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Automatic Generation of
Fast Discrete Signal Transforms

Sebastian Egner and Markus Puschel

Abstract—This paper presents an algorithm that derives fast
versions for a broad class of discrete signal transforms symboli-
cally. The class includes but is not limited to the discrete Fourier
and the discrete trigonometric transforms. This is achieved by
finding fast sparse matrix factorizations for the matrix representa-
tions of these transforms. Unlike previous methods, the algorithm
is entirely automatic and uses the defining matrix as its sole input.
The sparse matrix factorization algorithm consists of two steps:
First, the “symmetry” of the matrix is computed in the form of
a pair of group representations; second, the representations are
stepwise decomposed, giving rise to a sparse factorization of the
original transform matrix. We have successfully demonstrated
the method by computing automatically efficient transforms in
several important cases: For the DFT, we obtain the Cooley—Tukey
FFT; for a class of transforms including the DCT, type I, the
number of arithmetic operations for our fast transforms is the
same as for the best-known algorithms. Our approach provides
new insights and interpretations for the structure of these signal
transforms and the question of why fast algorithms exist. The
sparse matrix factorization algorithm is implemented within the
software packageAREP

Index Terms—Discrete cosine transform, discrete Fourier trans-
form, fast algorithm, group representations, monomial represen-
tations, symmetry, trigonometric transforms.

I. INTRODUCTION

[8], Lee [15], Feig [16], Chan and Ho [17], Steidl and Tasche
[18], and Feig and Winograd [19].

Most of the algorithms cited above are given as a factoriza-
tion of the respective transform matrix into a product of highly
structured, sparse matrices. If an algorithm is given another way,
e.g., by equations, it is possible to rewrite the algorithm in the
form of a sparse matrix product.

All of these algorithms have been found by insightful manip-
ulation of the entries of the transform matrices using algebraic
relationships of these numbers. In some papers, these relation-
ships have been referred to as “symmetry.” Several questions
remain unanswered. Is there a general mathematical principle
behind these algorithms, i.e., matrix factorizations? What is the
appropriate definition of symmetry that accounts for the exis-
tence of the algorithms? Is it possible to automate the process
of finding algorithms? For the DFT, the first two questions have
been answered, as we will briefly discuss in the next subsection,
since it marks the starting point for our results.

In this paper, we present the mathematical background and
the algorithm to automatically generate fast algorithms, given as
sparse matrix factorizations, for a large class of discrete signal
transforms using techniques from group representation theory.
In particular, we present the following.

AST algorithms for discrete signal transforms have been a

major research topic in the last decades leading to a large
number of publications. Because of their wide-spread appli-
cations in digital signal processing, particular effort has been
spent on the discrete Fourier transform (DFT) and the different
types of trigonometric transforms, i.e., discrete cosine and sine
transforms (DCTs and DSTs), as classified by Wang and Hunt
[1]. Important algorithms for the DFT include the “fast Fourier
transform” (FFT) found by Cooley and Tukey (first discovered
by Gauss [2]) [3], Rader’s algorithm for prime size [4], Wino-
grad’s algorithms [5], as well as [6]-[8]. An overview on FFT
algorithms can be found in [9] or [10]. Important algorithms for
the trigonometric transforms were found by Chetral. [11],
Wang [12], Yip and Rao [13], [14], Vetterli and Nussbaumer

An appropriate definition of “symmetry” that catches
redundancy contained in the transform matrix and
connects it to group representationsurthermore, the
symmetry has an intuitive interpretation in terms of signal
processing. As we will see, this definition of symmetry
generalizes the well-known property of the DFT diago-
nalizing the cyclic shift.

An algorithm that 1) finds the symmetry of a matrix and 2)
uses it to derive a sparse matrix factorizatidrhe algo-
rithm has been implemented and can be used as a discover
tool for fast transforms.

» The successful application of the factorization algorithm

to a large class of transformb1 many cases, the generated
fast transforms are similar to, or have the same arithmetic
cost (operations count), as the best-known algorithms.

Taken together, we provide a unifying framework that shows
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and its connection to cyclic groups and their regular representa- Matrices

tions. This connection has been used to derive and explain thgye se the following notation to represent matrigesn] is
structure of the Cooley—Tukey FFT [20], [21]. Generalization t{he(n x n)-permutation matrix corresponding to the permuta-

arbitrary groups, also known as Fourier analysis on groups, q%?w, which is given in cycle notation, e.g.,= (1, 2, 3)(4, 6)
lead to a rich class of transforms, which, however, have fou?ﬁeansf(l) =2, 0(2) = 3,03) = 1, 04) = 6,0(5) =

no significant applications in signal processing [22]-[25]. A@7 (6) = 4 with corresponding6 x 6)-matrix
exception might be the recent paper [26], where nonregular rep-
resentations of so-called wreath-product groups have been pro- 0610000
posed for multi-resolution image processing. 0 01 00O
The crucial step to capture in the group representation frame- (L, 2, 3) (4, 6), 6] = 10 00 00
work a broader class of signal transforms, including the cosine T T 000001
and sine transforms, is to leave the domain of “regular” rep- 000010
resentations in favor of the larger class of “monomial” repre- 0600100

sentations. The idea has its roots in the work of Minkwitz [27}ote that it is necessary to supply the sizef a permutation
[28], and has been further developed by the authors in [291-[33l5trix in 4, 1] since fixed points are omitted in cycle notation
which forms the basis for this paper. We provide the tools to ilf-o  there is a difference betweéft, 2), 2] and[(1, 2), 3]).

vestigate ajiventransform for group representation propertiege prefer cycle notation because one can read off the order and
and, when appropriate, factorize the transform, thus obtaininga fiveq points of a permutation immediately. With, we de-
fast algorithm. note the identity matrix of size, diag(L) is a diagonal ma-
trix with the list L on the diagonal. Anonomialmatrix (some-

