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Abstract

Reinforcement learning (RL) is a powerful tech-

nique to train an agent to perform a task; however,

an agent that is trained using RL is only capable

of achieving the single task that is specified via its

reward function. Such an approach does not scale

well to settings in which an agent needs to per-

form a diverse set of tasks, such as navigating to

varying positions in a room or moving objects to

varying locations. Instead, we propose a method

that allows an agent to automatically discover the

range of tasks that it is capable of performing

in its environment. We use a generator network

to propose tasks for the agent to try to accom-

plish, each task being specified as reaching a cer-

tain parametrized subset of the state-space. The

generator network is optimized using adversarial

training to produce tasks that are always at the

appropriate level of difficulty for the agent, thus

automatically producing a curriculum. We show

that, by using this framework, an agent can effi-

ciently and automatically learn to perform a wide

set of tasks without requiring any prior knowl-

edge of its environment, even when only sparse

rewards are available. Videos and code available

at: https://sites.google.com/view/

goalgeneration4rl.

1. Introduction

Reinforcement learning (RL) can be used to train an agent

to perform a task by optimizing a reward function. Recently,

a number of impressive results have been demonstrated by

training agents using RL: such agents have been trained
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to defeat a champion Go player (Silver et al., 2016), to

outperform humans in 49 Atari games (Guo et al., 2016;

Mnih et al., 2015), and to perform a variety of difficult

robotics tasks (Lillicrap et al., 2015; Duan et al., 2016;

Levine et al., 2016). In each of the above cases, the agent

is trained to optimize a single reward function in order to

learn to perform a single task. However, there are many

real-world environments in which a robot will need to be

able to perform not a single task but a diverse set of tasks,

such as navigating to varying positions in a room or moving

objects to varying locations. We consider the problem of

maximizing the average success rate of our agent over all

possible goals, where success is defined as the probability

of successfully reaching each goal by the current policy.

In order to efficiently maximize this objective, the algorithm

must intelligently choose which goals to focus on at every

training stage: goals should be at the appropriate level of

difficulty for the current policy. To do so, our algorithm

allows an agent to generate its own reward functions, defined

with respect to target subsets of the state space, called goals.

We generate such goals using a Goal Generative Adversarial

Network (Goal GAN), a variation of to the GANs introduced

by Goodfellow et al. (2014). A goal discriminator is trained

to evaluate whether a goal is at the appropriate level of

difficulty for the current policy, and a goal generator is

trained to generate goals that meet this criteria. We show

that such a framework allows an agent to quickly learn a

policy that reaches all feasible goals in its environment, with

no prior knowledge about the environment or the tasks being

performed. Our method automatically creates a curriculum,

in which, at each step, the generator generates goals that

are only slightly more difficult than the goals that the agent

already knows how to achieve.

In summary, our main contribution is a method for auto-

matic curriculum generation that considerably improves the

sample efficiency of learning to reach all feasible goals in

the environment. Learning to reach multiple goals is useful

for multi-task settings such as navigation or manipulation,

in which we want the agent to perform a wide range of tasks.

Our method also naturally handles sparse reward functions,

without needing to manually modify the reward function

for every task, based on prior task knowledge. Instead, our

https://sites.google.com/view/goalgeneration4rl
https://sites.google.com/view/goalgeneration4rl
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method dynamically modifies the probability distribution

from which goals are sampled to ensure that the generated

goals are always at the appropriate difficulty level, until the

agent learns to reach all goals within the feasible goal space.

2. Related Work

The problem that we are exploring has been referred to

as “multi-task policy search” (Deisenroth et al., 2014) or

“contextual policy search,” in which the task is viewed as

the context for the policy (Deisenroth et al., 2013; Fabisch

& Metzen, 2014). Unlike the work of Deisenroth et al.

(2014), our work uses a curriculum to perform efficient

multi-task learning, even in sparse reward settings. In con-

trast to Fabisch & Metzen (2014), which trains from a small

number of discrete contexts / tasks, our method generates a

training curriculum directly in continuous task space.

Intrinsic Motivation: Intrinsic motivation involves learn-

ing with an intrinsically specified objective (Schmidhuber,

1991; 2010). Intrinsic motivation has also been studied ex-

tensively in the developmental robotics community, such as

SAGG-RIAC (Baranes & Oudeyer, 2010; 2013a), which has

a similar objective of learning to explore a parameterized

task space. However, our experiments with SAGG-RIAC

demonstrate that this approach does not explore the space as

efficiently as ours. A related concept is that of competence-

based intrinsic motivation (Baldassarre & Mirolli, 2012),

which uses a selector to select from a discrete set of ex-

perts. Recently there have been other formulations of intrin-

sic motivation, relating to optimizing surprise (Houthooft

et al., 2016; Achiam & Sastry, 2016) or surrogates of state-

visitation counts (Bellemare et al., 2016; Tang et al., 2016).

All these approaches improve learning in sparse tasks where

naive exploration performs poorly. However, these formula-

tions do not have an explicit notion of which states are hard

for the learner, and the intrinsic motivation is independent

of the current performance of the agent. In contrast, our

formulation directly motivates the agent to train on tasks

that push the boundaries of its capabilities.

Skill-learning: We are often interested in training an agent

to perform a collection of tasks rather than a single one, like

reaching different positions in the agent’s state-space. Skill

learning is a common approach to this problem as it allows

the agent to re-use skills, improving learning compared to

training for every task from scratch. Discovering useful

skills is a challenging task that has mostly been studied

for discrete environments (Vigorito & Barto, 2010; Mnih

et al., 2016) or for continuous tasks where demonstrations

are provided (Konidaris et al., 2011; Ranchod et al., 2015).

