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Abstract—Due to the current horizontal business model that
promotes increasing reliance on untrusted third-party Intellectual
Properties (IPs), CAD tools, and design facilities, hardware
Trojan attacks have become a serious threat to the semiconductor
industry. Development of effective countermeasures against hard-
ware Trojan attacks requires: (1) fast and reliable exploration
of the viable Trojan attack space for a given design and (2)
a suite of high-quality Trojan-inserted benchmarks that meet
specific standards. The latter has become essential for the
development and evaluation of design/verification solutions to
achieve quantifiable assurance against Trojan attacks. While
existing static benchmarks provide a baseline for comparing
different countermeasures, they only enumerate a limited number
of handcrafted Trojans from the complete Trojan design space.
To accomplish these dual objectives, in this paper, we present
MIMIC, a novel AI-guided framework for automatic Trojan
insertion, which can create a large population of valid Trojans
for a given design by mimicking the properties of a small
set of known Trojans. While there exist tools to automatically
insert Trojan instances using fixed Trojan templates, they cannot
analyze known Trojan attacks for creating new instances that
accurately capture the threat model. MIMIC works in two major
steps: (1) it analyzes structural and functional features of existing
Trojan populations in a multi-dimensional space to train machine
learning models and generate a large number of “virtual Trojans”
of the given design, (2) next, it binds them into the design by
matching their functional/structural properties with suitable nets
of the internal logic structure. We have developed a complete
tool flow for MIMIC, extensively evaluated the framework by
exploring several use-cases, and quantified its effectiveness to
demonstrate highly promising results.

Index Terms—Machine Learning, Hardware Trojans, Auto-
mated Trojan Insertion

I. INTRODUCTION

Trustworthiness of hardware has emerged as a primary
concern for modern electronics. The rapid adoption of the
horizontal business model by semiconductor companies has
led to increased incorporation of third-party intellectual prop-
erty (3PIP) blocks, electronic design automation tools and
commercial off-the-shelf (COTS) components into electronic
hardware, which are often untrusted. Security verification of
hardware has already emerged as a challenging problem as
hardware designs have become more complex. The presence of
untrusted entities in the hardware life cycle, which introduces
the threat of malicious hardware alterations or Trojan attacks,
further exacerbates this problem [1] [2]. An adversary can
use hardware Trojan attacks for various malicious purposes,

which include leakage of critical information (e.g., crypto
key), access control violation, and Denial of Service (DoS)
during field operation. Security verification engineers will
face extreme difficulty trying to observe and detect hardware
Trojans as they are stealthy by construction and made to
bypass traditional design verification.

The emerging threat of hardware Trojan attacks has mo-
tivated researchers to create effective Trojan detection and
prevention methods. However, the development and evaluation
of countermeasures against hardware Trojans require a suite
of Trojan-inserted benchmarks. Additionally, to quantify the
assurance provided by a countermeasure for a given design, a
designer requires the capability to rapidly explore the Trojan
attack space for a given design. Previously, researchers had
crafted custom Trojans – however custom Trojans do not lend
themselves to comparing against other techniques. A suite
of 96 Trojan inserted benchmarks across 16 unique designs
currently exist on Trust-hub, but are static [3] – a fixed and
small subset of the evolving hardware threat. The Trojan space
is sufficiently large and evolving and cannot be accurately
captured with a limited number of benchmarks. Cruz et al.
introduced a methodology for automated Trojan benchmark-
ing, which addresses several of the aforementioned problems
[4]. Nevertheless, previous automated benchmarking tools rely
on only one feature for Trojan insertion – signal probability.
While this will guarantee low triggerability through logic
testing, such a process limits the potential Trojan space by only
looking through a one-dimensional lens. We cannot expect
to capture the behavior of a Trojan in a design under such
assumptions. Moreover, as designs are getting more complex,
the space in which an adversary can insert a stealthy Trojan
similarly becomes large and more complex. Current Trojan
insertion tools do not adequately utilize the growing design
complexity or reliably explore the complex Trojan attack space
for a given design.

Motivated by these opportunities, we propose MIMIC
(Machine Intelligence based Malicious Implant Creation) a
machine learning-based framework for automatically generat-
ing Trojan benchmarks. Fig. 1 illustrates the overall flow of the
proposed framework. The MIMIC framework is split into two
main phases: 1) the learning phase and 2) the operation phase.
For learning, MIMIC extracts features from a pool of existing
Trojans and uses these features to train machine learning (ML)
models for identifying trigger nets, payload nets, and capturing
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Figure 1: The major steps and overall flow of the MIMIC framework.