B. Approach times called scaled permutation matrix) has exactly one nonzero

The approach for generating a fast algorithm for a givegntry in every row and column and is represente¢bad.| =
signal transform, which is given as a matri¥, consists [o, length(L)] - diag(L), e.g.,
basically of two steps. In the first step, the “symmetry’Adfis
computed. The “symmetry” is a pair of group representations
representing an invariance property faf (cf. Section Ill). In
the second step, the group representations are decomposed
stepwise. This gives rise to factorized decomposition matrices., the listZ scales the columns of the matrix. The operator
and determines a factorization @ as a product of sparsedenotes the Kronecker (or tensor) product of matrices,@and
matrices (cf. Section 1V). The factorization represents a fagénotes the direct sum
algorithm for the transformZ. Intuitively speaking, the

[(1,2,3), (-1,1,2)] =

= O O
o O =
SN O

“symmetry” captures a large part of the redundancy contained AeB= [61 g}
in M, and the decomposition of the representations turns the
redundancy into a fast algorithm. where0 is an all-zero matrix of appropriate size.
C. Organization of the Paper R, = [ cosa Smo‘}
—Sslna CosS«

In Section II, we introduce our notation for representing struc-
tured matrices and present the basic terms of group repredgrihe rotation matrix for angle, and
tations that are necessary to understand our approach for ob- DET. — [ .

o ; o . n=|wn |k, £=0...n—1]
taining matrix factorizations. We emphasize the concepts and
the methodology rather than explaining the technical detailgherew, = ¢27//™, denotes the discrete Fourier transform of
The notion of “symmetry” of a matrix is defined in Section lll,sjze .
and Section IV explains how a symmetry can be used to de-
rive a matrix factorization. In Section V, we apply the matri8. Groups and Representations
factorization algorithm to the Fourier transform, cosine, and |n this paper, essentially only two types of groups

sine transforms of different types, the Hartley transform, anghj| appear: the cyclic group of sizen, written as

the Haar transform. We compare the structure and arithmetic — {1 » ... 2"} or, by generators and relations,

cost of the algorithms that we derive to the structure and cf 7, = (z[z» = 1) and the dihedral group of sizen

of well-known algorithms from the literature. We conclude thgenoted byp,,, = {1, , ..., 2" %, v, y, ..., ya" "1} =

paper with a brief summary and an outlook for future resear@j& ylam =32 =1, y—la:y =271, o ’ '

in Section VL. A representatiorof a groupG (overC) is a homomorphism
II. M ATHEMATICAL BACKGROUND ¢: G — GL,(C)

In this section, we present the basic notation of matrices aofiG into the group Gl,(C) of invertible(n x n)-matrices over
group representations we are going to use. For further infornmtae complex number§. » is called thedegreeof ¢. Dealing
tion on representation theory, see introductory books suchwaish representations is nothing but dealing with groups of ma-
[34]. trices. If ¢ is arepresentation @f , then¢(G) is a matrix group,
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and, vice—versa, every matrix group can be viewed as a repreWith the general definition above, however, every matrix has
sentation of itself. IfA € GL,,(C), theng?: g — A~L-¢(g)-A arbitrary many symmetries. If, for exampl&/ is an invertible

is called theconjugateof ¢ by A. The representationsandg  (n x n)-matrix and¢ is any representation of degreeof a

are callecequivalent If ¢ and+) are representations ¢f, then groupG, thenM has the symmetryp, ). Thus, in order to
the representatiop @ v: g — ¢(g) @ +(g) is called thedirect catch the redundancy containedfifi, we will consider several

sumof ¢ andi. The direct sum ofi representationg;, ..., ¢, “types” of symmetry arising from restrictions on the represen-
is defined analogously. The representatiois irreducibleif it  tations¢;, ¢s.
cannot be conjugated to be a direct sum. 1) Mon-Irred Symmetry¢; is monomial, andp, is a di-
Theorem 1 (Maschke)Every representatiogt (over C) of rect sum of irreducible representations.#f is even a
a groupG can be decomposed into a direct sum of irreducible  permutation representation, then we will also speak of
representations by conjugation with a suitable matrix perm-irred symmetry
, 2) Mon-Mon Symmetryp; and¢. are monomial. If5; and
Pt =p1® D s ¢o are both even permutation representations, then we

_ ) ) will also speak operm-perm symmetry
The p; are uniquely determined up to equivalence and up 0 &) yords, the matri¥/ has a mon-mon symmetry if there are

permutation ofpy, .. ., py. nontrivial monomial matrice&, R such thatl - M = M - R.

In other words, Theorem 1 tells us how far a finite group Q&orrespondingly, the matri%/ has a mon-irred symmetry ¥/

matrices can be simultaneously block diagonalized. The matjix, yecomposition matrix for a monomial representatiofihe

A in Theorem 1 is not uniquely determined and is call@tta \4tjonale for considering the types of symmetry above will be-

comlposmon matrixor ‘7) T come clear in Section IV. Of course, one could also consider an
¢ is called epermutatiorrepresentation if allimage&(g) are jrey-mon symmetry wher, is monomial and; is decom-

permutation matrices, angis called anonomiarepresentation ey Since transposition of a matrix with irred-mon symmetry

if all images¢(g) are monomial matrices. Every permutationje|qs a matrix with mon-irred symmetry, we will restrict to the

representation is also a monomial representation. latter symmetry type. Finding symmetry of the types above is

The following example states the interpretation of the DFT i) yitic It combinatorial problem and a main topic of [29] and
terms of representation theory. __ [32]. In fact, even computing the perm-perm symmetry has a

Example 1: Itis aknown fact that DFT maps the cyclic shift o5 jexity that is not lower than testing graphs isomorphism,
(and all its powers) in the time-domain into a phase change,jfich is known to be hard [35]. However, for matrices origi-
the frequency-domain. In our notation nating from signal transformations, it is often practical to com-
pute the symmetry because they contain many different entries,
which reduces the search space.

