbers. In some papers, these relation-
ships have been referred to as “symmetry.” Several questions
remain unanswered. Is there a general mathematical principle
behind these algorithms, i.e., matrix factorizations? What is the
appropriate definition of symmetry that accounts for the exis-
tence of the algorithms? Is it possible to automate the process
of finding algorithms? For the DFT, the first two questions have
been answered, as we will briefly discuss in the next subsection,
since it marks the starting point for our results.

In this paper, we present the mathematical background and
the algorithm to automatically generate fast algorithms, given as
sparse matrix factorizations, for a large class of discrete signal
transforms using techniques from group representation theory.
In particular, we present the following.

• An appropriate definition of “symmetry” that catches
redundancy contained in the transform matrix and
connects it to group representations.Furthermore, the
symmetry has an intuitive interpretation in terms of signal
processing. As we will see, this definition of symmetry
generalizes the well-known property of the DFT diago-
nalizing the cyclic shift.

• An algorithm that 1) finds the symmetry of a matrix and 2)
uses it to derive a sparse matrix factorization.The algo-
rithm has been implemented and can be used as a discover
tool for fast transforms.

• The successful application of the factorization algorithm
to a large class of transforms.In many cases, the generated
fast transforms are similar to, or have the same arithmetic
cost (operations count), as the best-known algorithms.

Taken together, we provide a unifying framework that shows
that a large class of the best known fast algorithms for different
transforms are all special instances of the same common prin-
ciple. Thus, we shed new light on fast algorithms, put them into
a common context, and give insight into their algebraic struc-
ture.

A. Signal Transforms and Group Representations

The use of finite groups and their representations is not new
in signal processing. The most important example is the DFT
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and its connection to cyclic groups and their regular representa-
tions. This connection has been used to derive and explain the
structure of the Cooley–Tukey FFT [20], [21]. Generalization to
arbitrary groups, also known as Fourier analysis on groups, has
lead to a rich class of transforms, which, however, have found
no significant applications in signal processing [22]–[25]. An
exception might be the recent paper [26], where nonregular rep-
resentations of so-called wreath-product groups have been pro-
posed for multi-resolution image processing.

The crucial step to capture in the group representation frame-
work a broader class of signal transforms, including the cosine
and sine transforms, is to leave the domain of “regular” rep-
resentations in favor of the larger class of “monomial” repre-
sentations. The idea has its roots in the work of Minkwitz [27],
[28], and has been further developed by the authors in [29]–[33],
which forms the basis for this paper. We provide the tools to in-
vestigate agiventransform for group representation properties
and, when appropriate, factorize the transform, thus obtaining a
fast algorithm.

B. Approach

The approach for generating a fast algorithm for a given
signal transform, which is given as a matrix , consists
basically of two steps. In the first step, the “symmetry” ofis
computed. The “symmetry” is a pair of group representations
representing an invariance property of (cf. Section III). In
the second step, the group representations are decomposed
stepwise. This gives rise to factorized decomposition matrices
and determines a factorization of as a product of sparse
matrices (cf. Section IV). The factorization represents a fast
algorithm for the transform . Intuitively speaking, the
“symmetry” captures a large part of the redundancy contained
in , and the decomposition of the representations turns the
redundancy into a fast algorithm.

C. Organization of the Paper

In Section II, we introduce our notation for representing struc-
tured matrices and present the basic terms of group represen-
tations that are necessary to understand our approach for ob-
taining matrix factorizations. We emphasize the concepts and
the methodology rather than explaining the technical details.
The notion of “symmetry” of a matrix is defined in Section III,
and Section IV explains how a symmetry can be used to de-
rive a matrix factorization. In Section V, we apply the matrix
factorization algorithm to the Fourier transform, cosine, and
sine transforms of different types, the Hartley transform, and
the Haar transform. We compare the structure and arithmetic
cost of the algorithms that we derive to the structure and cost
of well-known algorithms from the literature. We conclude the
paper with a brief summary and an outlook for future research
in Section VI.