Recent work overcomes some of these limitations by train-

ing low-level modulated locomotor controllers (Heess et al.,

2016), or multimodal policies with an information theoretic

regularizer to learn a fixed-size set of skills (Florensa et al.,

2017a). Nevertheless, in previous work, learning skills is

usually a pre-training step from which useful primitives are

obtained and later used to achieve other tasks. Hence, addi-

tional downstream training is required to properly compose

the skills in a purposeful way. On the other hand, our ap-

proach trains policies that learn to achieve multiple goals

directly.

Curriculum Learning: The increasing interest on train-

ing single agents to perform multiple tasks is leading to

new developments on how to optimally present the tasks

to the agent during learning. The idea of using a curricu-

lum has been explored in many prior works on supervised

learning (Bengio et al., 2009; Zaremba & Sutskever, 2014;

Bengio et al., 2015). However, these curricula are usually

hand-designed, using the expertise of the system designer.

Another line of work uses learning progress to build an au-

tomatic curriculum (Graves et al., 2017), however it has

mainly been applied for supervised tasks. Most curriculum

learning in RL still relies on fixed pre-specified sequences of

tasks (Karpathy & Van De Panne, 2012). Other recent work

assumes access to a baseline performance for several tasks

to gauge which tasks are the hardest and require more train-

ing (Sharma & Ravindran, 2017), but the framework can

only handle a finite set of tasks and cannot handle sparse re-

wards. Our method trains a policy that generalizes to a set of

continuously parameterized tasks, and is shown to perform

well even under sparse rewards by not allocating training

effort to tasks that are too hard for the current performance

of the agent. Finally, an interesting self-play strategy has

been proposed that is concurrent to our work (Sukhbaatar

et al., 2017); however, they view their approach as simply

providing an exploration bonus for a single target task; in

contrast, we focus on the problem of efficiently optimizing

a policy across a range of goals.

3. Problem Definition

3.1. Goal-parameterized Reward Functions

In the traditional RL framework, at each timestep t, the

agent in state st ∈ S ⊆ R
n takes an action at ∈ A ⊆ R

m,

according to some policy π(at | st) that maps from the

current state st to a probability distribution over actions.

Taking this action causes the agent to enter into a new state

st+1 according to a transition distribution p(st+1|st, at),
and receive a reward rt = r(st, at, st+1). The objective of

the agent is to find the policy π that maximizes the expected

return, defined as the sum of rewards R =
∑T

t=0 rt, where

T is a maximal time given to perform the task. The learned

policy corresponds to maximizing the expected return for a

single reward function.

In our framework, instead of learning to optimize a single

reward function, we consider a range of reward functions
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rg indexed or parametrized by a goal g ∈ G. Each goal g

corresponds to a set of states Sg ⊂ S such that goal g is

considered to be achieved when the agent is in any state

st ∈ Sg. Then the objective is to learn a policy that, given

any goal g ∈ G, acts optimally with respect to rg . We define

a very simple reward function that measures whether the

agent has reached the goal:

rg(st, at, st+1) = 1{st+1 ∈ Sg} , (1)

where 1 is the indicator function. In our case, we use Sg =
{st : d(f(st), g) ≤ ǫ}, where f(·) is a function that projects

a state into goal space G, d(·, ·) is a distance metric in goal

space, and ǫ is the acceptable tolerance that determines

when the goal is reached. However, our method can handle

generic binary rewards (as in Eq. (1)) and does not require

a distance metric for learning.

Furthermore, we define our MDP such that each episode

terminates when st ∈ Sg. Thus, the return Rg =
∑T

t=0 r
g
t

is a binary random variable whose value indicates whether

the agent has reached the set Sg in at most T time-steps.

Policies π(at | st, g) are also conditioned on the current

goal g (as in Schaul et al. (2015)). The expected return

obtained when we take actions sampled from the policy can

then be expressed as the probability of success on that goal

within T time-steps, as shown in Eq. (2).

Rg(π) = Eπ(· | st,g) 1
{

∃ t ∈ [1 . . . T ] : st ∈ Sg
}

= P

(

∃ t ∈ [1 . . . T ] : st ∈ Sg
∣

∣

∣
π, g

)

(2)

The sparse indicator reward function of Eq. (1) is not only

simple but also represents a property of many real-world

goal problems: in many settings, it may be difficult to tell

whether the agent is getting closer to achieving a goal, but

easy to tell when a goal has been achieved (e.g. in a maze).

In theory, one could hand-engineer a meaningful distance

function for each task that could be used to create a dense

reward function. Instead, our method is able to learn simply

using the indicator function of Eq. (1).

3.2. Overall Objective

We desire to find a policy π(at | st, g) that achieves a high

reward for many goals g. We assume that there is a test

distribution of goals pg(g) that we would like to perform

well on. For simplicity, we assume that the test distribution

samples goals uniformly from the set of goals G, although in

practice any distribution can be used. The overall objective

is then to find a policy π∗ such that

π∗(at | st, g) = argmax
π

Eg∼pg(·) R
g(π) . (3)

Recall from Eq. (2) that Rg(π) is the probability of success

for each goal g. Thus the objective of Eq. (3) measures the

average probability of success over all goals sampled from

pg(g). We refer to the objective in Eq. (3) as the coverage.