Example 2: Example 1 shows that the DFEThas the sym-
metry groupG = Z,, = (z|z" = 1) with symmetry(¢:, ¢2):

[(1,2,...,n), n]-DFT, = DFT, -diag 1, w,, ..., w" ).

n

In terms of representation theory, DE@lecomposes the permu-

tation representatiop: = — [(1, 2, ..., n), n] of the cyclic
groupG = Z, = (z|z™ = 1) into the direct sumpP¥T» = dria e [(1,2, ..., n), n]
LD - ~’;_6? on,» Where the irreducible representations age= bo: @ = diag(l, wn, ..., i),
T wy .
Note that(¢1, ¢2) is a mon-irred symmetry (even a perm-irred
[Il. SYMMETRY OF A MATRIX symmetry) as well as a mon-mon symmetry.
The notion of symmetry has a two-fold purpose. First, it
catches the redundancy contained in the mabfx second, IV. MATRIX FACTORIZATION

it establishes the connection to representation theory, whicrNOW’ we explain how to factorize a given matrix/,
enables the appli_cation of algebraic methods to factaiz@s \yhich has an arbitrary symmetrigs;, ¢;). First, the rep-
sketched in Section IV. resentationsp;, ¢» are decomposed with matrice$;, A,,

We consider an arbitrary rectangular mathik € C™*". A regpectively. This gives rise to two decomposed representations
symmetrpr i_sapair(¢1, ¢2) of representations of the same, — 441 p, = $52. Second, the matri® = AT' - M - A,
group( satisfying is computed to obtain the commutative diagram in Fig. 1.

Altogether, we obtain the factorization
P1(g)- M =M - pa(g), foral geG.

M=A,-D- A7 (1)

We call G a symmetry groupf M. We will use a shorthand
notation and writep; 5 ¢ From representation theory, we know thatis a sparse ma-

A symmetry (¢1, ¢2) has a very natural interpretation intrix (cf. [31, Th. 1.48, iv]), but the question of sparsity remains
terms of signal processing ¥/ is a discrete signal transformregarding the matriced; and A,. The factorization in (1) is
that we multiply from the left. useful only if the decomposition matricels and A, can them-

Forallg € G, a multiplication withg.(g) in the time-domain selves be determined as a product of sparse matrices. This is
corresponds to a multiplication withy (¢) in the frequency do- possible for monomial representations (with certain restrictions
main. on the symmetry grouf), as has been developed in the thesis
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o —M s Example 3:Let M = DFT,. M has the mon-irred resp.

perm-irred symmetry

A As 1T [(17 2,3, 4)7 4]
p2: @ — diag(l, wy, w3, w3)

p—2= L) (cf. Example 2).¢, is already decomposed, and hendg, =
1,. Decomposingp; stepwise yields the decomposition matrix
Fig. 1. Factorization of the matrix/ with symmetry(¢:, ¢2).

Al = (DFTQ X 12) . dlag(l, 1, 1, CU4) . (12 X DFTQ)

research [31], [33], and justifies the consideration of the two 12, 3), 4]
types of symmetry described in Section . We computeD = Al—l M- A, = 1, and get the Cooley—Tukey
1) Mon-mon symmetryA; and A, are decomposition ma- factorizationM = A;.
trices of monomial representations. Example 4: Consider the circuland x 4)-matrix
2) Mon-irred symmetry4; is a decomposition matrix of a
monomial representation, ant} is the identity since), 123 4
is already decomposed. M = 4123
o o . 3 4 1 2
In fact, we will slightly relax the definition of mon-irred sym- 9 3 4 1

metry and allowA, to be any permutation matrix, which means
that¢, is apermuteddirect sum of irreducible representationsM has the mon-mon (even perm-perm) symmetry
The factorization of a decomposition matrix for a monomial
representatiogp arises from an algorithm that stepwise decom- P1:x—[(1, 2, 3, 4), 4]
posesp along a chain of normal subgroups using recursion for- P2:x— [(1, 2, 3, 4), 4]
mulas for the decomposition matrices [33]. The recursion for- ) ) ] ) )
mula essentially determines the structure of the matrix factd?€COMPOSING$: andé into a direct sum of irreducible repre-
izations that we will present in Section V. sentations yields the decomposition matrices
The algorithm for factorizing a matrix with symmetry follows A = Ay = DFT; = (DFT, ® 1,) - diag(L, 1, 1, wy)

Fig. 1 and reads as follows.
Algorithm 1: Given a matrix M to be factorized into a (12 ®DFT2) - (2, 3), 4],

product of sparse matrices. We computeD = A;! - M - Ay = diag(a, b, ¢, d) with com-
1) Determine a suitable symmetfy;, ¢-) of M. plex numbers:, b, ¢, d (whose actual values are not important
2) Decompose; and¢, stepwise, and obtain (factorized)here) and obtain the well-known factorization of the cyclic con-
decomposition matriced;, As. volution

3) Compute the sparse matiix = Al_l M - As.

Result: M = A, - D - Ay is a factorization of\/ into a
product of sparse matrices. This is a fast algorithm for evaluatipg/e detail Steps 1 and 2 in the Appendix.)
the linear transformatiom — M - x.

Algorithm 1 is implemented in the libraxREP[36], which V. EXAMPLES
is a GAPshare package for symbolic computation with group
representations and structured matri€2&P[37] is a computer
algebra system for symbolic computation with groupREP
has been created as part of the thesis research [29], [30].

M =DFT,- D -DFT; L.

In this section, we apply Algorithm 1 to a number of signal
transforms. The following factorizations have been generated
from the respective transforemtirely automaticallyusing the

In the Appendix, we provide an overview of Steps 1 ang;APshare packagAREP[36], [37], which contains an im-

2. A comprehensive treatment including the mathematicpllementatlon of Algorithm 1. Even the LaTeX expressions dis-

background and all technical details can be found in [29] a a(l]ayed below have been generated ver.bat|m as they are.
. ) We show the symmetry of the considered transforms, state
[31]-[33]. In the following, we will concentrate on how the

. : ; . -the number of arithmetic operation needed by our derived fast
combinatorial search in Step 1 and the algebraic decompositign . : . .
aé%orlthms, and compare them with algorithms known from lit-

of Step 2 can be combined to automatically generate fast Slgnrature. We want to emphasize that the symmetries themselves

transforms. In particular, we are interested in answering the . . . . .
) P ' 9 are of interest since the fast algorithms that we derive owe their
following questions.

existence to the symmetry in the same way as the Cooley—Tukey

* To which transforms is our approach applicable? FFT owes its existence to the fact that the DFT diagonalizes the

