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Automatic Georeferencing of Images Acquired by UAV′s
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Abstract: This paper implements and evaluates experimentally a procedure for automatically georeferencing images acquired by
unmanned aerial vehicles (UAV′s) in the sense that ground control points (GCP) are not necessary. Since the camera model is
necessary for georeferencing, this paper also proposes a completely automatic procedure for collecting corner pixels in the model plane
image to solve the camera calibration problem, i.e., to estimate the camera and the lens distortion parameters. The performance of
the complete georeferencing system is evaluated with real flight data obtained by a typical UAV.
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1 Introduction

The determination of ground control points (GCP) is in
general a costly and slow process, hence a considerable bot-
tleneck in georeferencing. For instance, in agricultural ap-
plications, it would demand surveying of points in remote
crop areas. In some other applications, such as in rescuing
missions or operation in hostile environments, the determi-
nation of GCP can be impossible.

By automatic georeferencing in this paper is meant the
capability of mapping image points to the reference frame,
also called the mapping frame or the navigation frame,
without the use of GCP′s. However, additional data is
required: the attitude and position of the camera in the
navigation frame. This requirement ties naturally with the
increasing demand for georeferencing of images obtained by
UAV′s, since here the required data is available anyway, for
use by the autopilot (attitude) and the guidance system
(position). This demand comes from several areas, includ-
ing agriculture, security and rescuing applications, to name
a few, where the use of unmanned aerial vehicle (UAV′s)
has been shown to be of utmost importance.

A critical step in image georeferencing concerns camera
calibration, since the camera model is needed in the process,
for mapping image pixel to position in the reference frame.
The literature on camera calibration is large, but main ref-
erences can be singled out, namely Tsai[1], Zhang[2] and
Bouguet[3]. Different models can be used, but the basic
procedure is to estimate the camera parameters by some
optimization algorithm, whose performance index is the er-
ror between the position of pixels in different images ob-
tained from a standard pattern, called model plane, where
the pixel positions are known beforehand, since it is con-
structed by the user.

Typically in the literature concerning camera calibration,
including the aforementioned ones, is the necessity of inter-
action with the user, usually via mouse, for marking regions
in the images from which pixels should be extracted. This
hampers the implementation of a truly automated camera
calibration procedure.

Several approaches for UAV′s based georeferencing have
been proposed recently. In [4], global positioning system
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(GPS) information was used to provide the coordinates of
the aerial photo centre, but variations in pitch and roll were
not catered for, thereby restricting the UAV attitude. An
alternative approach was presented by Zhou et al.[5] in the
sense that GPS is not used directly. Instead, at least four
well-distributed GCP are required. This hypothesis can re-
strict the applications to areas where good features in the
images are available. In [6], GPS information was used, but
sequential triangulation was also needed for updating the
camera parameters. A robust image matching procedure
had then to be applied in real time for finding tie points.
Very recently, Xiang and Tian[7] proposed a method for
georeferencing, but with two limitations: the orientation
and position of the camera with respect to the UAV was
not generic, and the camera calibration procedure requires
interaction with the user, i.e., it is not performed automat-
ically.

This paper implements a system for performing auto-
matic georeferencing of images obtained by UAV′s. It dif-
fers from the results available in the literature in two ac-
counts: 1) the camera position and orientation with respect
to the UAV are not restricted, hence no simplification is
possible in the pixel mapping, and 2) the pixel positions
necessary for camera calibration are obtained entirely by
image processing, i.e., in an automatic way.

The main contributions of this paper are then the fol-
lowing: 1) proposition and implementation of an automatic
procedure for obtaining pixel positions in the model plane
image, for enabling camera calibration; 2) proposition and
implementation of an automatic technique for georeferenc-
ing of images acquired by UAV′s, which encapsulates all
the required changes in the coordinate frames, and 3) per-
formance evaluation with flight data, obtained by a typical
UAV.