3.3. Assumptions

Similar to previous work (Schaul et al., 2015; Kupcsik et al.,

2013; Fabisch & Metzen, 2014; Deisenroth et al., 2014)

we need a continuous goal-space representation such that a

goal-conditioned policy can efficiently generalize over the

goals. In particular, we assume that:

1. A policy trained on a sufficient number of goals in

some area of the goal-space will learn to interpolate to

other goals within that area.

2. A policy trained on some set of goals will provide a

good initialization for learning to reach close-by goals,

meaning that the policy can occasionally reach them

but maybe not consistently.

Furthermore, we assume that if a goal is reachable, there

exists a policy that does so reliably. This is a reasonable

assumption for any practical robotics problem, and it will

be key for our method, as it strives to train on every goal

until it is consistently reached.

4. Method

Our approach can be broken down into three parts: First,

we label a set of goals based on whether they are at the

appropriate level of difficulty for the current policy. Second,

using these labeled goals, we train a generator to output new

goals at the appropriate level of difficulty. Finally, we use

these new goals to efficiently train the policy, improving its

coverage objective. We iterate through each of these steps

until the policy converges.

4.1. Goal Labeling

As shown in our experiments, sampling goals from pg(g)
directly, and training our policy on each sampled goal may

not be the most sample efficient way to optimize the cover-

age objective of Eq. (3). Instead, we modify the distribution

from which we sample goals during training to be uniform

over the set of Goals of Intermediate Difficulty (GOID):

GOIDi := {g : Rmin ≤ Rg(πi) ≤ Rmax} ⊆ G. (4)

The justification for this is as follows: due to the sparsity

of the reward function, for most goals g, the current policy

πi (at iteration i) obtains no reward. Instead, we wish to

train our policy on goals g for which πi is able to receive

some minimum expected return Rg(πi) > Rmin such that

the agent receives enough reward signal for learning. On

the other hand, with this single restriction, we might sample

repeatedly from a small set of already mastered goals. To

force our policy to train on goals that still need improve-

ment, we also ask for Rg(πi) ≤ Rmax, where Rmax is a

hyperparameter setting a maximum level of performance

above which we prefer to concentrate on new goals. Note
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that from Eq. (2), Rmin and Rmax can be interpreted as

a minimum and maximum probability of reaching a goal

over T time-steps. Training our policy on goals in GOIDi

allows us to efficiently maximize the coverage objective

of Eq. (3). Therefore, we need to approximate the sam-

pling from GOIDi. We propose to first estimate the label

yg ∈ {0, 1} that indicates whether g ∈ GOIDi for all goals

g used in the previous training iteration, and then use these

labels to train a generative model from where we can sample

goals to train on the next iteration. We estimate the label

of a goal g by computing the fraction of success among all

trajectories that had this goal g during the previous training

iteration, and then check whether this estimate is in between

Rmin and Rmax. In all our experiments we use 0.1 and

0.9 respectively, although the algorithm is very robust to

these hyperparameters (any value of Rmin ∈ (0, 0.25) and

Rmax ∈ (0.75, 1) would yield basically the same result, as

shown in Appendix C)

4.2. Adversarial Goal Generation

In order to sample new goals g uniformly from GOIDi,

we introduce an adversarial training procedure called “goal

GAN”, which is a modification of the procedure used for

training Generative Adversarial Networks (GANs) (Good-

fellow et al., 2014). The modification allows us to train

the generative model both with positive examples from the

distribution we want to approximate and negative examples

sampled from a distribution that does not share support with

the desired one. This improves the accuracy of the genera-

tive model despite being trained with few positive samples.

Our choice of GANs for goal generation is motivated both

from this training from negative examples, as well as their

ability to generate very high dimensional samples such as

images (Goodfellow et al., 2014) which is important for scal-

ing up our approach to goal generation in high-dimensional

goal spaces. Other generative models like Stochastic Neu-

ral Networks (Tang & Salakhutdinov, 2013) don’t accept

negative examples, and don’t scale to higher dimensions.

We use a “goal generator” neural network G(z) to generate

goals g from a noise vector z. We train G(z) to uniformly

output goals in GOIDi using a second “goal discriminator”

network D(g). The latter is trained to distinguish goals

that are in GOIDi from goals that are not in GOIDi. We

optimize our G(z) and D(g) in a manner similar to that of

the Least-Squares GAN (LSGAN) (Mao et al., 2017), which

we modify by introducing the binary label yg allowing us to

train from “negative examples” when yg = 0:

min
D

V (D) = Eg∼pdata(g)

[

yg(D(g)− b)2 +

(1− yg)(D(g)− a)2
]

+ Ez∼pz(z)[(D(G(z))− a)2]

min
G

V (G) = Ez∼pz(z)[D(G(z))− c)2] (5)

We directly use the original hyperparameters reported in

Mao et al. (2017) in all our experiments (a = -1, b = 1,

and c = 0). The LSGAN approach gives us a considerable

improvement in training stability over vanilla GAN, and it

has a comparable performance to WGAN (Arjovsky et al.,

2017). However, unlike in the original LSGAN paper (Mao

et al., 2017), we have three terms in our value function

V (D) rather than the original two. For goals g for which

yg = 1, the second term disappears and we are left with

only the first and third terms, which are identical to that of

the original LSGAN framework. Viewed in this manner,

the discriminator is trained to discriminate between goals

from pdata(g) with a label yg = 1 and the generated goals

G(z). Looking at the second term, our discriminator is also

trained with “negative examples” with a label yg = 0 which

our generator should not generate. The generator is trained

to “fool” the discriminator, i.e. to output goals that match

the distribution of goals in pdata(g) for which yg = 1.