* What are the symmetry properties found? _ cyclic shift. The algebraic structure of the fast algorithms found

* How do our generated algorithms compare with alggs due to the recursion formula for decomposing monomial rep-
rithms known from literature? resentations (done in Step 2 of Algorithm 1), which is subject

First, we start with two brief initial examples applying Al-of Theorem 2 in the Appendix.
gorithm 1 to the DFT and a circulant matrix. A more detailed First, we want to say some words about heREPdeals with
version of Example 4 can be found in the Appendix. structured matriceAREPdoessymboliccomputation with ma-
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trices, which means it stores and manipulates expressions repréhe definitions of the transforms considered follow [38]. A
senting matrices rather than the matrices themselves. An exprasirix A4 representing a transform is always applied from the
sion is something likéDF T, ® 124) & 1,7, which can be stored left z — A - z. The runtime for generating the algorithms, i.e.,
and manipulated more efficiently than the large matrix it repnatrix factorizations, was in all cases less than 40 s CPU time
resents. Of course, an expression can always be converted oriaa 233 MHz Pentium II, with 128 MB RAM, running Linux
a real matrix if desired. While building the structured matrice®.0.36.

shown below (in particular in Step 2 of Algorithm BREPsim-

plifies according to specified rules. For example, monomial 6+ DFT: Cooley—Tukey

permutation matrices are extracted from Kronecker products orAlgorithm 1 finds the Cooley—Tukey factorization of DET
direct sums and multiplied if they are adjacent. In addition, ogs illustrated in Example 3 for = 4.

curring sparse matrices are converted into permuted direct sums

or Kronecker products, if possible, to obtain a concise represéh- Cyclic Convolution

tation. As an example, consider the sparse matrix Algorithm 1 finds the factorization of afw x n) circulant
matrix into two DFT,s as illustrated for, = 4 in Example 4.

1 0 0 0 0 1 Thi t i uti
010 0 1 0 is represents a cyclic convolution.

mM—|(0 01 1 0 0 C. DFT: Rader
0 0 1 -1 0 0 . . .
010 0 —1 0 The Rader FFT [4] computes a DF©f prime sizep using
100 0 0 1 two DFTs of sizep— 1. We apply Algorithm 1 to the case=5

and find the perm-perm symmetry
M can be permuted to be a direct sum of BET

d)l €= [(27 37 57 4)7 4]
[(2, 3, 5,4, 6), 6] - (DFT, & DFT, & DFT) P2 x> [(2, 4,5, 3), 4]
2 4,5 . .
(2,6, 4,5,3), 6] with cyclic symmetry grouZ, = {x|z* = 1). In other words,
or, even more concisely the permutatior{2, 3, 5, 4) in the time-domain corresponds to
the permutatiori2, 4, 5, 3) in the frequency-domain. The sym-
[(2, 3,5, 4,6),6]- (13 @ DFTL) - [(2, 6, 4, 5, 3), 6]. metry leads to the Rader factorization

Note that it is an easy task to convert this expression into tRETs = [(4,5), 5]
original matrix above. In the same way, all permutations inthe - (1; @ ((DFT: ® 1,) - diag(1,1,1,wy) - (12 @ DFTy)))
following expressions (apart from the firstor the lastone) canbe . [(1 4)(2, 5,3), (a,b, ¢, 1,1)]

removed leaving a product of sparse matrices each of which can

be computed in placREPalso recognizes scrambled rotation . <13 @ [ 4D ,4)(2,3,5),5]
matrices and makes this property explicit. For example, a matrix 1
of the form . (11 4 A_L . (12 ® DFTQ) . dlaglv 1,1, —UJ4)
R [—sinoc COSOé:| -(DFT2 ® 12)) - [(3,4,5), 5]
- cosa  sina _ ) ) . .
The first two lines contain the matri®; (essentially a DFI),
would be transformed into the expression the last two lines the matrid; * (essentially an inverse DEY,
and the middle two lines contain the matfirom Algorithm 1.
[(1,2), 2] -Ra. (a, b, ¢ are complex constants whose actual value has been

omltted for the sake of clarity.)
Every matrix expression represents an algorithm for performing

a matrix-vector multiplication. The number of multiplication®. DCT, Type II, and IlI

and additions/subtractions required by this algorithm can easily1,4 giscrete cosine transform of type Ill, DEW is defined
be determined. For example, the matrices as the matrix
DFT,, 1, ® DFT,, 1, ¢ DFT,, 5 - DFT, DCTD — [\/’ ag-cos SN g0 g — 1}

require two additions, four additions, two additions, two mu'“wherea

plications, and two additions, respectively. Multiplications W|th S the transpose of DAY We compute a perm-irred sym-

—1 are not counted. Rotation matriceg,Rind scalar multlples metrv for DC.|<1H) with dihedral symmetry groug¥ = D y

thereof, are thought of being realized with three multiplicatio Y - v sy y9 o
(S ylz® = y* =1, y~lozy = x~1) and representations

and three additions, according to the known factorization

= 1/v2for k = 0 anday, = 1 elsewhere. DC¥V

$r:x—[(1,3,5,7,8,6, 4, 2), 8],
(

z—y 0 0 1 0
{ @ y}:[é : ﬂ. o 4 o |1 1] y—[(2,3)(4,5) (6, 7), §]
Yz N 0 0 z+4+vy 0 1 Po: x— My, y— M,
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where, using:, = cos k7 /8 ands, = sin kn /8 Looking at the factorization of Dcﬁn), the first four lines
give the matrix4; from Algorithm 1, the last line contains the