Trojan behavior. The operation phase is where MIMIC inserts
Trojans. MIMIC expects a flattened Verilog netlist. The tool
then identifies candidate nets using the Trigger and Payload
models. While the algorithm selects a set of nets based on
their fitness determined by the ML models, the set of nets
may never simultaneously achieve all rare values or may
form an unintended combinational loop, creating an invalid
Trojan. Therefore, each set of nets is verified both functionally
and structurally to ensure only valid Trojans are inserted.
We introduce the notion of “virtual Trojans” or the Trojan
feature set (behavior) extracted from each set of realized
candidate trigger and payload nets. These virtual Trojans are
then compared to a reference Trojan feature vector sampled
from the Trojan behavior ML model. The virtual Trojans are
sorted based on this comparison. Finally, the fittest Trojans
are bound to the design using a Trojan template and suitable
internal nets. Several configurations are exposed to the user to
control the type of Trojan, feature weights, and models used
during insertion.

Unlike previous approaches, MIMIC learns from an ex-
isting Trojan population and automatically extracts a multi-
dimensional feature space consisting of structural and func-
tional features from nets in a gate-level netlist. MIMIC cap-
tures the complexities and provides an attacker with suitable
locations for inserting a given Trojan template. In this way,
the framework tries to mimic an intelligent attacker and con-
sider several qualities that contribute to the low detectability
of stealthy Trojan. The framework builds several machine
learning models from which new Trojans of similar quality
to the original population can be automatically generated
and inserted. A key advantage of our proposed framework
over current tools is that all the Trojans present in the pro-
vided database informs the MIMIC Trojan insertion process.
Therefore, Trojans generated by MIMIC can automatically
adapt in response to new Trojan discoveries in the wild. The
flexibility of MIMIC enables users to control the number
and type of Trojan inserted. We note different Trojan types

(i.e., combinational, and sequential) often have diverse or even
conflicting features. Therefore, the framework allows users
to control feature weights and the machine learning models
used for Trojan insertion, allowing for more representative
modeling.

In summary, we make the following contributions in the
paper:

• We identify the existing problems of current Trojan
benchmarking tools, which do not adequately encapsulate
the Trojan space for a given design.

• We introduce MIMIC, a machine learning-based flexible
hardware Trojan insertion framework that can create
a large population of feasible and high-quality Trojan
attacks for a given design by mimicking the properties
from a small set of known Trojans. MIMIC can extract
relevant structural and functional features from a set
of attack instances to capture Trojan behavior. MIMIC
enables us to reliably explore the Trojan attack space
for a given design with user-configurable attack features
(e.g., Trojans of specific types of trigger or payload). To
the best of our knowledge, MIMIC is the first automated
Trojan insertion framework that uses both supervised and
generative machine learning.

• We develop a complete framework, including associated
algorithms and tools (e.g., automatic feature extraction,
Trojan insertion into a design, and validation of an
inserted Trojan) and their integration with widely-used
ML algorithms. We provide the necessary details on this
framework in the paper.

• Based on the algorithms presented, our implementation
can insert diverse Trojan types in a target design by
leveraging the Trojan behavior captured using a set of
machine learning models.

• We evaluate MIMIC on four ISCAS89 benchmarks using
four different Trojan templates and quantify its effective-
ness. We extensively analyze our framework’s ability to
mimic a given set of Trojans in various scenarios.
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• Finally, we study the efficacy of transfer learning by
varying the Trojan templates used during testing.

The rest of the paper is organized as the following: Sec-
tion II describes the preliminaries and previous efforts towards
automated Trojan benchmarking. Section III discusses why au-
tomated benchmarking of Trojans is needed and observations
with current tools that motivate MIMIC. Section IV describes
the machine learning-based Trojan insertion process. Section
V presents an analysis of MIMIC’s ability to reproduce similar
Trojans under several circumstances. Further discussion and
future research directions with a conclusive summary are
presented in Section VI.

II. BACKGROUND AND RELATED WORKS

The proposed methodology can create extensive bench-
marks using machine intelligence for developing countermea-
sures for hardware Trojan attacks. In this section, we provide
a brief introduction to hardware Trojans. We also present
existing works on automated Trojan benchmarking tools.

A. Hardware Trojans

Hardware Trojans are deliberate design modifications that
create unwanted functionality outside of the defined specifi-
cations. These malicious functions can range from leaking
information and malfunctioning during critical operations to
bypassing security measures [5]. Hardware Trojans can be
placed in several abstractions of a design throughout its lifecy-
cle: soft IP (i.e., RTL), firm IP, gate-level netlist, or in the IC by
an untrusted foundry. At the most basic level, Trojans consist
of a trigger and payload sub-circuit. The trigger sub-circuit is
used to activate the Trojan under specific conditions so as to
avoid detection. Trigger circuits generally take input signals
from the design and ensure an unlikely activation sequence
reducing the chance of accidental activation or discovery.
The payload sub-circuit is responsible for carrying out the
malicious function through functional output, side-channel,
or parametric values(i.e.: temperature, current). In the case
of always-on Trojans, the trigger circuit does not exist, but
the payload must carry out non-functional effects to remain
stealthy [6].