4.3. Policy Optimization

Algorithm 1 Generative Goal Learning

Input: Policy π0

Output: Policy πN

(G,D)← initialize GAN()
goalsold ← ∅

for i← 1 to N do

z ← sample noise(pz(·))
goals← G(z) ∪ sample(goalsold)
πi ← update policy(goals, πi−1)
returns← evaluate policy(goals, πi)
labels← label goals(returns)
(G,D)← train GAN(goals, labels,G,D)
goalsold ← update replay(goals)

end for

Our full algorithm for training a policy π(at | st, g) to max-

imize the coverage objective in Eq. (3) is shown in Algo-

rithm 1. At each iteration i, we generate a set of goals by

first using sample noise to obtain a noise vector z from

pz(·) and then passing this noise to the generator G(z). We

use these goals to train our policy using RL, with the reward

function given by Eq. (1) (update policy). Any RL al-

gorithm can be used for training; in our case we use TRPO

with GAE (Schulman et al., 2015b). Our policy’s empirical

performance on these goals (evaluate policy) is used

to determine each goal’s label yg (label goals), as de-

scribed in Section 4.1. Next, we use these labels to train our

goal generator and our goal discriminator (train GAN),

as described in Section 4.2. The generated goals from the

previous iteration are used to compute the Monte Carlo es-

timate of the expectations with respect to the distribution

pdata(g) in Eq. (5). By training on goals within GOIDi

produced by the goal generator, our method efficiently finds
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a policy that optimizes the coverage objective. For details

on how we initialize the goal GAN (initialize GAN),

and how we use a replay buffer to prevent “catastrophic

forgetting” (update replay), see Appendix A.

The algorithm described above naturally creates a curricu-

lum. The goal generator is updated along with the policy

to generate goals in GOIDi, for which our current policy

πi obtains an intermediate level of return. Thus such goals

are always at the appropriate level of difficulty. However,

the curriculum occurs as a by-product via our optimization,

without requiring any prior knowledge of the environment

or the tasks that the agent must perform.

5. Experimental Results

In this section we provide the experimental results to answer

the following questions:

• Does our automatic curriculum yield faster maximiza-

tion of the coverage objective?

• Does our Goal GAN dynamically shift to sample goals

of the appropriate difficulty (i.e. in GOIDi)?

• Can our Goal GAN track complex multimodal goal

distributions GOIDi?

• Does it scale to higher-dimensional goal-spaces with a

low-dimensional space of feasible goals?

To answer the first two questions, we demonstrate our

method in two challenging robotic locomotion tasks, where

the goals are the (x, y) position of the Center of Mass (CoM)

of a dynamically complex quadruped agent. In the first ex-

periment the agent has no constraints (see Fig. 1a) and in the

second one the agent is inside a U-maze (see Fig. 1b). To an-

swer the third question, we train a point-mass agent to reach

any point within a multi-path maze (see Fig. 1d). To answer

the final question, we study how our method scales with the

dimension of the goal-space in an environment where the

feasible region is kept of approximately constant volume in

an embedding space that grows in dimension (see Fig. 1c for

the 3D case). We compare our Goal GAN method against

four baselines. Uniform Sampling is a method that does not

use a curriculum at all, training at every iteration on goals

uniformly sampled from the goal-space. To demonstrate

that a straight-forward distance reward can be prone to local

minima, Uniform Sampling with L2 loss samples goals in

the same fashion as the first baseline, but instead of the indi-

cator reward that our method uses, it receives the negative

L2 distance to the goal as a reward at every step. We have

also adapted two methods from the literature to our setting:

Asymmetric Self-play (Sukhbaatar et al., 2017) and SAGG-

RIAC (Baranes & Oudeyer, 2013b). Finally, we provide an

ablation and an oracle for our method to better understand

the importance of sampling goals of intermediate difficulty

g ∈ GOIDi. The ablation GAN fit all consists on train-

(a) Free Ant Locomotion (b) Maze Ant Locomotion

(c) Point-mass 3D (d) Multi-path point-mass

Figure 1. In 1a-1d, the red areas are goals reachable by the orange

agent. In 1c any point within the blue frame is a feasible goal

(purple balls) and the rest are unfeasible (black triangles).

ing the GAN not only on the goals g ∈ GOIDi but rather

on every goal attempted in the previous iteration. Given

the noise injected at the output of the GAN this generates

a gradually expanding set of goals - similar to any hand-

designed curriculum. The oracle consists in sampling goals

uniformly from the feasible state-space, but only keeping

them if they satisfy the criterion in Eq. (4) defining GOIDi.

This Rejection Sampling method is orders of magnitude

more expensive in terms of labeling, but it serves to estimate

an upper-bound for our method in terms of performance.

5.1. Ant Locomotion

We test our method in two challenging environments of a

complex robotic agent navigating either a free space (Free

Ant, Fig. 1a) or a U-shaped maze (Maze Ant, Fig. 1b). Duan

et al. (2016) describe the task of trying to reach the other

end of the U-turn, and they show that standard RL methods

are unable to solve it. We further extend the task to ask to

be able to reach any given point within the maze, or within

the [−5, 5]2 square for Free Ant. The reward is still a sparse

indicator function being 1 only when the (x, y) CoM of the

Ant is within ǫ = 0.5 of the goal. Therefore the goal space

is 2 dimensional, the state-space is 41 dimensional, and the

action space is 8 dimensional (see Appendix B.1).