rco 0 O 0 0 0 0 07 permutation matrix4;* (which makes the block structure of
0 ¢ O 0 0 0 0 s M; and M, explicit), and the fifth line gives the matrik.
0 0 ¢ O 0 0 s4 O The algorithms for chm) and DC'Ign) have the same arith-
M — 0 0 0 ¢ 0 s¢ 0 0 metic cost as the best known algorithms [8], [11], [12], [15],
1710 0o o 0 ¢« 0 0 O [17]-[19], [39]. Note that those who use only 12 multiplications
0 0 0 s 0 ¢o 0 O do not normalize the first row of the D(ﬁ’), which saves one
0 0 s2 0 0 0 ¢2 O multiplication. The only algorithm that claims 11 multiplica-
L0 s14 O 0 0 0 0 ¢4l tions [40] considers a scaled version of the DtTmatrix
.o 00 0 0 0 0 O0F pCTIY = V2. /2. DCTID.
0 ¢¢ 0 0 0 O 0 s
0 0 e 0 0 0 s O Multiplying by scalars conserves the perm-irred symmetry (it
Mo — 0 0 0 ¢ 0 s3 0 O just changes the matri® in Algorithm 1) andAREPalso finds
2710 0 0 0 s, 0 0 O a factorization with 11 multiplications
0 0 0 s5 0 ¢ 0 O ay
0 0 s6 0 0 0 ¢ O DCTy ™ =[(2,5) (4, 7) (6, 8), 8]
-0 s 00000 o 1L,eV2- Riz/8)= & V2. Ri1s/16)~ @ V2. R(?l/lG)ﬂ')
Since DCT . & is equivalent tox” - DCT™, we get (2, 4,7, 3,8), 8] (DFT2 @ 13) @ 1) - [(5, 6), 8]
the following interpretation for the DCH. Permuting
with (1, 3,5,7,8,6,4,2) or (2,3)(4,5)(6,7) in the (14 ® f -DFT, & 12) [(2,3,4,5,8,6,7), 8]
time-domain corresponds to multiplication with; or As,
respectively, in the frequency domain. (12 @ ((DFT: @ 12) - [(2, 3), 4] - (1> @ DFTy)))
The symmetry leads to the following factorization of -1(1, 8,6, 2)(3,4,5,7), 8]
DCT(IH) which already has been derived by Minkwitz using (11 mults, 29 adds.

a prellmmary version of Algorithm 1, as sketched in [27]

and [28]. By symbolic transposition (the order of the product We want to mention that the DET" (and, hence, the
is reversed and each factor transposed using mathematR&T'") also has a mon-mon symmetry. For example, for
properties), we get a factorization of DE T, which essentially the casen = 8, the symmetry group is the direct product
corresponds to the first algorithm found by Chemal. [11], Z2 X Zs. In fact, this symmetrgl has been used by Feig and

which directly computes the DG without Using the DFT.  Winograd to derive a fast DG algorithm [19] and a lower
bound for the number of nonrational multiplications necessary

am . for computing the DCTY (for n = 8 the optimal number
DCTy™ " =1(1,2,6,8)(3,7, 5, 4), 8] is 11, where the first row of the DC¥ is unscaled). They
(12 @ ((12 ® DFTy) - [(2, 3), 4] - (DF T2 & 1)) essentially follow Algorithm 1 with the difference that and

) ) 1 ¢- are only decomposed over the rational numbgrévhich
[(2,7,6,8,5,4,3), 8] (14 ® 75 DFT2 @ 12) yields a coarser decomposition ¢f and ¢-) using rational
(5, 6), 8]- (DFT. ®13) ® 1) - [(2, 8, 3, 7, 4), 8]  matricesA; and A,. All nonrational multiplications then are

concentrated in the block diagonal matiix AREPcurrently
. % . (% 12 ® Re13/8)= ® Ru7/16)x © R(ll/lg)ﬂ) is only capable to decompose representations @ver
-[(2, 5) (4, 7) (6, 8), 8] E. DCT, Type IV
(13 mults, 29 addg The discrete cosine transform of type IV, D&, is defined

as the matrix

and, by transposition ) et nee
DCTIY) — [\/%COSWU@ 1—0. - 1} .

DcT{Y = [(2, 5) (4, 7) (6, 8), 8 .
8 [(2,5)(4, (6, 8), 8] We compute a mon-irred symmetry for D§FT) with dihedral
"3 (% 12 & Rz/8)x D Rus/ie)r B R(21/16)7r) symmetry groupy = D32 = (z, yla'® =y? =1, y~tay =
z~1) and representations
1(2,4,7,3,8), 8- (DFT: @ 13) ® 12) - [(5, 6), §]
pr:x—[(1,3,57,8,6,4,2),(1,1,1,1,1, 1, 1, —1)]

. (14 S¥ \/— -DFT, & 12) [(2, 3,4,5,8, 6, 7), 8] Y [(2’ 3) (4’ 5) (6, 7)’ (1’ 1,1,1,1,1, 1, _1)]
(12 @ ((DFT2 @ 12) - [(2, 3), 4] - (12 @ DFTy))) po: w = My, y — My
(1, 8,6,2)(3, 4,5, 7), 8] i.e., compared to the perm-irred symmetry of the lélfﬁ'

(13 mults 29 adds. the last column of the images @fi(x) and ¢ (y) are mul-
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tiplied by —1, which also leads to a larger group. Usingnetry for DSE™ with dihedral symmetry groug = Dig =
e = coskm/16, s, = sinkn /16, the matricesMy, M, are (z, y|2® = y* = 1, y~tay = z~!) and representations
given by

(/)1: T r_>[( r? 77 8 6 4 2)7 (_17 17 17 17 17 17 17 _1)]

0 e 0 o . e w[2,3)4 56,7, (-1,1,1,1,1,1, 1, ~1)]
0 0 ¢ 0 0 s 0 0 P2: @ = My, y e Mo
0 0 0 C14 Si14 0 0 0
M, = . .
0 0 0 s18 cg8 O 0 0 i.e., compared to the perm-irred symmetry of the [élfﬁ' the
0 0 s 0 0 ¢ 0 O first and last column of the images ¢f(z) and¢, (y) are mul-
0 s O 0 0 0 e O tiplied by —1. The matrices\/; and 4, (not given due to lack
Lszp 0 0 0 0 0 0 ezl of space) have entries 0 only on the diagonal and at positions
e 0 0 0 0 0 0 8- (i,j)withi—i-j:&i,j:1...§. _
0 e 0 0 0 0 s5 0O The symmetry leads to a factorization of D§§’P and, hence,
0 0 ¢ 0 0 s3 0 0 to a factorization of DSQH), which requires 13 additions and 29
multiplications.
M = 8 8 8 :) Z 8 8 8 : Since DCT™, DT, DST!, and DST'™ all have the
0 0 sy 0 0 ¢1 0 0 same arithmetic cost (be(_:ause type Il and Il are transposed and
0 s;3 0 0 0 0 ¢33 0 [17, Sec. 4.2]), the algorithms found B®YREPare among the
s, 0 0 0 0 0 0 el best known algorithms.