2 Automatic corner localization for

camera calibration

The camera model is defined by (1)–(4), where K is the
camera intrinsic parameter matrix and ki, i = 1, · · · , 5 are
the lens distortion parameters. For details about these pa-
rameters, see [2]. Camera calibration boils down to the
estimation of these parameters, thereby enabling the map-
ping of image pixel position (xi, yi), in (2), to the navigation
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frame position (xn, yn) in (1).
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Vectors r1, r2 and r3 in (1) depend on the camera attitude
and its translation with respect to the model plane, and
these parameters are called extrinsic camera parameters.
They must also be estimated in the calibration process.
This is a nonlinear estimation problem, and the Levenberg-
Marquardt method can be employed to solve it. Besides the
10 intrinsic camera parameters, for each image it is neces-
sary to estimate 6 extrinsic parameters. Therefore, a total
of (10 + 6n) parameters must be estimated, where n is
the number of images, whose minimum value is 3. Hence,
at least 28 parameters must be estimated during camera
calibration. The cost to be minimized by the Levenberg-
Marquardt algorithm is
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where n is the number of images, m is the number of pixel
positions extracted from each image, (xi jk, yi jk) is the
pixel position extracted from the images, (x̂i jk(θ), ŷi jk(θ))
is the estimated pixel position, by using the present param-
eter estimates, and θ ∈ R

10+6n is the unknown parame-
ter vector whose estimation solves the camera calibration
problem. It is well known in the literature see for instance
Ravindra[8] that the Levenberg-Marquardt algorithm con-
stitutes an important output error method for identifica-
tion, i.e., it is effective for solving the parameter estimation
problem when there is only measurement noise, such as the
case here: noise comes from the imaging system and the
pixel localization procedure.

A given pattern is necessary for camera calibration, and
the one used here is a 7 × 7 arrangement of black squares,
with size equal to l = 15.7 mm. The spacing between ad-
jacent squares is also equal to l. The upper left square in
this arrangement is hollow and is used only for providing
the pattern orientation. Since the black squares corners are
the pixels to be used for calibration, a total 48 × 4 = 192
pixel positions are required for each image. Bearing in mind
that at least 3 images are necessary for calibration, there
are a total of at least 3 × 192 = 576 pixel positions to be
determined automatically.

It should be stressed that the camera calibration problem
can be simplified by exploiting the structure of a particular

application. For instance, in [9] an application in intelligent
transportation system (ITS) was considered, where the au-
tomatic and dynamic camera calibration was based on dark
channel prior in homogenous fog weather condition.

Most procedures for camera calibration require the mark-
ing, by the user, of some regions within the image, typically
using the mouse, so that the reference points can be ob-
tained. Here an automatic procedure is proposed for getting
these points, which here are the corners of black squares.
The procedure for finding the corner positions is illustrated
in Fig. 1 and is based on three complementary steps, till a
sharp position estimate is obtained. The first step a bound-
ing box procedure, which obtains the blunt estimate, see
Fig. 1. The second one is based on Harris corner detector,
which does not have enough accuracy for the camera cal-
ibration, and produces the refined estimate in Fig. 1. The
third and last step, which produces the sharp estimate, is
based on a gradient search for the corner, having the refined
estimate as starting point. Hence, the convergence is fast.

Fig. 1 Example of automatic corner localization procedure,

based on 3 steps estimation

As can be seen in Fig. 1, the sharp position estimate is
closer to the actual corners than the other two estimates.
The sharp corner positions (xi jk, yi jk) are then used in the
cost function defined by (5).

2.1 Example of camera calibration

Three images were obtained from the model plane, as
shown in Fig. 2, by moving the camera, the Sony DSC-H70
still camera, with respect to the model plane. The exact
camera orientation and position are immaterial, since this
information is connected to the camera extrinsic parame-
ters, which are also estimated in the process as mentioned
before.

Fig. 2 Three images for the camera calibration example

Given the images in Fig. 2, the corner points were au-
tomatically located and fed to the Levenberg-Marquardt
algorithm for estimating the camera parameters. The code
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was written in Ansi C, for portability, with interface for
Matlab to simplify the graphics handling. The estimated
camera intrinsic parameter matrix was

K̂ =
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and the estimated lens distortion parameters were

[

k̂1 k̂2 k̂3 k̂4 k̂5

]

=

[−0.01990.16290.00760.0039 − 0.3018]. (7)

In order to qualitatively verify if the estimates given by
(6) and (7) are adequate, the corner points in the reference
image, whose positions are known by construction, can be
mapped and superimposed onto the images in Fig. 2. By
considering the third image and by marking the mapped
points with white rectangles centered in the mapped pixel,
the obtained result is shown in Fig. 3. It indicates quali-
tatively that the calibration was well performed, since the
mapped pixels are located close to the rectangle corners.