B. Automated Trojan Insertion

Efforts have been made towards the automatic generation
of hardware Trojan benchmarks for verifying Trojan detection
techniques. TAINT is a tool for automated hardware Trojan
insertion in FPGA designs [8]. Users are provided the option
to choose activation or trigger conditions and can select trigger
and payload templates from a database of predefined Trojans.
The tool can also automatically suggest physical locations for
the Trojan within the FPGA. HAL [7] is a gate-level reverse
engineering tool that aids in identifying areas of interest in
a digital design to insert a Trojan. The authors discussed
inserting Trojans to bypass power-up self-tests and leak keys in
cryptographic circuits through the use of HAL. Both of these
tools require manual effort for the insertion of Trojans [7], [8]
which precludes the creation of a large number of benchmarks.

In [8], the user is expected to select the nets to be used as
triggers based on suggestions made by the tool, while [7] is
primarily a reverse engineering tool that facilitates manual
inspection and selection of appropriate trigger and payload
nets. Manual selection of triggers can be a daunting task due
to the required step of verifying all nets that can achieve their
rare values simultaneously.

TRIT [4] is a proposed tool that automatically selects
suitable trigger nets in a given design for inserting various
templates of Trojans from a database. The trigger nets are
selected by analyzing the activation probability of each net
in the original design. While rare activation probability is a
reasonable feature to find potential trigger nets for placing
stealthy combinational and sequential Trojans, a number of
other functional and structural information of the nets are
ignored during the search process. Constraining to just one
feature impedes the ability of the users to accurately mimic
the desired Trojan model. Furthermore, insertion of other
classes of Trojans (e.g., De-trust [11] and always-on [6])
may require different features other than activation probability.
The authors in [10] propose a similar flow to TRIT, but
utilize transition probability instead of simulation-based signal
probability. TRIT-PCB [9] is another work inspired by TRIT,
but applied at the printed circuit board abstraction.

III. MOTIVATION

In this section, we describe the need for an automated
Trojan attack space exploration and benchmarking tool. We
also make several observations on major limitations of existing
benchmarking tools that motivate the need for the MIMIC
framework.

A. Need for Automated Trojan Insertion

Before the introduction of Trojan benchmarks, researchers
evaluated Trojan detection schemes with handcrafted Trojan
examples. Trust-hub.org web portal then introduced, about
a decade ago, a suite of 96 total static Trojan benchmarks
with which researchers could compare results. However, the
benchmarks are limited in number, which prevents their usage
in many application scenarios, such as: (1) evaluation of a
countermeasure for a specific design or new and emerging
Trojan attacks, which are not realized in existing Trojan bench-
marks; (2) exploration of hard-to-detect Trojans of a specific
type or behavior in a given design; and (3) machine learning-
based trust verification framework that requires a large dataset
for training. The first two scenarios reflect use cases where
a chip designer explores Trojan attack vulnerabilities for a
design and verifies its robustness against Trojan attacks with
known protection methods. An automated insertion tool can
address these shortcomings by allowing for the creation of a
large number of Trojans across any number of benchmarks.
Next, we highlight several significant use-cases of MIMIC:

1) A Sampling-Based Trust Metric: A large population
of Trojan benchmarks can help us to reliably estimate
Trojan coverage for a Trojan detection or trust ver-
ification method [1] [12]. Given that an inordinately
large number of possible Trojan attacks are possible,
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Table I: Comparison of Proposed Framework with Existing Trojan Benchmarking Tools

Tool Domain Automation Features for Insertion Learning
HAL [7] ASIC/FPGA 7 Neighborhood Control Value 7

TAINT [8] FPGA 7 N/A 7

TRIT [4] ASIC 3 Signal Probability 7

TRIT-PCB [9] PCB 3 Signal Probability 7

S. Yu et al. [10] ASIC 3 Transition Probability 7

MIMIC (Proposed) ASIC 3 Structural & Functional Features 3
3= Included; 7= Excluded.

a sampling-based trust metric can be developed that
can effectively quantify the Trojan coverage for a target
protection method.

2) Machine Learning (ML) based Hardware Trust Ver-
ification: The proposed framework can be used to create
a large unbiased population of synthetic Trojans of
specific types and inserted in specific class of designs.
It enables us to create powerful ML-based hardware
IP trust verification solutions, which can leverage the
synthetic Trojan datasets for training and evaluation
purposes.

3) Explore Possible Trojan Attacks in a Design: MIMIC
enables automatic exploration of Trojan attack space for
a given design. Specifically, the configurable options
supported by MIMIC enable us to explore Trojan attacks
of specific trigger/payload behavior for the entire or part
of a design.