G. DST, Type IV

The discrete sine transform of type IV DEY is defined as
e matrix

The symmetry leads to the following factorization of D@'ﬁ
Since DCTY is symmetrlc transposition leads to another fagh
torization of DC'Im which is very close to the fast algorithm

given by Wang [12] DSTIV) = [\/7 sin GEHDCEHUT g — 0. — 1} )

DCTSV) =1(1,2,8(3,6,5), (1, -1,1,1,1, -1, 1, 1)] We compute a mon-irred symmetry for D§f‘f> with dihedral
symmetry groupd = D3y = (z, y[z'® = 4* = 1, y lay =

: (12 ® ((12 ® 5 DFT2) (3, 4), 4] 271 and representations
. (DFT, ®12)>> priz—[(1,3.5,7.86,4,2), (-1,1,1,1,1,1, 1, 1)]
y—1[(2,3)4,5)(6,7),(-1,1,1,1,1, 1, 1, 1)]
[(1,3)(2,4) (5, 7) (6, 8), §] Po: x+— My, y— M,

i.e., the difference to the perm-irred symmetry of the [élfﬁ'

[
(14 @ Ras/8)xr @ Raiysyr)
( lies only in the first column of the images being multiplied by

-(DFT, @ 14) - [(3, 5, 7) (4, 6, 8), §]

‘7 (R(31/32)7T ® Ragysayx ® Rearjsoye ® Rassane)  _1. The matricesi, and M, (not given due to lack of space)
-1(1, 8,5,6,3,2)(4,7), § have entriesz only on the diagonal and the opposite diagonal.
(20 mults 38 adds. The symmetry leads to a factorization of Dgé‘ﬁ which re-

quires 20 multiplications and 38 additions. As for the DET,

this is two additions more as in the best known algorithm [17].
The first six lines correspond to the decomposition matrl g (7]

A; of ¢; in Algorithm 1, the seventh line t@, and the last H. DCT and DST, Type |

line contains the permutation matrik, *, the inverse of which .
permutess, to be a direct sum. Although the transforms DCY and DST" do not have a

An algorithm with two additions less can be found in [17]. Mon-irred symmetry, they do possess a mon-mon symmetry that
can be used for their factorization. However, the algorithms ob-
F. DST, Type I, and Il tained this way are not as good as those from [17].

The discrete sine transform of type IIl, D&, is defined | Hartley Transform

as the matrix . . )
The discrete Hartley transform DHTs defined as the matrix

DST(HI) [\/7 ay - sin 7(2]““2)%“)# |k, £ =0..n— 1} DHT,, = [cos % + sin %Uw, £=0...n— 1] .

Note that we omitted the normalization factbf/n in the
wherea;, = 1/\/§ for k. = 0 anda;, = 1 elsewhere. DSTY  definition to obtain a fair comparison to known algorithms.
is the transpose of DSHY. we compute a perm-irred sym-The DHTg has a perm-irred symmetry with dihedral symmetry
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groupG = Dig = {x, y|z® = y? = 1, y~tay = z71) and K. Wreath Product Transform

representations In a recent paper, [26], decomposition matrices for permuta-

tion representations of certain groups, which are called iterated
¢r:e—[(1,2,3,4,5,6,7,8), §] wreath products, have been proposed for image processing. By
y—[(2,8)(3,7)(4, 6), 8] construction, these transforms possess symmetry in our defini-
B T My, y—[(2, 8)(3, 7) (4, 6), 8] tion. Thus, we readily obtain the following factorization of the
(16 x 16) transform W given in [26, p. 117] (where itis called
The only nonzero entries of the matdd; are on the diagonal A; we wantto note that this transform has an error in column 15,
and at(s, 7), wherei + j = 9. The symmetry yields the fol- where the last-i should read). For brevity, we denotg = w,.

lowing factorization: Wie = [(1, 14, 7) (2, 15, &) (3. 16, 5) (4, 13, 6) (9, 11)
DHTs = [(1, 8) (2, 4) (3, 5, 7, 6), §] (10, 12), 16]
: (12 ® ((12 ® DFTQ) . [(2, 3), 4] . (DFTQ 4 12))) ’ (12 ® ((12 & ((DFT2 ® 12) . diaq1, 1, 1, J)
- (12 ® DFTy)))

: [(27 77 67 87 57 47 3)7 8] . (14 S¥ _% ° DFT2 & 12) i [(27 5) (47 7)7 8] i (DFT2 ® 16)))

((DFT2 ® 13) & 1) -[(3, 13,11, 15, 7, 5, 9) (4, 14, 12, 16, 8, 6, 10),
. [(2’ 5.3, 6, 4) (7, 8) (1,1,1,5,1,1,1,1,1,1,1,1,1, 1,1, 1)]
-((DFT2 @ 12) & 112)
(17 -1, -v2, —v2,v2,v2, 1, 1)} (5, 14, 8, 13, 6, 16) (7, 15) (9, 10, 12)
(16 ® —DFTy) - [(2, 5, 8, 7, 3, 4), §] (1,4, -1, —j, =4, -1, =1, =5, -1, 1,1, =1,
(6 mults, 22 adds. -1, -1, j)]

(11 mults byj, 24 adds.
Closer investigation shows that two of th& could be can-
celed against the/+/2, yielding four multiplications less.
The best algorithm for the DH;Twith respect to arithmetic V1. CONCLUSION AND FUTURE RESEARCH
operations seems to be the split-radix algorithm given inWe have presented an entirely automatic method for sym-
Sorenseret al. [41] and needs two multiplications and 22polically deriving fast algorithms for an important class of dis-

additions. crete linear signal transforms. This class includes the DFT, DCT,
DST, Hartley, and Haar transforms. In most cases, the derived
J. Haar Transform algorithms were among the best ones known. The approach is

The Haar transform HE is defined recursively by based on the definition of “symmetry” of a transform as a pair of
group representations, which operate in the time-domain and the

1 1 frequency-domain, respectively, leaving the transform invariant.