II. M ATHEMATICAL BACKGROUND

In this section, we present the basic notation of matrices and
group representations we are going to use. For further informa-
tion on representation theory, see introductory books such as
[34].

A. Matrices

We use the following notation to represent matrices. is
the -permutation matrix corresponding to the permuta-
tion , which is given in cycle notation, e.g.,
means

with corresponding -matrix

Note that it is necessary to supply the sizeof a permutation
matrix in since fixed points are omitted in cycle notation
(i.e., there is a difference between and ).
We prefer cycle notation because one can read off the order and
the fixed points of a permutation immediately. With, we de-
note the identity matrix of size diag is a diagonal ma-
trix with the list on the diagonal. Amonomialmatrix (some-
times called scaled permutation matrix) has exactly one nonzero
entry in every row and column and is represented as

length diag , e.g.,

i.e., the list scales the columns of the matrix. The operator
denotes the Kronecker (or tensor) product of matrices, and
denotes the direct sum

where is an all-zero matrix of appropriate size.

R

is the rotation matrix for angle, and

DFT

where , denotes the discrete Fourier transform of
size .

B. Groups and Representations

In this paper, essentially only two types of groups
will appear: the cyclic group of size , written as

or, by generators and relations,
as and the dihedral group of size
denoted by

.
A representationof a group (over ) is a homomorphism

GL

of into the group GL of invertible -matrices over
the complex numbers . is called thedegreeof . Dealing
with representations is nothing but dealing with groups of ma-
trices. If is a representation of , then is a matrix group,
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and, vice–versa, every matrix group can be viewed as a repre-
sentation of itself. If GL , then
is called theconjugateof by . The representationsand
are calledequivalent. If and are representations of, then
the representation is called thedirect
sumof and . The direct sum of representations
is defined analogously. The representationis irreducible if it
cannot be conjugated to be a direct sum.

Theorem 1 (Maschke):Every representation (over ) of
a group can be decomposed into a direct sum of irreducible
representations by conjugation with a suitable matrix

The are uniquely determined up to equivalence and up to a
permutation of .

In other words, Theorem 1 tells us how far a finite group of
matrices can be simultaneously block diagonalized. The matrix

in Theorem 1 is not uniquely determined and is called ade-
composition matrixfor .

is called apermutationrepresentation if all images are
permutation matrices, andis called amonomialrepresentation
if all images are monomial matrices. Every permutation
representation is also a monomial representation.

The following example states the interpretation of the DFT in
terms of representation theory.

Example 1: It is a known fact that DFTmaps the cyclic shift
(and all its powers) in the time-domain into a phase change in
the frequency-domain. In our notation

DFT DFT diag

In terms of representation theory, DFTdecomposes the permu-
tation representation of the cyclic
group into the direct sum

, where the irreducible representations are
.

III. SYMMETRY OF A MATRIX

The notion of symmetry has a two-fold purpose. First, it
catches the redundancy contained in the matrix; second,
it establishes the connection to representation theory, which
enables the application of algebraic methods to factorize, as
sketched in Section IV.

We consider an arbitrary rectangular matrix . A
symmetryof is a pair of representations of the same
group satisfying

for all

We call a symmetry groupof . We will use a shorthand
notation and write .

A symmetry has a very natural interpretation in
terms of signal processing if is a discrete signal transform
that we multiply from the left.

For all , a multiplication with in the time-domain
corresponds to a multiplication with in the frequency do-
main.

With the general definition above, however, every matrix has
arbitrary many symmetries. If, for example, is an invertible

-matrix and is any representation of degreeof a
group , then has the symmetry . Thus, in order to
catch the redundancy contained in, we will consider several
“types” of symmetry arising from restrictions on the represen-
tations .

1) Mon-Irred Symmetry: is monomial, and is a di-
rect sum of irreducible representations. If is even a
permutation representation, then we will also speak of
perm-irred symmetry.