4) Design-for-Trust Solution: MIMIC can be used to de-
velop a closed-loop integrated design-for-trust solution,
where design solutions for protecting against Trojan
attacks can be guided by the possible Trojan attacks
explored by MIMIC. For example, if a design solution
fails to protect a subset of synthetic Trojans, the in-
tegrated solution can iteratively incorporate additional
countermeasures to protect against uncovered Trojans.

5) Big-data Analytics on Test Data: The ability of MIMIC
to generate a large volume of Trojan data for various
Trojan types, including emergent ones, and for a diverse
set of designs is expected to fuel the application of
big data analytics to enhance our understanding of Tro-
jan vulnerabilities and the effectiveness of a protection
method.

B. Underestimating Trojan Behavior

Existing automated benchmarking tools rely on signal prob-
ability for inserting Trojans. The resulting Trojans are guar-
anteed to be below some activation probability, but remain
unconstrained with respect to other relevant features. For
example, Fig. 2 shows two 2-trigger AND Trojans that can
be inserted with an automated benchmarking tool. Despite
exhibiting the same activation probability, the Trojans are
actually very distinct when viewing them through the lens of
other relevant functional and structural features. In an ideal
scenario, an attacker would look to control all relevant features
of a Trojan to minimize the chance of detection, especially in
light of all these ML Trojan detection schemes. Given these

observations, we can conclude that Trojans are insufficiently
modeled by considering only one feature. Therefore, the natu-
ral question becomes: How can we properly describe Trojans
as a function of a multi-dimensional feature space? Further-
more, can we learn how a Trojan behaves in a benchmark and
identify similar locations? To these ends, we have developed
MIMIC – a machine learning Trojan benchmarking framework
to capture and reproduce Trojan behavior.

IV. MACHINE INTELLIGENCE BASED INSERTION

In this section, we describe the methodology and framework
of MIMIC. It is capable of learning the commonly occurring
patterns in a class of Trojans and generating a new population
of similar Trojans. The overall flow is depicted in Fig. 1.

A. Learning Phase

The framework first learns the commonly occurring patterns
in a set of sample Trojans (the class we are trying to mimic).
This learning is achieved through training and the creation of
three ML models: a trigger model, a payload model, and a
Trojan model. The trigger model and the payload model learn
to identify nets in a design ideal for being trigger and payload
nets, respectively. Based on the outputs of the trigger model
and the payload model, the Trojan model is used to create,
rank, and insert Trojans in the target design.

1) Feature Extraction: MIMIC first converts the flattened
Verilog gate-level netlists to a hypergraph representation to
obtain the necessary Trojan features for training the ML
models. Once in this form, we convert it to a directed acyclic
graph assuming full-scan implementation, topologically sort
the gates, and compute functional and structural features from
every net in the design. MIMIC automatically extracts these
features from the sample Trojans for training as well as the
target design for Trojan insertion. Table II lists all features
we use in the current iteration which is inspired by [2], with
associated illustration in Fig. 3. We refer to the collection
of these features as net features. These features can broadly
be grouped into structural and functional net features. Note
that MIMIC has been designed to incorporate any number of
provided features. For self-containment, we will now describe
the currently supported features in greater detail.
Functional Features explain the functional behavior of the
net or its input logic cone. Signal probability is a value from
0 to 1 calculated by the percentage of time a net is logic 1.
The toggle rate is the percentage of time a net transitions from
0-to-1 or 1-to-0 over some time period. A Trojan is expected
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(a) (b)

Figure 2: Two Trojans templates inserted in different locations in a design with the same activation probability. The features
shown on the trigger input and payload nets are signal probability, control-to-0, control-to-1.

Table II: List of Net Features used in MIMIC

Feature Description Type
Signal Probability Probability of the net to be logic 1 Functional
Toggle Rate Probability of the net to toggle its value Functional
Entropy Truth table of the cell driving the net Functional
Control-to-0 Effort to control net to logic 0 Functional
Control-to-1 Effort to control net to logic 1 Functional
Observability Effort to propagate value of net to an observable point Functional
Nearest Primary Input Minimum distance from a primary input to the net Structural
Nearest Primary Output Minimum distance to a primary output from the net Structural
Immediate Fanin Number of immediate inputs to the driving gate Structural
Immediate Fanout Number of immediate outputs from the driving gate Structural
Neighboring Fanin Number of inputs to the driving gate beyond depth 1 Structural
Neighboring Fanout Number of outputs from the driving gate beyond depth 1 Structural
Nearest Flip-Flop Input Minimum distance of the net to a flip-flop input Structural
Nearest Flip-Flop Output Minimum distance of the net to a flip-flop output Structural