HT> = {1 _1} More precisely, the considered transform matrices can be fac-

torized because they are decomposition matrices of monomial

HT oo = [ k'/"QT% ® [1 1] group representations.
2% 1 ® [1 1] The results of this paper open at least the following two re-

Sarch questions.

1) How do symmetry and signal processing properties of a
transform relate to each other?

2) Isit possible to extend the approach described to derive a
larger class of fast signal transforms?

AREPiIncludes an interface t8PL. SPL is a domain spe-

cific language and compiler for 1) representing a fast signal

.S
for k > 1. The transpose of the Haar transform has a perm-irre
symmetry. The symmetry group is an iterated wreath product
[26]. Fork = 3, we obtain the following factorization:

HTs = [(3, 4) (5, 7) (6, 8)

(é, -3, 4—\1/5, ﬁ, 14y i)} transform given as a matrix expression like the ones generated
_ by AREPand 2) translate it into an efficient, e.g., C program
~(DFTz @ 16) - [(2, 5, 3) (4, 6), 8] for computing the transforn8PL is under development within
(12 @ ((DFT2 @ 12) - [(2, 3), 4] - (12 @ DFTy))) [43]. The interface betweehREPandSPL allows the automatic
(1, 5)(2, 6)(3, 7) (4, 8), 8] implementation of all algorithms derived BA\RER
(8 mults 14 adds. APPENDIX
The first two lines contain the matri© from Algorithm 1 In the following, we will give an overview on Step 1 and 2 of

and the other lines the matrik; (we decomposed the transposé\lgorithm 1. For a comprehensive treatment including all tech-
of HT(8) and transposed the result). The number of operationgal details, see [27] and [29]-[33], which also provide the nec-
coincides with the best known algorithm [42]. essary prerequisites from representation theory of finite groups.
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Of particular interest might be the recursion formula for Step &jcesL such that cb@/ LM ~1) is arefinement of. The result
given in Theorem 2, which gives the explanation for the algés the same list of pair6G, p) as before. The main difference
braic structure of the fast transforms found in Section V. to the first method is that one can restrict the enumeration of
partitions to the cases that will be most useful for the decom-
A. Algorithm 1, Step 1 position of the signal transform, namely, those with many small
In Step 1 of Algorithm 1, the mon-mon or mon-irred Sym_bloclfs. This is mugh faster than running through all monom!al
matrices. For details on the methods and on a number of im-

metry of the matrixA/ has to be computed. The two types re- - .
quire different approaches. portant improvements, see [29] and [32]. All of the mon-irred

For the mon-mon symmetry, we are interested in the g[éupfsymmetrlej used for thde eé(amplI(es N this paper are folund n a
ofall pairs(L, R) of monomial matrices such that\/ = M R. ew seconds on a standard workstation using our implementa-

(The representationy andg. of Section Ill are the projections tion in GAPfor the library ARER
(L, R) —» Land(L, R) — R.) However, this general defini- :
tion may lead to an infinit&. Therefore, we artificially restrict B. Algorithm 1, Step 2

L and R to containkth roots of unity. Let MonMog(M/) de-  Step 2 of Algorithm 1 requires to decompose a given mono-
note the group of all pairs of monomial matricgs, R) such mial representatior of a group( into a direct sum of irre-
that LM = MR and all entries inL. and R are kth roots of ducible representations. In addition, the corresponding decom-

unity. position matrix has to be computed as a product of structured
To construct MonMop(M ), we replace each entiy;; with ~ sparse matrices.
the (k x k)-matrix M’ = [M;;w;°|r, s], wherew;, denotes  First, we need to introduce the notion ofransitive mono-

a fixed primitive kth root of unity. This encoding oM/ turns mial representation. Let = deg ¢, and denote by; theith
monomial operations ond (with kth roots of unity) into per- canonical base vectaith entry= 1, = 0 else). Theng is called
mutations operations on the larger matiik’. The parameter transitive if for allz, j there is & € & such that (the monomial

k is chosen dependent on the entries\6f The encoding has matrix) ¢(g) mapse; to a multiple ofe;.

first been described in [44] for the special case of finite fields. It The key construct for the decomposition algorithm isithe
reducesMonMon;, to the well-known problem of constructingductionof representations. In short, induction constructs a rep-
all pairs(L, R) of permutations such thdtA’ = M’R for a resentation o7 from a representation of a subgroup@fMore
given matrix’ (the perm-perm symmetry d¥/’). The most precisely, letd < G be a subgroup with representatiapand
efficient methods to solve the latter problem are partition-bas&dZ’ = (1, ..., tx) be atransversal (i.e., a system of represen-
backtracking methods that systematically try all permutatiorfgtives of the right cosets df in G). Then

removing entire branches quickly. This is described by Leon in . .

[44], who also distributes a very efficie@program to com- (¢ T G)(g) = [P(tigt; )i, j =1.. . K]

pute the symmetry. Moreover, [29] describes a progra@AP whered}(a:) _ p(x) for = € H and the all-zero matrix else

to compute MonMop, and it is proven in [30] and [31] that . g .
MonMon, can indeed be computed the way we have claimedS called the induction o to G with transversall’. Note that
(¢ Tr G)(g) is a block-permuted matrix, i.e., fordl=1... %,

Now, we turn to the other important type of symmetry; ) e -
the mon-ired symmetry. Here, we are interested in d|ic'e S exactlyongwitht;gt; € H.If Ahas degree one, then

monomial matricesl, such thatR = MLM™' is per- the jnduction is monomial. ) . )
muted block-diagonal for invertibléZ. Formally, “permuted Finally, recall thbat a grou- is called solvable if there is a
block-diagonal” means that there is a permutatiorsuch S€dUenceV; < G, é=1...r of subgroups, such that

— -1, . H
that R = « (R1,®... ®d R,,) - » for smaller matrices (1}=N <No<---<N, =G