2) Mon-Mon Symmetry: and are monomial. If and
are both even permutation representations, then we

will also speak ofperm-perm symmetry.
In words, the matrix has a mon-mon symmetry if there are

nontrivial monomial matrices such that .
Correspondingly, the matrix has a mon-irred symmetry if
is a decomposition matrix for a monomial representation. The
rationale for considering the types of symmetry above will be-
come clear in Section IV. Of course, one could also consider an
irred-mon symmetry where is monomial and is decom-
posed. Since transposition of a matrix with irred-mon symmetry
yields a matrix with mon-irred symmetry, we will restrict to the
latter symmetry type. Finding symmetry of the types above is
a difficult combinatorial problem and a main topic of [29] and
[32]. In fact, even computing the perm-perm symmetry has a
complexity that is not lower than testing graphs isomorphism,
which is known to be hard [35]. However, for matrices origi-
nating from signal transformations, it is often practical to com-
pute the symmetry because they contain many different entries,
which reduces the search space.

Example 2: Example 1 shows that the DFThas the sym-
metry group with symmetry :

diag

Note that is a mon-irred symmetry (even a perm-irred
symmetry) as well as a mon-mon symmetry.

IV. M ATRIX FACTORIZATION

Now, we explain how to factorize a given matrix ,
which has an arbitrary symmetry . First, the rep-
resentations are decomposed with matrices ,
respectively. This gives rise to two decomposed representations

. Second, the matrix
is computed to obtain the commutative diagram in Fig. 1.

Altogether, we obtain the factorization

(1)

From representation theory, we know thatis a sparse ma-
trix (cf. [31, Th. 1.48, iv]), but the question of sparsity remains
regarding the matrices and . The factorization in (1) is
useful only if the decomposition matrices and can them-
selves be determined as a product of sparse matrices. This is
possible for monomial representations (with certain restrictions
on the symmetry group ), as has been developed in the thesis
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Fig. 1. Factorization of the matrixM with symmetry(� ; � ).

research [31], [33], and justifies the consideration of the two
types of symmetry described in Section III.

1) Mon-mon symmetry: and are decomposition ma-
trices of monomial representations.

2) Mon-irred symmetry: is a decomposition matrix of a
monomial representation, and is the identity since
is already decomposed.

In fact, we will slightly relax the definition of mon-irred sym-
metry and allow to be any permutation matrix, which means
that is apermuteddirect sum of irreducible representations.
The factorization of a decomposition matrix for a monomial
representation arises from an algorithm that stepwise decom-
poses along a chain of normal subgroups using recursion for-
mulas for the decomposition matrices [33]. The recursion for-
mula essentially determines the structure of the matrix factor-
izations that we will present in Section V.

The algorithm for factorizing a matrix with symmetry follows
Fig. 1 and reads as follows.

Algorithm 1: Given a matrix to be factorized into a
product of sparse matrices.

1) Determine a suitable symmetry of .
2) Decompose and stepwise, and obtain (factorized)

decomposition matrices .
3) Compute the sparse matrix .

Result: is a factorization of into a
product of sparse matrices. This is a fast algorithm for evaluating
the linear transformation .

Algorithm 1 is implemented in the libraryAREP[36], which
is a GAPshare package for symbolic computation with group
representations and structured matrices.GAP[37] is a computer
algebra system for symbolic computation with groups.AREP
has been created as part of the thesis research [29], [30].

In the Appendix, we provide an overview of Steps 1 and
2. A comprehensive treatment including the mathematical
background and all technical details can be found in [29] and
[31]–[33]. In the following, we will concentrate on how the
combinatorial search in Step 1 and the algebraic decomposition
of Step 2 can be combined to automatically generate fast signal
transforms. In particular, we are interested in answering the
following questions.

• To which transforms is our approach applicable?
• What are the symmetry properties found?
• How do our generated algorithms compare with algo-

rithms known from literature?

First, we start with two brief initial examples applying Al-
gorithm 1 to the DFT and a circulant matrix. A more detailed
version of Example 4 can be found in the Appendix.

