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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This paper presents a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof computational features orig- 

inating from our study of editing effects, motion, and color 
used in videos, for the task of automatic video categoriza- 
tion. These features besides representing human under- 
standing of typical attributes of different video genres, are 
also inspired by the techniques and rules used by many di- 
rectors to endow specific characteristics to a genre-program 
which lead to certain emotional impact on viewers. We pro- 
pose new features whilst also employing traditionally used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ones for classification. This research, goes beyond the ex- 
isting work with a systematic analysis of trends exhibited 
by each of our features in genres such as cartoons, com- 
mercials, music, news, and sports, and it enables an under- 
standing of the similarities, dissimilarities, and also likely 
confusion between genres. ClassiJication results from our 
experiments on several hours of video establish the useful- 
ness of this feature set. We also explore the issue of video 
clip duration required to achieve reliable genre identifica- 
tion and demonstrate its impact on classification accuracy. 

1. Introduction 

Automatic classification of digital video into various 
genres, or categories such as sports, news, commercials, 
music, cartoons, documentaries, and movies is an impor- 
tant task, and enables efficient cataloging and retrieval with 
large video collections. At the highest hierarchy level, film 
and video collections can be categorized into different pro- 
gram genres. Video classification into TV genres is dis- 
cussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2,  6, 51. Approaches such as [3, 111 classify 
movie trailers using film genre labels. At the next level of 
the hierarchy, domain videos such as sports can be classi- 
fied into different sub-categories [l, 81. At a much finer 
level of resolution, a video sequence itself can be segmented 
and each segment can then be classified according to its se- 
mantic content. Events in a baseball telecast [4] or news- 
casts [ 121 can be indexed in this manner. 

Our work addresses the problem of video classification 
at the highest level of abstraction: Genres. In particular, 
we examine a set of features that would be useful in distin- 
guishing between sports videos, music, news, cartoons, and 
commercials. In contrast to [2, 61 we concentrate on fea- 

tures that can be extracted only from the visual content of 
a video. Rather than learning features from video data sets, 
we use human perception and discernment of video genre 
characteristics as a starting point, and extract computational 
features that would reflect those visual characteristics such 
as editing, motion, and color. Some of our features are, sim- 
ilar to those proposed in [2] and some are new, but we also 
go beyond [2] to show classification results on several hours 
of video. In addition, we address the important related issue 
of the length of a clip required to be processed for reliable 
genre identification and its impact on the classification per- 
formance using proposed features, since this issue has not 
been studied elsewhere. 

2. Proposed Feature Set and Trends 

Consider a video clip, V, a contiguous sequence of n + 1 
frames, V = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{fl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi, ..fn+l}. A frame transition vector, 
T = {t l ,  t z ,  . . . , tn }  is first computed from V, where each 
ti is a feature set, {ti" , tY} computed jointly from frames 
fi and fi+l. Specifically, tr = - f,'l and tY = 

- f,' 1, where f,' and f: denote the mean and variance 
of luminance values of pixels in frame fi, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. Shot Processing 

The video sequence is automatically segmented into 
shots using the method detailed in [lo] which performs 
segmentation by detecting effects such as cuts, fades, 
and dissolves in the video. After this step, each mem- 
ber ti of T receives a label, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz from the set, C = 
{shot, cu t ,  f a d e ,  dissolve} depending on whether fi and 

fi+l are part of a pure shot, cut, fade or dissolve transition 
respectively. The transition vector T is then grouped into IC 
segments, {SI , Sz , . . : , S k } ,  where S; is a set of consecu- 
tive elements, { t j  , t j + l ,  . . . } that have the same label. Each 
Si is also assigned a label from C according to the label type 
of frames it contains. Let I'" and R" denote sets containing 
segments Si and t; of label type 2, respectively. Let Ashot 
denote the set of pure shot frames in the video sequence. 

2.2. Feature Extraction 
We now extract a set of features that capture distinctive 

cinematic aspects of a video genre such as editing (features 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 2), motion (features, 3 to 6), and color (features, 7 
through 10). The precise definitions of these features to- 
gether with their intuitive meanings follow. Accompanying 
each feature is a plot of the values of the feature computed 
for 50 video samples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(60sec each) randomly selected from 
each genre (c.f. Section 3), after sorting the values in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 
cending order. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

450 ,  . . . . . . . . .  , 
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Figure 1. Editing feature values in ascending 
order for 50 video samples from each genre. 