We first explore whether, by training on goals that are gener-

ated by our Goal GAN, we are able to improve our policy’s

training efficiency, compared to the baselines described

above. In Figs. 2a-Fig. 2b we see that our method leads to

faster training compared to the baselines. The Uniform Sam-

pling baseline does very poorly because too many samples
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(a) Free Ant - Baselines (b) Maze Ant - Baselines

(c) Free Ant - Variants (d) Maze Ant - Variants

Figure 2. Learning curves comparing the training efficiency of our Goal GAN method and different baselines (first row) and variants

(second row), for the Free Ant (left column) and the Maze Ant (right column). The y-axis indicates the average return over all feasible

goals. The x-axis shows the number of times that new goals have been sampled. All plots average over 10 random seeds.

are wasted attempting to train on goals that are infeasible

or not reachable by the current policy - hence not receiving

any learning signal. If an L2 loss is added to try to guide

the learning, the agent falls into a poor local optima of not

moving to avoid further negative rewards. The two other

baselines that we compare against perform better, but still

do not surpass the performance of our method. In particular,

Asymmetric Self-play needs to train the goal-generating

policy (Alice) at every outer iteration, with an amount of

rollouts equivalent to the ones used to train the goal-reaching

policy. This additional burden is not represented in the plots,

being therefore at least half as sample-efficient as the plots

indicate. SAGG-RIAC maintains an ever-growing partition

of the goal-space that becomes more and more biased to-

wards areas that already have more sub-regions, leading to

reduced exploration and slowing down the expansion of the

policy’s capabilities. Details of our adaptation of these two

methods to our problem, as well as further study of their

failure cases, is provided in the Appendices F.1 and F.2.

To better understand the efficiency of our method, we an-

alyze the goals generated by our automatic curriculum. In

these Ant navigation experiments, the goal space is two

dimensional, allowing us to study the shift in the proba-

bility distribution generated by the Goal GAN (Fig. 3 for

the Maze Ant) along with the improvement of the policy

coverage (Fig. 4 for the Maze Ant). We have indicated the

difficulty of reaching the generated goals in Fig. 3. It can be

observed in these figures that the location of the generated

goals shifts to different parts of the maze, concentrating on

the area where the current policy is receiving some learn-

ing signal but needs more improvement. The percentage

of generated goals that are at the appropriate level of dif-

ficulty (in GOIDi) stays around 20% even as the policy

improves. The goals in these figures include a mix of newly

generated goals from the Goal GAN as well as goals from

previous iterations that we use to prevent our policy from

“forgetting” (Appendix A.1). Overall it is clear that our Goal

GAN dynamically shift to sample goals of the appropriate

difficulty. See Appendix D and Fig. 9-10 therein for the

analogous analysis of Free Ant, where we observe that Goal

GAN produces a growing ring of goals around the origin.

It is interesting to analyze the importance of generating goals

in GOIDi for efficient learning. This is done in Figs. 2c-2d,

where we first show an ablation of our method GAN fit all,

that disregards the labels. This method performs worse than

ours, because the expansion of the goals is not related to

the current performance of the policy. Finally, we study the

Rejection Sampling oracle. As explained in Section 4.1, we

wish to sample from the set of goals GOIDi, which we ap-

proximate by fitting a Goal GAN to the distribution of good
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(a) Iteration 5 (b) Iteration 90 (c) Iterartion 350

Figure 3. Goals that, at iterations i, our algorithm trains on - 200 sampled from Goal GAN, 100 from replay. Green goals satisfy R̄
g(πi) ≥

Rmax. Blue ones have appropriate difficulty for the current policy Rmin ≤ R̄
g(πi) ≤ Rmax. The red ones have Rmin ≥ R̄

g(πi).

(a) Itr 5: Coverage=0.20 (b) Itr 90: Coverage=0.48 (c) Itr 350: Coverage=0.71

Figure 4. Visualization of the policy performance (same policy training as in Fig. 3). For illustration purposes, each grid cell is colored

according to the expected return achieved when fixing its center as goal: Red indicates 100% success; blue indicates 0% success.

goals observed in the previous policy optimization step. We

evaluate now how much this approximation affects learning

by comparing the learning performance of our Goal GAN to

a policy trained on goals sampled uniformly from GOIDi

by using rejection sampling. This method is orders of mag-

nitude more sample inefficient, but gives us an upper bound

on the performance of our method. Figs. 2c-2d demonstrate

that our performance is quite close to the performance of

this much less efficient baseline.

5.2. Multi-path point-mass maze

In this section we show that our Goal GAN method is effi-

cient at tracking clearly multi-modal distributions of goals

g ∈ GOIDi. To this end, we introduce a new maze envi-

ronment with multiple paths, as can be seen in Fig. 1d. To

keep the experiment simple we replace the Ant agent by a

point-mass, which actions are the velocity vector (2 dim).

As in the other experiments, our aim is to learn a policy that

can reach any feasible goal corresponding to ǫ-balls in state

space, like the one depicted in red.

Similar to the experiments in Figures 3 and 4, here we show

the goals that our algorithm generated to train the Mutli-

path point-mass agent. Figures 5 and 6 show the results. It

can be observed that our method produces a multi-modal

distribution over goals, tracking all the areas where goals are

at the appropriate level of difficulty. Note that the samples

from the regularized replay buffer are responsible for the

trailing spread of “High Reward” goals and the Goal GAN

is responsible for the more concentrated nodes (see only

Goal GAN samples in Appendix Fig. 11). A clear benefit

of using our Goal GAN as a generative model is that no

prior knowledge about the distribution to fit is required (like

the number of modes). Finally, having several possible

paths to reach a specific goal does not hinder the learning of

our algorithm that consistently reaches full coverage in this

problem (see Appendix Fig. 12).