to be on either extreme of signal probability (hard-to-activate
1 or hard-to-activate 0) and exhibit a low toggle rate so as
to avoid detection during logic testing. Entropy is a measure
of the balance of zeros and ones in the truth table of the
source or driving gate. MIMIC calculates the entropy of the

gate as E = P1 log2
1

P1
+ P0 log2

1

P0
, where P0, P1 are the

probability of logic 0 and logic 1 calculated from the truth
table of the source gate, respectively. We also incorporate San-
dia Controllability and Observability (SCOAP) Values [13].
Controllability is determined by the effort in controlling a net
to logic 0 or 1. Observability, on the other hand, is the effort
required to propagate a signal to an observable point in the
design, such as a primary output or scan flip-flop. Stealthy
Trojans generally exhibit high SCOAP values which make
them hard-to-control and/or hard-to-observe.
Structural Features describe information related to the con-
nection of the nets and their topology. From Table II, we
capture the shortest distance from primary inputs and outputs
and flip flop data inputs and outputs. Other structural features
describe the fanin and fanout structure. Immediate fanin and
fanout pertain to the direct inputs and outputs of a source gate.
Neighboring fan structures are the fanin and fanout values that
are one depth forward and back from the source gate. An
example calculation of structural features is shown in Fig. 3.

MIMIC calculates all structural features through breadth-
first search and depth-first search graph traversal algorithms.
Structural features provide insight into Trojan locations as well
as common Trojan assets. For example, a Trojan that leaks
information through function will most likely be close to a
primary output or flip flop.

2) Trigger and Payload Models: The trigger and payload
models are classifiers trained on feature vectors from the trig-
ger and payload nets of sample hardware Trojans, respectively.
Given a net from the target design (where we are to insert
the Trojans), the trained models will be able to provide a
score denoting the fitness of the said net for usage as a
Trojan trigger or payload based on the sampled Trojan set. We
defined this score as a function of the prediction probability
or the decision boundary distance. We have evaluated different
classification algorithms such as SVM, SVM One Class, and
Random Forest (RF) and found that RF performs best for our
experimental setup. Training a two-class classifier (such as
RF) requires additional considerations in case of imbalanced
training data (which may be the case in this task). Hence,
through empirical analysis, we employ a balanced class weight
scheme as described by sklearn [14].

3) Trojan Model: We generate a set of virtual Trojans
through a combination of the candidate trigger and payload
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nets with high fitness scores calculated based on the trigger
and payload models. The virtual Trojans are the feature vectors
calculated as if the Trojan were “plugged into” the design.
These virtual Trojans form a sub-space in the entire Trojan
space that mimics the sample Trojan class. The function of
the Trojan model is to rank these virtual Trojans based on
their similarity with respect to the sample Trojans. The Trojan
model is trained on the final trigger nets of the sample Trojans
using 5 main functional features: probability, activity, control-
to-1, control-to-0, and observability. We define this subset
of features as Trojan features. We select the final trigger
wire to define Trojan behavior as it is located at the critical
junction between trigger and payload subcircuits, capturing the
behavior of both. To increase Trojan diversity but at the same
time ensure coherence with the sample Trojan class, we realize
the Trojan model as a generative machine learning model.
Similarly, MIMIC can adapt to adjust the included features
for the Trojan model.

B. Operation Phase

For Trojan insertion, MIMIC expects the previously de-
scribed ML models for the trigger, payload, and Trojan, a
flattened gate-level target netlist, and Trojan template netlist
to be inserted. Algorithm 1 details the steps followed to
insert a Trojan netlist (T ) into a provided target netlist (V )
using three ML models for trigger (MLT ), payload (MLP ),
and Trojan (MLTroj) which describe the features of the
trigger nets, payload nets, and Trojan behavior, respectively.
The algorithm provides as output the Trojan inserted netlist
(VTroj) and a description of the inserted Trojans. In lines 1-4,
MIMIC converts the input Verilog netlist and Trojan netlist
to a hypergraph representation and performs a topological
sort. After converting the input netlists to a graph, MIMIC
extracts the features described above for every net in the
supplied netlist and then scales their values (lines 6-11). Once
the features have been extracted and scaled, we can begin to
identify suitable trigger and payload nets and then insert the
Trojan.

1) Selection of Trigger and Payload Nets: With the scaled
feature vector (line 11), we can begin to identify candidate
nets using the trigger net ML model (MLT ) and payload
net ML model. (MLP ). In line 12, we identify candidate

Figure 3: Illustration of structural features for the net N6 and
its source gate U6 marked in red.