Average shot length Fl is a useful feature in video char- 
acterization, since it is fundamental to our perception of 
scene pace and content. Therefore, short-duration shots are 
often used in commercials and music videos with fast mu- 
sic. In contrast, longer shots are used in sports to main- 
tain the continuity of actions (see Figure la). Shot length is 
measured as the number of frames between the last frame of 
the preceding transition and the first frame of the succeed- 
ing transition. So if a shot contributes to the existence of a 
segment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi then its length would be lSil + 1. The average 
shot length computed from the whole clip, V ,  is used as a 
classification feature: 

The percentage of each type of transition used for editing 
can also identify a video genre. For example, while f a d e  
transitions are common in commercials and sometimes in 
music, they are rarely used in sports and news (see Fig- 
ure lb). We compute the percentage of each type of transi- 
tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, x E {cut, f a d e ,  dissolve} as: 

Irx I 
F; = I r e d l  + Irfadel + l r d i s s o l v e l .  

Camera movement influences the narration of scene con- 
tent. In sports such as soccer and rugby fixed cameras are 

positioned around the field, and since the ball changes its 
position continuously, a lot of camera movement is needed 
to track the ball continuously. In contrast, in newscasts, the 
object of interest such as an anchor person or a reporter re- 
mains relatively static (see Figure 2a). Camera motion mag- 
nitude of a frame, fi is computed using two consecutive 
frames, fi and f;+l with the method proposed in [9], and 
the overall amount of camera movement of a video segment 
is computed using frame tilt and pan: 

In music videos, there are often special effects such as 
quick changes of lighting and flash lights causing a large 
change in the variance of pixel luminance between two con- 
secutive frames. We measure the prevalence of these effects 
as the number of shot features, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti whose pixel luminance 
variance is above a certain threshold: 

Figure 2b shows F4 as being distinctly higher for music 
videos than news. 

The rate of "quiet" visual scenes, where both camera and 
object motion are very little, varies between different video 
categories. We expect music videos to be rather dynamic, 
while anchor shots in newscasts are rather static (see Fig- 
ure 2c). The prevalence of static scenes in videos is mea- 
sured using the number of frame transitions t* whose mean 
and variance in pixel luminance are both less than certain 
thresholds. 

A new feature proposed based on motion is the average 
length of motion runs. A motion run R, is defined an un- 
broken sequence of those frames, fi whose sum of absolute 
pixel-wise luminance differences between fi and fi+l ex- 
ceeds a certain threshold, T4. Let (&I be the length of this 
run. Let R denote the set of all motion runs in the video 
clip. Then 

Figure 2d shows F.5 for the five genres. F6 is consistently 
high for sports when compared against cartoons. The main 
reason for this is that motion in sports tends to occur contin- 
uously in time, while in the normal production process of a 
cartoon a single drawing may be exposed a number of times 
resulting in a lower pixel-wise difference between consecu- 
tive frames. 

There are also the distinctions in the distribution of color 
histograms between different video genres. Let f? denote 

the luminance histogram of frame fi and f y b  denote the 
histogram of IC largest bins in the color histogram, i.e., the 
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We compute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFS based on f ,  the percentage of pixels 
having saturation above a certain threshold Te. 

Figure 3c shows that the average saturation for cartoons and 
sports is much higher when compared against commercials 
and music videos. 

. . . . . . . . .  

o s  

2 0 ,  . . . . . . . . .  " .  
c--"s 

Commersme - - - - - - 

g 1 5 L ; = ,  sp* ............ ~ , ,Ji 
5 
.E ' O  .,../-;, 
,P 5 .... .. 

_._.. .......+ <: . ._. ................... 
. .... ./ ~ 

.-. 
0 

0 5 10 16 20 25 30 35 40 45 60 

c--"s 

............ 

,P 5 

~ 

0 1  " " " " ' I 
0 5 10 16 20 25 30 35 40 45 60 

(d) F6 

Figure 2. Motion features for 50 video sam- 
ples from each genre. 

set of IC most prevalent luminance levels. We measure the 
coherence of these IC bins based on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, the standard deviation 
of indices of fyk as a new feature. Thus: 

Figure 3a shows that sports have the lowest value of F7, 

since the color of the playing field tends to be highly homo- 
geneous, while music videos tend to have high values of F7 
indicating high color variability. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHSV color space provides two other interesting fea- 
tures. For example, the average brightness for cartoons is 
much higher than other video genres (see Figure 3b). We 
compute Fg based on fy ,  the percentage of pixels having 
brightness above a certain threshold T5. 
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Figure 3. Color statistics for 50 samples from 
each genre. 