Example 3: Let DFT . has the mon-irred resp.
perm-irred symmetry

diag

(cf. Example 2). is already decomposed, and hence,
. Decomposing stepwise yields the decomposition matrix

DFT diag DFT

We compute and get the Cooley–Tukey
factorization .

Example 4: Consider the circulant -matrix

has the mon-mon (even perm-perm) symmetry

Decomposing and into a direct sum of irreducible repre-
sentations yields the decomposition matrices

DFT DFT diag

DFT

We compute diag with com-
plex numbers (whose actual values are not important
here) and obtain the well-known factorization of the cyclic con-
volution

DFT DFT

(We detail Steps 1 and 2 in the Appendix.)

V. EXAMPLES

In this section, we apply Algorithm 1 to a number of signal
transforms. The following factorizations have been generated
from the respective transformentirely automaticallyusing the
GAPshare packageAREP [36], [37], which contains an im-
plementation of Algorithm 1. Even the LaTeX expressions dis-
played below have been generated verbatim as they are.

We show the symmetry of the considered transforms, state
the number of arithmetic operation needed by our derived fast
algorithms, and compare them with algorithms known from lit-
erature. We want to emphasize that the symmetries themselves
are of interest since the fast algorithms that we derive owe their
existence to the symmetry in the same way as the Cooley–Tukey
FFT owes its existence to the fact that the DFT diagonalizes the
cyclic shift. The algebraic structure of the fast algorithms found
is due to the recursion formula for decomposing monomial rep-
resentations (done in Step 2 of Algorithm 1), which is subject
of Theorem 2 in the Appendix.

First, we want to say some words about howAREPdeals with
structured matrices.AREPdoessymboliccomputation with ma-
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trices, which means it stores and manipulates expressions repre-
senting matrices rather than the matrices themselves. An expres-
sion is something likeDFT , which can be stored
and manipulated more efficiently than the large matrix it rep-
resents. Of course, an expression can always be converted into
a real matrix if desired. While building the structured matrices
shown below (in particular in Step 2 of Algorithm 1),AREPsim-
plifies according to specified rules. For example, monomial or
permutation matrices are extracted from Kronecker products or
direct sums and multiplied if they are adjacent. In addition, oc-
curring sparse matrices are converted into permuted direct sums
or Kronecker products, if possible, to obtain a concise represen-
tation. As an example, consider the sparse matrix

can be permuted to be a direct sum of DFTs

DFT DFT DFT

or, even more concisely

DFT

Note that it is an easy task to convert this expression into the
original matrix above. In the same way, all permutations in the
following expressions (apart from the first or the last one) can be
removed leaving a product of sparse matrices each of which can
be computed in place.AREPalso recognizes scrambled rotation
matrices and makes this property explicit. For example, a matrix
of the form

would be transformed into the expression

R

Every matrix expression represents an algorithm for performing
a matrix-vector multiplication. The number of multiplications
and additions/subtractions required by this algorithm can easily
be determined. For example, the matrices

DFT DFT DFT DFT

require two additions, four additions, two additions, two multi-
plications, and two additions, respectively. Multiplications with

are not counted. Rotation matrices R, and scalar multiples
thereof, are thought of being realized with three multiplications
and three additions, according to the known factorization

The definitions of the transforms considered follow [38]. A
matrix representing a transform is always applied from the
left . The runtime for generating the algorithms, i.e.,
matrix factorizations, was in all cases less than 40 s CPU time
on a 233 MHz Pentium II, with 128 MB RAM, running Linux
2.0.36.

A. DFT: Cooley–Tukey

Algorithm 1 finds the Cooley–Tukey factorization of DFT,
as illustrated in Example 3 for .

B. Cyclic Convolution

Algorithm 1 finds the factorization of an circulant
matrix into two DFT s as illustrated for in Example 4.
This represents a cyclic convolution.