Algorithm 1: Trojan Insertion
Input : Netlist (V ),

ML Models (MLT ,MLP ,MLTroj),
Trojan Netlist (T )

Output: Trojan Inserted Netlist (VTroj)
1 G ← parse V and construct hypergraph
2 G ← topological sort G
3 GT ← parse T and construct hypergraph
4 GT ← topological sort GT
5 r ← number of trigger inputs of GT
6 FN ← ∅
7 foreach edge ∈ G do
8 f ← compute net feature set of edge
9 FN ← FN ∪ f

10 end
11 F ′N ← scale FN

12 Ctrig ← find candidate trigger nets with MLT

13 Ctrig ← enumerate
(|Ctrig|

r

)
14 Ctrig ← validate candidate trigger sets in Ctrig

15 CTroj ← ∅
16 foreach trigger set x ∈ Ctrig do
17 payload ← find candidate payload net with MLP

18 CTroj ← (x,payload)∪ CTroj

19 end
20 Cvirt ← ∅
21 foreach Trojan wire set x ∈ CTroj do
22 GTx ← plug in x into GT
23 FT ← ∅
24 foreach edge ∈ GTx do
25 f ← compute Trojan feature set of edge
26 FT ← FT ∪ f
27 end
28 F ′T ← scale FN ∪ FT

29 Cvirt ← F ′T ∪ Cvirt

30 end
31 RTroj ← sample feature set from MLTroj

32 Cvirt ← sort Cvirt on distance from RTroj

33 VTroj ← Cvirt ∪ VTroj

34 return VTroj

trigger nets with MLT . The model is used to extract the
probability estimates for the trigger class for each net using the
scaled net feature vectors in F ′N . In our case, the probability
estimate is a two-element array of probabilities for normal net
and trigger net classes, which sum to 1. A net is classified
as a trigger net if its trigger class probability estimate is
greater than 0.5. Therefore, nets with a satisfying probability
estimate for trigger class are preferred. Only when there are an
insufficient number of candidate nets will the algorithm select
nets with a prediction probability less than 0.5. The nets are
then sorted in descending order of probability estimates. r-
trigger sets are then generated in line 13. To further increase
the diversity of net selection, the algorithm selects a net with
a prediction probability different than the previously selected
net until r unique nets have been identified. By selecting nets
with features similar to the reference features as the trigger,
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MIMIC ensures the generated Trojans have characteristics that
mimics sampled Trojans used for training.

Once the trigger net sets have been created, we need to
check whether these trigger nets can achieve the combination
of values required to activate the Trojan (line 14). Failure
to perform this check will lead to the formation of “dead”
Trojans (Trojans present in the netlist but never trigger). In
our case, we have support for Cadence JasperGold, Synosys
TetraMAX, and Onespin to perform this check. Most formal
or automatic test pattern generation (ATPG) computer-aided
design (CAD) tools can be used to achieve similar results.
If every trigger net can simultaneously achieve the required
value, the selection of nets is deemed valid, and MIMIC can
proceed to payload selection. Similar to the trigger selection
process, the payloads are selected with the use of the payload
model. Payloads are rank-ordered according to their prediction
probability for payload net class. In addition to the previous
qualifiers for trigger selection, payloads are selected such that
they do not form a combinational loop (line 17). This property
is enforced by selecting a payload that has a higher topological
ordering than the maximum topological order from the set of
trigger nets. With a set of validated triggers and payload nets
(line 18), MIMIC moves onto Trojan insertion.

2) Trojan Insertion: With a set of valid trigger and payload
nets, MIMIC begins the Trojan insertion stage. From this set,
MIMIC creates virtual Trojans – the feature vector associated
with Trojan features – by calculating the Trojan features as
if the Trojan were inserted into the design (lines 21-30). The
virtual Trojans are then sorted in ascending order based on
the Euclidean distance from the ideal feature vector, which
is sampled from the Trojan Generative Model, MLTroj (lines
31-32). MIMIC has the capability of generating several virtual
Trojans, evaluating their fitness, and ranking their closeness
to the provided generative model. MIMIC will select from the
fittest virtual Trojans, and insert them into the design graph
(line 33). A report is also generated that details information
on where the Trojan is inserted and the corresponding Trojan
features.

V. RESULTS

A powerful feature of the MIMIC tool is to automatically
generate similar Trojans to those that were used for training.
In this section, we perform several experiments across four IS-
CAS 89 benchmarks (s5378, s9234, s38417, s38584) and four
Trojan templates shown in Fig. 4 to highlight the effectiveness
of MIMIC in learning and reproducing similar Trojans from
a dataset.