Ry, ..., R,,. As a quantitative measure for block-diagonality,
we define theconjugated block structurgchs) of a matrixA  and ; is normal of prime index inV; ., fori = 1...r — 1.
as the partition cifst) = {1, ..., n}/ ~*, where~* is the Now, we can formulate a coarse version of the recursive de-

reﬂeXive—5ymmetriC-tI’anSitive closure of the relatierdefined Composition a|g0rithm_ The a|gorithm essentia”y Conjugates a

by ~ j & Ai; # 0. The partitions are partially ordered bymonomial representation to be an induction, which is decom-

the refinement. osed along a chain of normal subgroups using a recursion for-
There are two approaches to the mon-irred symmetry. TRg)|a for decomposition matrices. For a complete version of this

first one essentially enumerates all monomial matrifeand  g1gorithm, including the underlying theorems, see [33].

collects them into groups according to the block structures agorithm 2: Given a monomial representatignof a solv-

cbs M LM 1) to which they give rise. The result is a listgp|e groupG. ¢ shall be decomposed, i.e.,
of pairs (G, p) such thatG is the group of all monomial

matrices L such that cbs¥ LM 1) < p andp is the join Pr=pL BB pm
of all cb§ M LM~1). Each of the groups? qualifies as a
mon-irred symmetry; it only has to be tested if the matricaghere allp; are irreducible, andi is a product of structured
R = MLM™! form a representation & that is a direct sum Sparse matrices.
of irreducible representations. Case 1: ¢ is not transitive.

The second approach to the mon-irred symmetry essentiallyl) Decompose with a permutation? into a direct sum of
enumerates all partitionsand constructs the group of all ma- transitive representations” = ¢1 & - - - & ¢.
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2) Recurse withy;, ¢ = 1--- £to obtain decomposition ma- Any {—1, 0, 1}-monomial operation o/ (permuting and/or

trices B;. negating rows or columns) is a permutation operation\$n
A=P. (B &---® By) is a decomposition matrix fap. For example, negating the first column/af can be expressed as
Case 2: ¢ is transitive. the exchange of the first two columns &f’ . Now, we compute
1) Decompose with a diagonal matrixD into an induction @l pairs(Z’, K’) of permutations such thdi'M’ = M'R’ by
X 17 G, where) has degree 1. recursive search. Assume thetmaps row one to itself. Then,
2) Recurse with\ T G to obtain a decomposition matrix & must map column one to itself as well, ... AssuEfmjaps
B. row one to row two, then, ..., etc. As the result, we find that

L’ = R’ (which is obvious since the diagonal valuesidf are
different from the rest so they can only be exchanged with each
other), and

A = D - Bis adecomposition matrix fap.

Case 3: ¢ = A T GG, where)is arepresentation & < G,
and there exists a normal subgrap< N < G of prime index
pinG. I

1) Decompose> with a monomial matrixd/ into a double

induction¢™ = (X T, N) T, G. Translating the permutations oM’ back into monomial

2) Recurse with\ Ty, N to obtain a decomposition matrix operations oni/, we see that the first permutation is just

B. [(1, 2, 3, 4), 4], and the second is a scalar multiplication
M - A is a decomposition matrix fap, where A is given by with —1, which we discard since it does not carry any
Theorem 2. information aboutd/. Hence, we have found the represen-

Case 4: ¢ = A |7 G, \is arepresentation df < G, and tations¢; = ¢o: z — [(1, 2, 3, 4), 4] of the cyclic group
there exists a normal subgrodp £ N < G of prime indexp G = {1, =, =%, 2°} as the mon-mon symmetry of'.
in G. Step 2:The remaining task is to decompose the representa-

We omit this step. tions ¢; = ¢2 using Algorithm 2. Obviouslyg; is transitive,

Note that at least one of the cases always applies sinise and we apply Case 2 to fingh = 1g 71 G, wherelg is the
solvable. We omitted Case 4 since it did not play a role for ttigvial representation — 1 of the trivial subgroupty = {1} <
examples considered in this paper. The recursion formula 8¢ andZ is the list(1, =, %, 2*) of elements of. The matrix
Case 3 is given in Theorem 2. We may only want to look at th is the identity. Next, we apply Case 3 using the subgtug
actual formula for4, omitting the technical details. Obviously,{1, #*} < G and find(1g T G)Z34 = (1 17, H) T,
all factors are sparse. For the special o@se z, = (z|z" = G withT1 = (1, z?) andI; = (1, x). Now, we apply Theorem
1)yandg: # — [(1, 2, ..., n), n], the permutatio vanishes, 2. The matrixB = DFT, decompose$ly 17, H): z* —

d = 0, and the formula reduces exactly to the Cooley—Tuké{l, 2), 2] into p;: z* — 1, po: 2* — —1. Both representa-
FFT. tions can be extended @@ throughp;: z — 1, andp,: z — j,

Theorem 2:Let N < G be a normal subgroup of primerespectively. In the recursion formula fet, the permutation
indexp with transversal” = (%, t*, ..., t~1)), Assumepis P vanishes, and evaluating = 7, ® 7, at the transversal
arepresentation a¥ of degreen with decomposition matris 7> = (1, x) yields the twiddle factors didd, 1, 1, j). The pa-
such thaip? = @le pi, Wherepy, ..., p,; are exactly those rameter equals zero, and we obtain the Cooley—Tukey formula
among thep; that have an extensigh to G. Denote byd = for DFTy:
deg(p1) + - - - + deg(p;) the entire degree of the extensible
and sefp = p, @ - & p;. Then, there exists a permutationA =
matrix P such that

A=(1,®B)-P- <<<@p(t)> (DFT, ® Lz)) ® 1p(nd)> ACKNOWLEDGMENT
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€((1,3,5,7)(2,4,6,8), (1, 2)(3,4) (5, 6) (7, 8)).

DFT,® 1,) -diag(1, 1, 1, §) - (1> © DFTs) - [(2, 3), 4].

is a decomposition matrix of T G.

We work out Steps 1 and 2 for Example 4 in greater detail
Step 1We choose to compute the mon-mon symmetrybf
Since the matrix}! is real, we only consider MonM@M ).
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