Fig. 3 Mapping of the points from the reference image super-

imposed onto the third image in Fig. 2, as small white rectangles

A quantitative measure for the camera calibration per-
formance can be obtained from the reconstruction error,
i.e., the difference between the corner positions in the im-
ages and the corresponding mapped positions from the cor-
ner points in the reference image. By considering all the
3 images in Fig. 2, with a total of 576 such points, the
mean quadratic cost was 0.0943, therefore much smaller
than 1 pixel. This means the camera calibration has been
performed successfully. The execution times, for a PC with
Pentium Dual-Core CPU 2.60 GHz and 1 152 × 648 image
size, were: 1) automatic corner localization: 0.78 s per im-
age, and 2) Levenberg-Marquardt algorithm: 5.38 s. Hence,
the total execution time was 3(images) × 0.78 + 5.38 =
7.72 s. It must be stressed that camera calibration is not in
general a real time problem. Hence the execution time is
not at all a hard practical limitation.

3 Automatic georeferencing

The critical step in automatic georeferencing is to relate
properly all the reference frames. These frames are shown
in Fig. 4, and the basic problem is to map an image pixel
position from the image (IMAG) frame to the navigation

(NAV) frame. As in [7], only north-east coordinates are
of interest, and the height comes from the UAV navigation
system. The earth-centered earth-fixed (ECEF) frame is
necessary because typically the global navigation satellite
system (GNSS) provides position information in this coor-
dinate system.

Fig. 4 Reference frames for automatic georeferencing

Let Pc be a point in the camera (CAM) frame and
Pos UAV the UAV position in the NAV frame. Then, the
representation of Pc in the NAV frame is given by

Pc n = Pos UAV + Cnb (ArmG + Cbg (ArmC + CgcPc))
(8)

which provides the translation between the CAM and NAV
frames, where Cnb is the DCM between the UAV and the
navigation frame, ArmG is the camera gimbal lever with
respect to the UAV CG, Cbg is the DCM between the UAV
and the gimbal, ArmC is the CCD lever with respect to
the gimbal and Cgc is the direction cosine matrix (DCM)
between the gimbal and the camera.

The relationship between the Pc coordinates and P GEO
is obtained from the camera model, namely,
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where
[

Ccn Tc

]

are the camera extrinsic parameters,

i.e., attitude and translation vectors. Additionally, the re-
lation between the IMAG and CAM frames is given by

s

⎡

⎢

⎣

xi

yi

1

⎤

⎥

⎦
= K

⎡

⎢

⎣

xc

yc

zc

⎤

⎥

⎦
, K =

⎡

⎢

⎣

kxf γ xi0

0 kyf yi0

0 0 1

⎤

⎥

⎦
(10)

where s is a scale factor and K is the intrinsic camera pa-
rameter matrix obtained during the camera calibration pro-
cess.

Now, by using: 1) UAV attitude and position; 2) the
gimbal angles and 3) equation (8), Ccn and Tc are ob-
tained. Hence, also by using the lens distortion parameters,
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(9) and (10) can be solved for the coordinates xn (North)
yn (East) in meters, thereby completing the georeferencing
procedure. Numerically, georeferencing is a simple prob-
lem, involving only matrix algebra including matrix inver-
sion. Hence, the computation time is basically function of
the image size. For instance, in a PC with Pentium Dual-
Core CPU 2.60 GHz, a 1 152 × 648 image is georeferenced
in approximately 0.58 s.

4 Experimental results

Two complementary experiments are now reported for
evaluating the proposed automatic georeferencing proce-
dure. The first one concerns indoor data, in a controlled
environment, and the second one refers to a real UAV flight,
were the length and width of a runway provide the ground
truth.