A. Experimental Setup

For each benchmark (Bi) - Trojan template (Tj) pair, we
create 100 Trojan inserted benchmarks (BiTj) using a flow
similar to [4]. The following parameters are used given the
number of trigger inputs: 4-trigger, θ=0.001; 5-trigger, θ=0.01;
6-trigger, θ=0.01; where θ is the signal probability threshold
for selecting trigger nets. Both net and Trojan features are
extracted for all nets in the Trojan inserted benchmarks. We
then use Affinity Propagation to cluster the Trojans within each

set of 100 Trojan inserted benchmarks (BiTj) to form subsets
of similar Trojans. Affinity Propagation will automatically
generate a number of clusters based on the provided dataset
and selected hyperparameters (damping=0.8, the remaining
parameters are default [14]). For each resulting Trojan subset,
we extract the trigger nets and payloads nets used for the
Trojans and train a Random Forest classifier for trigger and
payload models with net feature vector. This flow is illustrated
in Fig. 5 for clarification. Finally, each Trojan subset is used
to train a Bayesian Gaussian Mixture model with the Trojan
feature vector. In the end, for every Trojan cluster within a
benchmark - Trojan template pair (BiTj), we have a trigger
ML model, payload ML model, and Trojan ML Model. These
models are used for the subsequent experiments performed.

B. Same Template, Same Benchmark (STSB)

At the most basic level, we want to evaluate the MIMIC
framework’s success in producing different but similar quality
Trojans to those used for training. In effect, MIMIC is pro-
viding alternative suitable locations that will provide similar
Trojan qualities for a given Trojan template in a bench-
mark. For these experiments, the template and benchmark
for insertion are the same benchmark and Trojan template
used for training the ML models (hence the name Same
Template, Same Benchmark (STSB)). We separately mimic
each Trojan cluster and try to produce Trojans that fall in the
correct cluster. We maintain a sample of 20 virtual Trojans
per request of 1 Trojan. We then run MIMIC 5 times for
each benchmark - Trojan template pair to better understand
the performance. In Table III, the first column represents the
benchmark and Trojan template used, separated by “-”. The
second column reports the number of Trojan clusters generated
from Affinity Propagation. To highlight the benefits of the ML
components, we compare the accuracy of MIMIC for several
scenarios with and without the Trigger and Payload Models
and Trojan Models (columns 3-10). The column names denote
the inclusion and exclusion of a model. For example, No ML
(column 3) includes no models, Trojan ML (A) (column 4)
includes only the Trojan Model, etc. The accuracy is evaluated
by identifying the corresponding cluster of the output Trojan.
The output Trojan is considered correct if it is successfully
placed in the same cluster used for training. Because MIMIC
maintains a sorted list of several “virtual” Trojans that have not
been inserted into the target benchmark, we report accuracy
in the form of Top-N . Top-N accuracy refers to finding a
correctly clustered Trojan within the top N virtual Trojans
sorted on the distance from the reference Trojan features from
the Trojan model. If the Trojan model is excluded, the first N
Trojans are selected without sorting from the Trojan Model.
If the trigger and payload models are excluded, the nets are
randomly selected but still form a valid trigger and payload
set. From Table III, we observe an increase in the accuracy of
the framework with the inclusion of each model individually.
There is an increase of approximately 16% and 20% Top-5
accuracy with the inclusion of the trigger and payload models
(column 8), and Trojan models (column 6), respectively. With
the trigger, payload, and Trojan models included, we observe
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Figure 4: Denial-of-Service Trojan Templates used during MIMIC insertion. (a) 6 trigger combinational DoS, (b) 5 trigger
2-bit FSM DoS, (c) 4 trigger 2-bit counter DoS, (d) 5 trigger combinational DoS.

Figure 5: Experimental setup flow for producing Trojans to train and evaluate MIMIC.

around 80% Top-5 accuracy or an increase of around 74% over
the accuracy without any models. Ultimately, from Table III,
MIMIC is shown to properly identify other suitable locations
for Trojan templates that exhibit the same behavior as the
Trojans used for training.

C. Extended Use Cases

We further study MIMIC’s flexibility with a more realistic
training-testing scenario by testing on the same benchmark but
inserting a different template. This experiment is evaluated
using all ML models (trigger, payload, and Trojan Models)
trained using only functional features.

1) Different Template, Same Benchmark (DTSB): For
DTSB, we want to evaluate if MIMIC can find suitable
locations for a different Trojan template in the same bench-
mark to achieve the same Trojan behavior of the original
Trojan template used for training. Hence, we use the models
trained for a specific benchmark-Trojan template pair to insert
a different Trojan template into the same benchmark used
during training. In Table IV, the first column represents the

benchmark and Trojan used for insertion. MIMIC can achieve
good accuracy between Trojan templates c1 and c2. We see
an average Top-5 accuracy of around 87% for c1-train, c2-
test and around 77% average accuracy for c2-train, c1-test.
Fig. 6 plots the pair-wise functional features of combinational
Trojan templates c1 and c2. From these feature distributions,
we can see there is significant overlap, which indicates similar
Trojan behavior. Conversely, Fig. 7 illustrates the pair-wise
functional features of the sequential templates s1 and s2. We
can clearly observe templates s1 and s2 do not share much
feature space in common. This disparity is reflected in the
poor performance between templates s1 and s2 shown in
Table IV. MIMIC is unable to find suitable locations for Trojan
template s1 to match the behavior of the Trojan template s2,
and vice versa. Note, we do not test across combinational and
sequential template boundaries as the presence of flip flops
in the sequential Trojan templates heavily affects the relevant
feature space.
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Table III: Evaluation of MIMIC under Same Template, Same Benchmark Scenario using Structural & Functional Features