5.3. N-dimensional Point Mass

In many real-world RL problems, the set of feasible states

is a lower-dimensional subset of the full state space, defined

by the constraints of the environment. For example, the

kinematic constraints of a robot limit the set of feasible

states that the robot can reach. In this section we use an

N-dimensional Point Mass to demonstrate the performance

of our method as the embedding dimension increases.

In this experiments, the full state-space of the N -

dimensional Point Mass is the hypercube [−5, 5]N . How-

ever, the Point Mass can only move within a small subset

of this state space. In the two-dimensional case, the set

of feasible states corresponds to the [−5, 5]× [−1, 1] rect-

angle, making up 20% of the full space. For N > 2, the

feasible space is the Cartesian product of this 2D strip with

[−ǫ, ǫ]N−2, where ǫ = 0.3. In this higher-dimensional en-

vironment, our agent receives a reward of 1 when it moves

within ǫN = 0.3
√
N√
2

of the goal state, to account for the

increase in average L2 distance between points in higher

dimensions. The fraction of the volume of the feasible space

decreases as N increases (e.g. 0.00023:1 for N = 6).

We compare the performance of our method to the base-

lines in Fig. 7. The uniform sampling baseline has poor
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(a) Iteration 1 (b) Iteration 10 (c) Iteration 30 (d) Iteration 100

Figure 5. Goals that, at iterations i, our algorithm trains on - 200 sampled from Goal GAN, 100 from replay. Green goals satisfy R̄
g(πi) ≥

Rmax. Blue ones have appropriate difficulty for the current policy Rmin ≤ R̄
g(πi) ≤ Rmax. The red ones have Rmin ≥ R̄

g(πi).

(a) Itr 1: Coverage=0.014 (b) Itr 10: Coverage=0.53 (c) Itr 30: Coverage=0.78 (d) Itr 100: Coverage=0.98

Figure 6. Visualization of the policy performance (same policy training as in Fig. 5). For illustration purposes, each grid cell is colored

according to the expected return achieved when fixing its center as goal: Red indicates 100% success; blue indicates 0% success.

Figure 7. Final goal coverage obtained after 200 outer iterations

on the N-dim point mass environment. All plots average over 5

random seeds.

performance as the number of dimensions increases be-

cause the fraction of feasible states within the full state

space decreases as the dimension increases. Thus, sampling

uniformly results in sampling an increasing percentage of

unfeasible goals, leading to poor learning signal. In contrast,

the performance of our method does not decay as much as

the state space dimension increases, because our Goal GAN

always generates goals within the feasible portion of the

state space. The GAN fit all variation of our method suffers

from the increase in dimension because it is not encouraged

to track the narrow feasible region. Finally, the oracle and

the baseline with an L2 distance reward have perfect per-

formance, which is expected in this task where the optimal

policy is just to go in a straight line towards the goal. Even

without this prior knowledge, the Goal GAN discovers the

feasible subset of the goal space.

6. Conclusions and Future Work

We propose a new paradigm in RL where the objective is to

train a single policy to succeed on a variety of goals, under

sparse rewards. To solve this problem we develop a method

for automatic curriculum generation that dynamically adapts

to the current performance of the agent. The curriculum is

obtained without any prior knowledge of the environment or

of the tasks being performed. We use generative adversarial

training to automatically generate goals for our policy that

are always at the appropriate level of difficulty (i.e. not too

hard and not too easy). In the future we want to combine our

goal-proposing strategy with recent multi-goal approaches

like HER (Andrychowicz et al., 2017) that could greatly

benefit from better ways to select the next goal to train on.

Another promising line of research is to build hierarchy on

top of the multi-task policy that we obtain with our method

by training a higher-level policy that outputs the goal for the

lower level multi-task policy (Heess et al., 2016; Florensa

et al., 2017a). The hierarchy could also be introduced by

replacing our current feed-forward neural network policy

by an architecture that learns to build implicit plans (Mnih

et al., 2016; Tamar et al., 2016), or by leveraging expert

demonstrations to extract sub-goals (Zheng et al., 2016),

although none of these approaches tackles yet the multi-task

learning problem formulated in this work.
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A. Implementation details

A.1. Replay buffer

In addition to training our policy on the goals that were

generated in the current iteration, we also save a list (“regu-

larized replay buffer”) of goals that were generated during

previous iterations (update replay). These goals are

also used to train our policy, so that our policy does not

forget how to achieve goals that it has previously learned.

When we generate goals for our policy to train on, we sam-

ple two thirds of the goals from the Goal GAN and we

sample the one third of the goals uniformly from the replay

buffer. To prevent the replay buffer from concentrating in a

small portion of goal space, we only insert new goals that

are further away than ǫ from the goals already in the buffer,

where we chose the goal-space metric and ǫ to be the same

as the ones introduced in Section 3.1.

A.2. Goal GAN Initialization

In order to begin our training procedure, we need to ini-

tialize our goal generator to produce an initial set of goals

(initialize GAN). If we initialize the goal generator

randomly (or if we initialize it to sample uniformly from the

goal space), it is likely that, for most (or all) of the sampled

goals, our initial policy would receives no reward due to the

sparsity of the reward function. Thus we might have that all

of our initial goals g have R̄g(π0) < Rmin, leading to very

slow training.