3. Experimental Results 

We collected about 8 hours of TV material and digitized 
and encoded it in the MF'EG-1 format. To ensure the variety 
of data, news and commercials &om different channels on 
different days and at different times of the day were used. 
Some clips were in fact recorded more than 5 years ago. 
Sports clips came from different sub categories such as soc- 
cer, Australian football, rugby, and motor racing. Music 
clips were extracted from different dance music videos. 

The C4.5 decision tree [7] is used to build the classifier 
for genre labeling. All the video material is first divided 
into units of approximately equal duration. The system was 
tested with features computed for different basic clip du- 
rations of 40sec, 60sec, and 80sec. During feature extrac- 
tion, all the six thresholds were determined empirically and 
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used stably and consistently across all clips for all durations. 
During each classification experiment for a clip duration d, 
60% of all the clips obtained by segmenting the eight-hour 
material into d-long units were randomly selected for train- 
ing while the remaining 40% of the clips were used for test- 
ing. For each duration, 100 such sets were randomly derived 
and used for classification, and the overall classification re- 
sults are presented in Table 1. We measure in percentage 
the best, worst, average classification across 100 runs and 
the standard deviation for each duration, as we expect that 
slightly different decision trees would be built with different 
data combinations. 

Best 40’ 84.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% 60’ 86.2 

88.4 87.2 85.4 89.2 85.3 
88.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA92.3 90.3 91.5 89 .2 

Worst 
% 

Avg. 
% 

Stdv. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1. Genre classification results. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll category in the table represents the classification 
results when samples from all genres were used in train- 
ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand testing, while others such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-{Ca) represent clas- 

sification results obtained omitting samples from one given 
genre, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACa, cartoons during training ( -{CO} is for omit- 
ting commercials, - {Mu} ,  music, - {Ne} ,  news, and - {Sp )  
for sports). The best result in each group are typeset in 
bold. In the best case for All, the classification rates are 
86% (60sec) and 90% (80sec). The average classification 
for All is between 80 % and 83%. Examination of the stan- 
dard deviation of the results implies that using video clips 
of 60 sec duration is the most appropriate strategy, as it of- 
fers the best trade off in terms of high classification and low 
standard deviation. 

The best classification rate rises when one genre is omit- 
ted to around 92% due to patterns that exist in the genre 
confusion matrix. It is useful to analyze Figs. 1, 2, and 3. 
The average shot length, (Fl) and its trends across samples 
are similar for (commercials & music), and also for (sports 
& news). Cartoons fall somewhere in between, but can be 
confused with either of the four genres. The motion feature, 
(33) is similar for (news & commercials) and is close to but 
lower than music. However, all three categories are close. 
Further, cartoon features are close to those of news. Fea- 
ture, F4 is high for music, but is still close to commercials. 
However, F4 well separates out news from (commercials 
& music). F5 clearly separates out (news, commercials, 
& music) and thus complements motion features Fs and 
F4. Features, Fe, F8, and 3 9  separate out cartoons from 
all other categories. .F7 separates out sports from music. A 
high degree of confusion can exist for news and sports since 

80’ 89.7 91.4 90.0 90.4 91.2 89.0 

40’ 78.4 83.4 83.1 81.1 83.5 80.3 
60’ 81.0 83.1 85.3 85.5 85.2 82.7 
80’ 79.5 83.6 83.1 83.7 82.3 80.5 

60’ 83.1 85.3 86.8 87 .2 87.4 84.8 
80’ 81.7 85.7 85.0 86.1 85.2 87.4 

40’ 1.41 1.21 1.05 1.07 1.40 1.45 
0’ 1.66 1.54 1.46 1.28 1.90 1.81 

80’ 1.91 1 .56 1.73 1.80 2 .17 2.09 

40’ 80.0 84.8 84.5 82.2 85.2 82.0 

they are close in all features other than motion. Similarly, 
music and commercials have almost identical shot length 
and similar motion, and can lead to a mix-up. 

4. Conclusion 

We have presented a set of features that embody the 
visual characteristics of a video sequence for video genre 
identification. The experimental results on several hours of 
videos indicate that these features perform well in classi- 
fying videos into sports, news, commercials, cartoons, and 
music, thus enabling automatic genre-based filtering dur- 
ing categorization and search. Our study on the length of a 
clip needed to recognize its genre indicates that 60sec can 
serve as the most appropriate video duration to achieve re- 
liable classification accuracy. Future work will investigate 
temporal sequencing of shots and their semantics to further 
improve the performance of our system. 
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