C. DFT: Rader

The Rader FFT [4] computes a DFTof prime size using
two DFTs of size . We apply Algorithm 1 to the case
and find the perm-perm symmetry

with cyclic symmetry group . In other words,
the permutation in the time-domain corresponds to
the permutation in the frequency-domain. The sym-
metry leads to the Rader factorization

DFT

DFT diag DFT

DFT diag

DFT

The first two lines contain the matrix (essentially a DFT),
the last two lines the matrix (essentially an inverse DFT),
and the middle two lines contain the matrixfrom Algorithm 1.
( are complex constants whose actual value has been
omitted for the sake of clarity.)

D. DCT, Type II, and III

The discrete cosine transform of type III, DCT , is defined
as the matrix

DCT

where for and elsewhere. DCT
is the transpose of DCT . We compute a perm-irred sym-
metry for DCT with dihedral symmetry group

and representations
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where, using and

Since DCT is equivalent to DCT , we get
the following interpretation for the DCT . Permuting
with or in the
time-domain corresponds to multiplication with or ,
respectively, in the frequency domain.

The symmetry leads to the following factorization of
DCT , which already has been derived by Minkwitz using
a preliminary version of Algorithm 1, as sketched in [27]
and [28]. By symbolic transposition (the order of the product
is reversed and each factor transposed using mathematical
properties), we get a factorization of DCT, which essentially
corresponds to the first algorithm found by Chenet al. [11],
which directly computes the DCT without using the DFT.

DCT

DFT DFT

DFT

DFT

R R R

mults adds

and, by transposition

DCT

R R R

DFT

DFT

DFT DFT

mults adds

Looking at the factorization of DCT , the first four lines
give the matrix from Algorithm 1, the last line contains the
permutation matrix (which makes the block structure of

and explicit), and the fifth line gives the matrix .
The algorithms for DCT and DCT have the same arith-

metic cost as the best known algorithms [8], [11], [12], [15],
[17]–[19], [39]. Note that those who use only 12 multiplications
do not normalize the first row of the DCT , which saves one
multiplication. The only algorithm that claims 11 multiplica-
tions [40] considers a scaled version of the DCTmatrix

DCT DCT

Multiplying by scalars conserves the perm-irred symmetry (it
just changes the matrix in Algorithm 1) andAREPalso finds
a factorization with 11 multiplications

DCT

R R R

DFT

DFT

DFT DFT

mults adds

We want to mention that the DCT (and, hence, the
DCT ) also has a mon-mon symmetry. For example, for
the case , the symmetry group is the direct product

. In fact, this symmetry has been used by Feig and
Winograd to derive a fast DCT algorithm [19] and a lower
bound for the number of nonrational multiplications necessary
for computing the DCT (for the optimal number
is 11, where the first row of the DCT is unscaled). They
essentially follow Algorithm 1 with the difference that and

are only decomposed over the rational numbers(which
yields a coarser decomposition of and ) using rational
matrices and . All nonrational multiplications then are
concentrated in the block diagonal matrix. AREPcurrently
is only capable to decompose representations over.

E. DCT, Type IV

The discrete cosine transform of type IV, DCT , is defined
as the matrix

DCT

We compute a mon-irred symmetry for DCT with dihedral
symmetry group

and representations

i.e., compared to the perm-irred symmetry of the DCT,
the last column of the images of and are mul-
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tiplied by , which also leads to a larger group. Using
, the matrices are

given by

The symmetry leads to the following factorization of DCT.
Since DCT is symmetric, transposition leads to another fac-
torization of DCT , which is very close to the fast algorithm
given by Wang [12].

DCT

DFT

DFT

R R

DFT

R R R R

mults adds

The first six lines correspond to the decomposition matrix
of in Algorithm 1, the seventh line to , and the last

line contains the permutation matrix , the inverse of which
permutes to be a direct sum.

An algorithm with two additions less can be found in [17].