To avoid this problem, we initialize our goal generator to

output a set of goals that our initial policy is likely to be

able to achieve with R̄g(πi) ≥ Rmin . To accomplish this,

we run our initial policy π0(at | st, g) with goals sampled

uniformly from the goal space. We then observe the set

of states Sv that are visited by our initial policy. These

are states that can be easily achieved with the initial policy,

π0, so the goals corresponding to such states will likely

be contained within SI
0 . We then train the goal generator

to produce goals that match the state-visitation distribution

pv(g), defined as the uniform distribution over the set f(Sv).
We can achieve this through traditional GAN training, with

pdata(g) = pv(g). This initialization of the generator allows

us to bootstrap the Goal GAN training process, and our

policy is able to quickly improve its performance.

B. Experimental details

B.1. Ant specifications

The ant is a quadruped with 8 actuated joints, 2 for each

leg. The environment is implemented in Mujoco (Todorov

et al., 2012). Besides the coordinates of the center of mass,

the joint angles and joint velocities are also included in the

observation of the agent. The high degrees of freedom make

navigation a quite complex task requiring motor coordina-

tion. More details can be found in Duan et al. (2016), and

the only difference is that in our goal-oriented version of

the Ant we append the observation with the goal, the vector

from the CoM to the goal and the distance to the goal. For

the Free Ant experiments the objective is to reach any point

in the square [−5m, 5m]2 on command. The maximum

time-steps given to reach the current goal are 500.

B.2. Ant Maze Environment

The agent is constrained to move within the maze environ-

ment, which has dimensions of 6m x 6m. The full state-

space has an area of size 10 m x 10 m, within which the

maze is centered. To compute the coverage objective, goals

are sampled from within the maze according to a uniform

grid on the maze interior. The maximum time-steps given

to reach the current goal are 500.

B.3. Point-mass specifications

For the N-dim point mass of Section 5.3, in each episode

(rollout) the point-mass has 400 timesteps to reach the goal,

where each timestep is 0.02 seconds. The agent can accel-

erate in up to a rate of 5 m/s2 in each dimension (N = 2
for the maze). The observations of the agent are 2N dimen-

sional, including position and velocity of the point-mass.

B.4. Goal GAN design and training

After the generator generates goals, we add noise to each

dimension of the goal sampled from a normal distribution

with zero mean and unit variance. At each step of the al-

gorithm, we train the policy for 5 iterations, each of which

consists of 100 episodes. After 5 policy iterations, we then

train the GAN for 200 iterations, each of which consists

of 1 iteration of training the discriminator and 1 iteration

of training the generator. The generator receives as input 4

dimensional noise sampled from the standard normal dis-

tribution. The goal generator consists of two hidden layers

with 128 nodes, and the goal discriminator consists of two

hidden layers with 256 nodes, with relu nonlinearities.

B.5. Policy and optimization

The policy is defined by a neural network which receives as

input the goal appended to the agent observations described

above. The inputs are sent to two hidden layers of size 32

with tanh nonlinearities. The final hidden layer is followed

by a linear N -dimensional output, corresponding to acceler-

ations in the N dimensions. For policy optimization, we use

a discount factor of 0.998 and a GAE lambda of 0.995. The

policy is trained with TRPO with Generalized Advantage

Estimation implemented in rllab (Schulman et al., 2015a;b;

Duan et al., 2016). Every ”update policy” consists of 5
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iterations of this algorithm.

C. Study of GoalGAN goals

To label a given goal (Section 4.1), we could empirically

estimate the expected return for this goal R̄g(πi) by per-

forming rollouts of our current policy πi. The label for this

goal is then set to yg = 1

{

Rmin ≤ R̄g(πi) ≤ Rmax

}

.

Nevertheless, having to execute additional rollouts just for

labeling is not sample efficient. Therefore, we instead use

the rollouts that were used for the most recent policy update.

This is an approximation as the rollouts where performed

under πi−1, but as we show in Figs. 8a-8b, this small “de-

lay” does not affect learning significantly. Indeed, using the

true label (estimated with three new rollouts from πi) yields

the Goal GAN true label curves that are only slightly better

than what our method does. Furthermore, no matter what

labeling technique is used, the success rate of most goals is

computed as an average of at most four attempts. Therefore,

the statement Rmin ≤ R̄g(πi) will be unchanged for any

value of Rmin ∈ (0, 0.25). Same for R̄g(πi) ≤ Rmax and

Rmax ∈ (0.75, 1). This implies that the labels estimates

(and hence our automatic curriculum generation algorithm)

is almost invariant for any value of the hypermparameters

Rmin and Rmax in these ranges.

In the same plots we also study another criteria to choose

the goals to train on that has been previously used in the

literature: learning progress (Baranes & Oudeyer, 2013b;

Graves et al., 2017). Given that we work in a continuous

goal-space, estimating the learning progress of a single goal

requires estimating the performance of the policy on that

goal before the policy update and after the policy update

(potentially being able to replace one of these estimations

with the rollouts from the policy optimization, but not both).

Therefore the method does require more samples, but we

deemed interesting to compare how well the metrics allow

to automatically build a curriculum. We see in the Figs. 8a-

8b that the two metrics yield a very similar learning, at least

in the case of Ant navigation tasks with sparse rewards.

D. Goal Generation for Free Ant

Similar to the experiments in Figures 3 and 4, here we show

the goals that were generated for the Free Ant experiment in

which a robotic quadruped must learn to move to all points

in free space. Figures 9 and 10 show the results. As shown,

our method produces a growing circle around the origin;

as the policy learns to move the ant to nearby points, the

generator learns to generate goals at increasingly distant

positions.

(a) Free Ant - Variants

(b) Maze Ant - Variants

Figure 8. Learning curves comparing the training efficiency of our

method and different variants. All plots are an average over 10

random seeds.