4.1 Indoor data

A Sony DSC-H70 camera with resolution of 1 152 × 648
pixels was used in this experiment and mounted on a tri-
pod, which enable variation in camera attitude and posi-
tion. Automatic corner localization for camera calibration
was carried out as explained in Fig. 1. For ground truth,
an image was taken with 4 circles on the floor, where the
distances between their centers of gravity (CG′s) form a
square with known size of 1m. This image is shown in
Fig. 5, where there is a circle quite close to the image top
border, in order to increase the necessity of adequate lens
distortion calibration.

Fig. 5 Image for the indoor test

By using the electronic theodolite GTS-102N, from Top-
con, a 3-dimensinal (3D) frame of reference was defined and
each circle true coordinates were obtained. The accuracy
of the true measurements were addressed to the GTS-102N
accuracy, i.e., ±2mm. The electronic theodolite also pro-
vided the camera position and attitude. Therefore, by using
the camera attitude (pan; tilt) = (−14.08; −32.08) degrees,
its position, (X, Y, Z) = (−0.021; −0.037; −1.154) m, and
the estimated camera and lens distortion parameters, geo-
referencing of the image in Fig. 5 was carried out and the
result is shown in Fig. 6.

The true (measured) and estimated (via georeferencing)
CG positions for the 4 circles in Fig. 6 are shown in Table 1.

Fig. 6 Georeferenced image obtained from the original image

shown in Fig. 5. True distance between circle CG′s is 1m

Table 1 True and estimated CG positions for circles in Fig. 6

Cricle
North (m) East (m)

True Georeferenced True Georeferenced

C1 1.232 1.161 −1.000 −1.018

C2 2.236 2.252 −1.000 −1.045

C3 1.236 2.212 0.0 0.048

C4 1.232 1.154 0.0 0.015

Since the number of estimated points is small, the er-
ror variance is not representative in this case. Hence, the
maximum error is a better measure of performance. In this
particular experiment, it amounts to 7.8 cm, which can be
considered adequate. As a matter of fact, in any application
this error is mainly a function of the camera attitude error.
In order to illustrate this, Fig. 7 shows the equipotentials
for position errors in the north direction, in meters, when
the camera tilt angle is varied by 1 degree. The errors in
the east direction are not presented, since they are much
smaller, as expected.

Fig. 7 Equipotentials in meters, for errors in north direction,

when the camera tilt angle is varied by 1 degree. Axes in pixels

(image size: 1 152× 648)

The correct way of interpreting Fig. 7 is as follows: con-
sider, for instance, the circle C3 in Fig. 6, whose CG is
located at pixel position (hor, ver) = (947, 515) in Fig. 5,
by considering the origin at the image lower right corner.
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Then, from Fig. 7 it follows that an error of 1 degree in the
camera tilt angle would produce an error of approximately
0.045 m in its CG localization, since this is the approximate
equipotential for pixel position (947, 515) in Fig. 7.

The importance of Fig. 7 must be further highlighted:
typically a georeferencing mission starts with a given accu-
racy requirement. This impacts upon the selection of an
adequate UAV navigation system, since in a real time ap-
plication the camera attitude error arises mainly due to the
UAV attitude error. Indeed, the gimbal angles are known
in advance, since they can be determined accurately from
the gimbal controller. Therefore, the error equipotentials
analysis aids in selecting a navigation system which meets
the accuracy requirement.

An additional application could be in object tracking.
For instance, Wang et al.[10] addressed the robust object
tracking problem, in which the camera is supposed to be
fixed. The extension of this method for the case in which
there is camera movement, such as in UAV mounted cam-
era, demands a prior phase of image registration, which can
be performed by the procedure proposed here.

4.2 Flight data

The georeferencing is now evaluated by using real images
obtained in a flight test. In this experiment, the Sony DSC-
H70, already used in the indoor test, was installed on-board
an UAV platform. The camera orientation was chosen to
be nadir relative to the airframe.

The UAV is hand launched, hence suitable for georefer-
encing applications where no runways are available. The
UAV platform and the camera installation are shown in
Fig. 8.