F. DST, Type II, and III

The discrete sine transform of type III, DST , is defined
as the matrix

DST

where for and elsewhere. DST
is the transpose of DST . We compute a perm-irred sym-

metry for DST with dihedral symmetry group
and representations

i.e., compared to the perm-irred symmetry of the DCT, the
first and last column of the images of and are mul-
tiplied by . The matrices and (not given due to lack
of space) have entries only on the diagonal and at positions

with .
The symmetry leads to a factorization of DST and, hence,

to a factorization of DST , which requires 13 additions and 29
multiplications.

Since DCT , DCT , DST , and DST all have the
same arithmetic cost (because type II and III are transposed and
[17, Sec. 4.2]), the algorithms found byAREPare among the
best known algorithms.

G. DST, Type IV

The discrete sine transform of type IV DST is defined as
the matrix

DST

We compute a mon-irred symmetry for DCT with dihedral
symmetry group

and representations

i.e., the difference to the perm-irred symmetry of the DCT
lies only in the first column of the images being multiplied by

. The matrices and (not given due to lack of space)
have entries only on the diagonal and the opposite diagonal.

The symmetry leads to a factorization of DST, which re-
quires 20 multiplications and 38 additions. As for the DCT,
this is two additions more as in the best known algorithm [17].

H. DCT and DST, Type I

Although the transforms DCT and DST do not have a
mon-irred symmetry, they do possess a mon-mon symmetry that
can be used for their factorization. However, the algorithms ob-
tained this way are not as good as those from [17].

I. Hartley Transform

The discrete Hartley transform DHTis defined as the matrix

DHT

Note that we omitted the normalization factor in the
definition to obtain a fair comparison to known algorithms.
The DHT has a perm-irred symmetry with dihedral symmetry
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group and
representations

The only nonzero entries of the matrix are on the diagonal
and at , where . The symmetry yields the fol-
lowing factorization:

DHT

DFT DFT

DFT

DFT

DFT

mults adds

Closer investigation shows that two of the could be can-
celed against the , yielding four multiplications less.

The best algorithm for the DHTwith respect to arithmetic
operations seems to be the split-radix algorithm given in
Sorensenet al. [41] and needs two multiplications and 22
additions.

J. Haar Transform

The Haar transform HT is defined recursively by

HT

HT
HT

for . The transpose of the Haar transform has a perm-irred
symmetry. The symmetry group is an iterated wreath product
[26]. For , we obtain the following factorization:

HT

DFT

DFT DFT

mults adds

The first two lines contain the matrix from Algorithm 1
and the other lines the matrix (we decomposed the transpose
of HT and transposed the result). The number of operations
coincides with the best known algorithm [42].

K. Wreath Product Transform

In a recent paper, [26], decomposition matrices for permuta-
tion representations of certain groups, which are called iterated
wreath products, have been proposed for image processing. By
construction, these transforms possess symmetry in our defini-
tion. Thus, we readily obtain the following factorization of the

transform W given in [26, p. 117] (where it is called
; we want to note that this transform has an error in column 15,

where the last should read). For brevity, we denote .

W

DFT diag

DFT

DFT

DFT

mults by adds

VI. CONCLUSION AND FUTURE RESEARCH

We have presented an entirely automatic method for sym-
bolically deriving fast algorithms for an important class of dis-
crete linear signal transforms. This class includes the DFT, DCT,
DST, Hartley, and Haar transforms. In most cases, the derived
algorithms were among the best ones known. The approach is
based on the definition of “symmetry” of a transform as a pair of
group representations, which operate in the time-domain and the
frequency-domain, respectively, leaving the transform invariant.
More precisely, the considered transform matrices can be fac-
torized because they are decomposition matrices of monomial
group representations.

The results of this paper open at least the following two re-
search questions.

1) How do symmetry and signal processing properties of a
transform relate to each other?

2) Is it possible to extend the approach described to derive a
larger class of fast signal transforms?