Benchmark Num
Clusters

No ML
Acc.(%)

Troj. ML (A)
Acc.(%)

Trig.&Pay. ML (B)
Acc.(%)

Both (A) and (B)
Acc.(%)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
s5378-c1 14 2.86 4.29 15.71 15.71 4.29 17.14 62.86 64.29
s5378-c2 12 0.00 5.00 15.00 15.00 1.67 18.33 60.00 61.67
s5378-s1 12 0.00 1.67 15.00 15.00 6.67 23.33 81.67 85.00
s5378-s2 8 2.50 5.00 25.00 25.00 5.00 20.00 72.50 75.00
s9234-c1 10 4.00 8.00 40.00 40.00 2.00 16.00 56.00 60.00
s9234-c2 6 3.33 10.00 16.67 16.67 10.00 16.67 73.33 76.67
s9234-s1 11 1.82 3.64 18.18 20.00 3.64 18.18 74.55 76.36
s9234-s2 6 3.33 13.33 23.33 30.00 3.33 26.67 80.00 83.33

s38417-c1 6 6.67 10.00 46.67 46.67 3.33 26.67 96.67 100.00
s38417-c2 6 0.00 6.67 23.33 30.00 0.00 36.67 93.33 100.00
s38417-s1 9 2.22 4.44 28.89 28.89 2.22 13.33 64.44 64.44
s38417-s2 9 2.22 15.56 44.44 46.67 8.89 26.67 86.67 86.67
s38584-c1 8 0.00 0.00 15.00 15.00 7.50 32.50 80.00 87.50
s38584-c2 8 0.00 2.50 22.5 25.00 5.00 22.50 75.00 85.00
s38584-s1 8 0.00 2.50 17.50 17.50 5.00 27.50 97.50 100.00
s38584-s2 9 0.00 0.00 17.78 17.78 2.22 6.67 64.44 66.67
Average – 1.81 5.79 24.07 25.31 4.42 21.80 76.18 79.54

Trig=Trigger; Pay=Payload; Troj=Trojan; Acc.=Accuracy; (A) uses only Trojan ML; (B) uses only Trigger & Payload ML;

Figure 6: Comparing pair-wise functional features of combinational DoS Trojan template c1 and c2 inserted in s38417.

Table IV: Evaluation of MIMIC under Different Template,
Same Benchmark Scenario using Functional Features

Benchmark Training
Benchmark

Training
Template

Accuracy(%)
Top-1 Top-5

s9234-c1 s9234 c2 58.00 60.00
s9234-c2 s9234 c1 73.33 80.00
s9234-s1 s9234 s2 9.09 9.09
s9234-s2 s9234 s1 30.00 30.00

s38417-c1 s38417 c2 90.00 93.33
s38417-c2 s38417 c1 90.00 93.33
s38417-s1 s38417 s2 11.11 11.11
s38417-s2 s38417 s1 11.11 11.11

VI. CONCLUSION

We have presented MIMIC, a machine learning-based CAD
framework for automated hardware Trojan insertion to effec-
tively explore the attack surface for a design and generate
a large pool of high-quality synthetic benchmarks. The need
for unbiased automated Trojan benchmarking has become
apparent as more countermeasures for hardware Trojan attacks
are being developed. Contrary to existing Trojan insertion
techniques, MIMIC aims to learn several key features of hard-
to-detect Trojans to create stealthy Trojans of similar nature.
It offers the flexibility of several user configurations, which
can control the quality and types of Trojans inserted into a
gate-level design. We have developed a complete tool flow for
MIMIC and demonstrated its ability to mimic Trojan proper-
ties through several experiments using the same benchmark
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Figure 7: Comparing pair-wise functional features of sequential DoS Trojan template s1 and s2 inserted in s38417.

and Trojan template and also differing Trojan templates. We
have described possible use cases of MIMIC in a trustworthy
hardware design life cycle. Based on these use cases, we can
expect that Trojan insertion frameworks, such as MIMIC, will
play an increasingly important role in quantifiable assurance
for electronic hardware in the emergent business model. Future
work will investigate further the evaluation of MIMIC in
specific use cases and for emerging Trojan attacks, as well
as feedback-based insertion and automatic template selection
based on the input models.
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