Fig. 8 UAV platform used in the flight test

The UAV in Fig. 8 is equipped with an air data atti-
tude and heading reference system (ADAHRS) that uses
microelectromechanical system (MEMS) sensors, including
accelerometers, rate gyros, magnetometers, air data pres-
sure sensors, along with a differential wide area augmenta-
tion systems (WAAS)-enabled GPS receiver. This device
provides pitch and roll accuracy of 0.2 degrees, heading ac-
curacy of 0.6 degrees, and position with an accuracy of 3m
circular error probable (CEP). The altitude is calibrated at
sea level pressure of 1013 mbar. The UAV has an autopilot
and a guidance system, running in the on board computer,
for controlling and navigating the aircraft over the land-
marks. The on board computer is programmed to shoot
the camera at every 7 s. During image acquisition, the at-
titude, altitude and aircraft positions are grabbed from the
ADAHRS and filed for further processing. The images are

taken directly from the camera secure digital (SD) card.
The flight test accuracy requirement would be defined in

terms of the equipment specification above very straight-
forwardly, in the center of the image, as

CEPGEOREF = CEPADAHRSnb + ε = (3 + ε)m (11)

where ε is the error due the attitude and height accuracy,
obtained by a procedure similar to that shown in Fig. 7.

4.3 Experimental setup: Ground truth

An image was obtained from an airclub runway, as shown
in Fig. 9, whose length and width are known accurately.
The values are 225 m and 10m, respectively, and constitute
the ground truth. The problem addressed in this section
is to use the camera parameters, the UAV attitude and
height, and the gimbal angle, so as to recover these two
runway parameters. It would also be possible to establish
a datum (point with precise GPS position) in the runway
and try to recover it. However, in this case the main source
of error would be the UAV navigation system itself and the
delay in the image acquisition system, which are not the
central points of this work.

Fig. 9 Runway image obtained by the UAV camera, with 1 152×

648 pixels. Runway ground truth: length = 225m, width = 10 m

By using the available parameters: 1) UAV atti-
tude (roll, pitch, yaw) = (0.0356; 0.057; 3.166) rad; 2)
UAV height equal to 357.46 m; 3) gimbal angles
(pan, tilt)=(−π/2, π/2) rad and 4) camera parameters as
in equations (6) and (7), the obtained georeferenced image
is shown in Fig. 10. Only the relevant part of the image is
shown, for better visualization.

By comparing the runway parameters in Figs. 9 and 10,
it is concluded that the georeferencing procedure produced
adequate results.

It is worth mentioning that in this experiment, the
ADAHRS and GPS systems employed were those avail-
able. Therefore, no a priori accuracy could be imposed
to the results. However, in a typical application, the user
would start by taking into account the accuracy require-
ment. Based on that, these 2 systems would then be se-
lected, as already explained after Fig. 7.
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Fig. 10 Georeferenced image. Runway estimated parameters:

length = 224 m, width = 9.5m

5 Conclusions

An automatic georeferencing procedure has been mod-
eled and implemented in this work. Since adequate camera
calibration is necessary for good georeferencing accuracy,
a technique for automatic localization of corner pixels in
the model plane image has also been proposed. The per-
formances of both camera calibration and automatic geo-
referencing techniques were evaluated experimentally, with
adequate results.

It must be stressed that the automatic georeferencing ac-
curacy depends on four main factors: 1) the UAV attitude
and position systems accuracies; 2) the constraints in the
flight height; 3) the camera resolution and 4) proper cam-
era calibration. To some extent, 1), 3) and 4) can be prop-
erly dealt with, in order to comply with the requirements.
However, 1) also impacts upon accuracy, to the extent that
tight demands for accuracy can have as consequence the ne-
cessity of replacing the UAV attitude and position system
altogether. Therefore, the procedure proposed in this paper
for automatic georeferencing can also be useful to assist in
selecting the UAV attitude and position hardwares.

A relevant byproduct of image georeferencing is the sim-
plicity with which image mosaicking can be performed: sim-
ply align the georeferenced images according to their north
and east coordinates, and apply some smoothing procedure
in case of overlaps. In agriculture applications, for instance,
mosaicking is necessary to provide covering of a large crop
area. This application will be explored elsewhere.
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