AREPincludes an interface toSPL. SPL is a domain spe-
cific language and compiler for 1) representing a fast signal
transform given as a matrix expression like the ones generated
by AREPand 2) translate it into an efficient, e.g., C program
for computing the transform.SPL is under development within
[43]. The interface betweenAREPandSPLallows the automatic
implementation of all algorithms derived byAREP.

APPENDIX

In the following, we will give an overview on Step 1 and 2 of
Algorithm 1. For a comprehensive treatment including all tech-
nical details, see [27] and [29]–[33], which also provide the nec-
essary prerequisites from representation theory of finite groups.
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Of particular interest might be the recursion formula for Step 2,
given in Theorem 2, which gives the explanation for the alge-
braic structure of the fast transforms found in Section V.

A. Algorithm 1, Step 1

In Step 1 of Algorithm 1, the mon-mon or mon-irred sym-
metry of the matrix has to be computed. The two types re-
quire different approaches.

For the mon-mon symmetry, we are interested in the group
of all pairs of monomial matrices such that .
(The representations and of Section III are the projections

and .) However, this general defini-
tion may lead to an infinite . Therefore, we artificially restrict

and to contain th roots of unity. Let MonMon de-
note the group of all pairs of monomial matrices such
that and all entries in and are th roots of
unity.

To construct MonMon , we replace each entry with
the -matrix , where denotes
a fixed primitive th root of unity. This encoding of turns
monomial operations on (with th roots of unity) into per-
mutations operations on the larger matrix . The parameter

is chosen dependent on the entries of. The encoding has
first been described in [44] for the special case of finite fields. It
reduces to the well-known problem of constructing
all pairs of permutations such that for a
given matrix (the perm-perm symmetry of ). The most
efficient methods to solve the latter problem are partition-based
backtracking methods that systematically try all permutations,
removing entire branches quickly. This is described by Leon in
[44], who also distributes a very efficientC-program to com-
pute the symmetry. Moreover, [29] describes a program inGAP
to compute MonMon, and it is proven in [30] and [31] that
MonMon can indeed be computed the way we have claimed.

Now, we turn to the other important type of symmetry:
the mon-irred symmetry. Here, we are interested in all
monomial matrices such that is per-
muted block-diagonal for invertible . Formally, “permuted
block-diagonal” means that there is a permutationsuch
that for smaller matrices

. As a quantitative measure for block-diagonality,
we define theconjugated block structure(cbs) of a matrix
as the partition cbs , where is the
reflexive-symmetric-transitive closure of the relationdefined
by . The partitions are partially ordered by
the refinement.

There are two approaches to the mon-irred symmetry. The
first one essentially enumerates all monomial matricesand
collects them into groups according to the block structures
cbs to which they give rise. The result is a list
of pairs such that is the group of all monomial
matrices such that cbs and is the join
of all cbs . Each of the groups qualifies as a
mon-irred symmetry; it only has to be tested if the matrices

form a representation of that is a direct sum
of irreducible representations.

The second approach to the mon-irred symmetry essentially
enumerates all partitionsand constructs the groupof all ma-

trices such that cbs is a refinement of . The result
is the same list of pairs as before. The main difference
to the first method is that one can restrict the enumeration of
partitions to the cases that will be most useful for the decom-
position of the signal transform, namely, those with many small
blocks. This is much faster than running through all monomial
matrices. For details on the methods and on a number of im-
portant improvements, see [29] and [32]. All of the mon-irred
symmetries used for the examples in this paper are found in a
few seconds on a standard workstation using our implementa-
tion in GAPfor the libraryAREP.

B. Algorithm 1, Step 2

Step 2 of Algorithm 1 requires to decompose a given mono-
mial representation of a group into a direct sum of irre-
ducible representations. In addition, the corresponding decom-
position matrix has to be computed as a product of structured
sparse matrices.

First, we need to introduce the notion of atransitivemono-
mial representation. Let , and denote by the th
canonical base vector (th entry else). Then, is called
transitive if for all there is a such that (the monomial
matrix) maps to a multiple of .