E. Learning for Multi-path point-mass

To clearly observe that our GoalGAN approach is capable of

fitting multimodal distributions, we have plotted in Fig. 11

only the samples coming from the GoalGAN (i.e. no sam-

ples from the replay buffer). Also, in this environment there

are several ways of reaching every part of the maze. This is

not a problem for our algorithm, as can be seen in the full

learning curves in Fig.12, where we see that all runs of the

algorithm reliably reaches full coverage of the multi-path

maze.

F. Comparisons with other methods

F.1. Asymmetric self-play (Sukhbaatar et al., 2017)

Although not specifically designed for the problem pre-

sented in this paper, it is straight forward to apply the method

proposed by Sukhbaatar et al. (2017) to our problem. An

interesting study of its limitations in a similar setting can be

found in (Florensa et al., 2017b).
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(a) Iteration 10 (b) Iteration 100 (c) Iterartion 300

Figure 9. Goals that our algorithm trains on (200 sampled from the

Goal GAN, 100 from the replay). “High rewards” (green) are goals

with R̄
g(πi) ≥ Rmax; GOIDi (blue) have appropriate difficulty

for the current policy Rmin ≤ R̄
g(πi) ≤ Rmax. The red ones

have Rmin ≥ R̄
g(πi)

(a) Iteration 10:
Coverage = 0.037

(b) Iteration 100:
Coverage = 0.4

(c) Iteration 300:
Coverage = 0.86

Figure 10. Visualization of the policy performance for different

parts of the state space (same policy training as in Fig. 9). For

illustration purposes, the feasible state-space is divided into a

grid, and a goal location is selected from the center of each grid

cell. Each grid cell is colored according to the expected return

achieved on this goal: Red indicates 100% success; blue indicates

0% success.

F.2. SAGG-RIAC (Baranes & Oudeyer, 2013b)

In our implementation of this method, we use TRPO as

the “Low-Level Goal-Directed Exploration with Evolving

Context”. We therefore implement the method as batch: at

every iteration, we sample Nnew new goals {yi}i=0...Nnew
,

then we collect rollouts of tmax steps trying to reach them,

and perform the optimization of the parameters using all

the collected data. The detailed algorithm is given in the

following pseudo-code.

UpdateRegions(R, yf ,Γyf
) is exactly the Algorithm 2 de-

scribed in the original paper, and Self-generate is the ”Ac-

tive Goal Self-Generation (high-level)” also described in

the paper (Section 2.4.4 and Algorithm 1), but it’s repeated

Nnew times to produce a batch of Nnew goals jointly. As

for the competence Γyg
, we use the same formula as in

their section 2.4.1 (use highest competence if reached close

enough to the goal) and C(yg, yf ) is computed with their

equation (7). The collect rollout function resets the

state s0 = sreset and then applies actions following the

goal-conditioned policy πθ(·, yg) until it reaches the goal or

the maximum number of steps tmax has been taken. The

final state, transformed in goal space, yf is returned.

As hyperparameters, we have used the recommended ones in

the paper, when available: p1 = 0.7, p2 = 0.2, p3 = 0.1.

Figure 11. Iteration

10 Goal GAN

samples (Fig. 5b

without replay

samples)

Figure 12. Learning curves of our algo-

rithm on Multi-path Point-mass Maze, con-

sistently achieving full coverage

Algorithm 2 Generative Goal with Sagg-RIAC

Hyperparameters: window size ζ, tolerance threshold

ǫmax, competence threshold ǫC , maximum time horizon

tmax, number of new goals Nnew, maximum number of

goals gmax, mode proportions (p1, p2, p3)
Input: Policy πθ0(sstart, yg), goal bounds BY , reset

position srest
Output: Policy πθN (sstart, yg)
R←

{

(R0,ΓR0
)
}

where R0 = Region(BY ), ΓR0
= 0

for i← 1 to N do

goals← Self-generate Nnew goals: {yj}j=0...Nnew

paths = [ ]
while number steps in(paths) < batch size do

Reset s0 ← srest
yg ← Uniform(goals)
yf , Γyg

, path ←
collect rollout(πθi(·, yg), sreset)
paths.append(path)
UpdateRegions(R, yf , 0)
UpdateRegions(R, yg,Γyg

)
end while

πθi+1
← train πθi with TRPO on collected paths

end for

For the rest, the best performance in an hyperparameter

sweep yields: ζ = 100, gmax = 100. The noise for mode(3)

is chosen to be Gaussian with variance 0.1, the same as the

tolerance threshold ǫmax and the competence threshold ǫC .

As other details, in our tasks there are no constraints to

penalize for, so ρ = ∅. Also, there are no sub-goals. The

reset value r is 1 as we reset to sstart after every reaching

attempt. The number of explorative movements q ∈ N has

a less clear equivalence as we use a policy gradient update

with a stochastic policy πθ instead of a SSA-type algorithm.
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(a) Iteration 2 (b) Iteration 20 (c) Iterartion 300

Figure 13. Goals sampled by SAGG-RIAC (same policy training as in Fig. 14). “High rewards” (in green) are goals with R̄
g(πi) ≥ Rmax;

GOIDi (in blue) are those with the appropriate level of difficulty for the current policy (Rmin ≤ R̄
g(πi) ≤ Rmax). The red ones have

Rmin ≥ R̄
g(πi)

(a) Iteration 2:
Num. of Regions = 54

(b) Iteration 100:
Num. of Regions = 1442

(c) Iteration 300:
Num. of Regions = 15420

Figure 14. Visualization of the regions generated by the SAGG-RIAC algorithm