The key construct for the decomposition algorithm is thein-
ductionof representations. In short, induction constructs a rep-
resentation of from a representation of a subgroup of. More
precisely, let be a subgroup with representation, and
let be a transversal (i.e., a system of represen-
tatives of the right cosets of in ). Then

where for and the all-zero matrix else
is called the induction of to with transversal . Note that

is a block-permuted matrix, i.e., for all ,
there is exactly onewith . If has degree one, then
the induction is monomial.

Finally, recall that a group is called solvable if there is a
sequence , of subgroups, such that

and is normal of prime index in for .
Now, we can formulate a coarse version of the recursive de-

composition algorithm. The algorithm essentially conjugates a
monomial representation to be an induction, which is decom-
posed along a chain of normal subgroups using a recursion for-
mula for decomposition matrices. For a complete version of this
algorithm, including the underlying theorems, see [33].

Algorithm 2: Given a monomial representationof a solv-
able group . shall be decomposed, i.e.,

where all are irreducible, and is a product of structured
sparse matrices.

Case 1: is not transitive.

1) Decompose with a permutation into a direct sum of
transitive representations .
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2) Recurse with to obtain decomposition ma-
trices .

is a decomposition matrix for.
Case 2: is transitive.

1) Decompose with a diagonal matrix into an induction
, where has degree 1.

2) Recurse with to obtain a decomposition matrix
.

is a decomposition matrix for.
Case 3: , where is a representation of ,

and there exists a normal subgroup of prime index
in .

1) Decompose with a monomial matrix into a double
induction .

2) Recurse with to obtain a decomposition matrix
.
is a decomposition matrix for , where is given by

Theorem 2.
Case 4: , is a representation of , and

there exists a normal subgroup of prime index
in .

We omit this step.
Note that at least one of the cases always applies sinceis

solvable. We omitted Case 4 since it did not play a role for the
examples considered in this paper. The recursion formula for
Case 3 is given in Theorem 2. We may only want to look at the
actual formula for , omitting the technical details. Obviously,
all factors are sparse. For the special case

and , the permutation vanishes,
, and the formula reduces exactly to the Cooley–Tukey

FFT.
Theorem 2: Let be a normal subgroup of prime

index with transversal . Assume is
a representation of of degree with decomposition matrix
such that , where are exactly those
among the that have an extension to . Denote by

the entire degree of the extensible,
and set . Then, there exists a permutation
matrix such that

DFT

is a decomposition matrix of .

C. Example 4 in Detail

We work out Steps 1 and 2 for Example 4 in greater detail.
Step 1:We choose to compute the mon-mon symmetry of.

Since the matrix is real, we only consider MonMon .
The algorithm first constructs the matrix

Any -monomial operation on (permuting and/or
negating rows or columns) is a permutation operation on.
For example, negating the first column ofcan be expressed as
the exchange of the first two columns of . Now, we compute
all pairs of permutations such that by
recursive search. Assume thatmaps row one to itself. Then,

must map column one to itself as well, …. Assumemaps
row one to row two, then, …, etc. As the result, we find that

(which is obvious since the diagonal values of are
different from the rest so they can only be exchanged with each
other), and

Translating the permutations on back into monomial
operations on , we see that the first permutation is just

, and the second is a scalar multiplication
with , which we discard since it does not carry any
information about . Hence, we have found the represen-
tations of the cyclic group

as the mon-mon symmetry of .
Step 2:The remaining task is to decompose the representa-

tions using Algorithm 2. Obviously, is transitive,
and we apply Case 2 to find , where is the
trivial representation of the trivial subgroup

, and is the list of elements of . The matrix
is the identity. Next, we apply Case 3 using the subgroup

and find
with and . Now, we apply Theorem

2. The matrix DFT decomposes
into . Both representa-

tions can be extended to through , and ,
respectively. In the recursion formula for, the permutation

vanishes, and evaluating at the transversal
yields the twiddle factors diag . The pa-

rameter equals zero, and we obtain the Cooley–Tukey formula
for DFT :

DFT diag DFT
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