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Abstract

Heap layout manipulation is integral to exploiting heap-

based memory corruption vulnerabilities. In this pa-

per we present the first automatic approach to the prob-

lem, based on pseudo-random black-box search. Our

approach searches for the inputs required to place the

source of a heap-based buffer overflow or underflow next

to heap-allocated objects that an exploit developer, or

automatic exploit generation system, wishes to read or

corrupt. We present a framework for benchmarking heap

layout manipulation algorithms, and use it to evaluate

our approach on several real-world allocators, showing

that pseudo-random black box search can be highly effec-

tive. We then present SHRIKE, a novel system that can

perform automatic heap layout manipulation on the PHP

interpreter and can be used in the construction of control-

flow hijacking exploits. Starting from PHP’s regression

tests, SHRIKE discovers fragments of PHP code that in-

teract with the interpreter’s heap in useful ways, such as

making allocations and deallocations of particular sizes,

or allocating objects containing sensitive data, such as

pointers. SHRIKE then uses our search algorithm to piece

together these fragments into programs, searching for one

that achieves a desired heap layout. SHRIKE allows an

exploit developer to focus on the higher level concepts

in an exploit, and to defer the resolution of heap layout

constraints to SHRIKE. We demonstrate this by using

SHRIKE in the construction of a control-flow hijacking

exploit for the PHP interpreter.

1 Introduction

Over the past decade several researchers [5, 8, 9, 16] have

addressed the problem of automatic exploit generation

(AEG) for stack-based buffer overflows. These papers

describe algorithms for automatically producing a control-

flow hijacking exploit, under the assumption that an input

is provided, or discovered, that results in the corruption of

an instruction pointer stored on the stack. However, stack-

based buffer overflows are just one type of vulnerability

found in software written in C and C++. Out-of-bounds

(OOB) memory access from heap buffers is a common

flaw and, up to now, has received little attention in terms

of automation. Heap-based memory corruption differs

significantly from stack-based memory corruption. In the

latter case the data that the attacker may corrupt is limited

to whatever is on the stack and can be varied by chang-

ing the execution path used to trigger the vulnerability.

For heap-based corruption, it is the physical layout of

dynamically allocated buffers in memory that determines

what gets corrupt:ed. The attacker must reason about the

heap layout to automatically construct an exploit. In [26],

exploits for heap-based vulnerabilities are considered, but

the foundational problem of producing inputs that guaran-

tee a particular heap layout is not addressed.

To leverage OOB memory access as part of an exploit,

an attacker will usually want to position some dynam-

ically allocated buffer D, the OOB access destination,

relative to some other dynamically allocated buffer S, the

OOB access source.1 The desired positioning will depend

on whether the flaw to be leveraged is an overflow or an

underflow, and on the control the attacker has over the

offset from S that will be accessed. Normally, the attacker

wants to position S and D so that, when the vulnerability

is triggered, D is corrupted while minimising collateral

damage to other heap allocated structures.

Allocators do not expose an API to allow a user to

control relative positioning of allocated memory regions.

In fact, the ANSI C specification [2] explicitly states

The order and contiguity of storage allocated

by successive calls to the calloc, malloc, and

realloc functions is unspecified.

Furthermore, applications that use dynamic memory al-

location do not expose an API allowing an attacker to

1Henceforth, when we refer to the ‘source’ and ‘destination’ we

mean the source or destination buffer of the overflow or underflow.
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1 typedef struct {

2 DisplayFn display;

3 char *n;

4 unsigned *id

5 } User;

6

7 User* create(char *name) {

8 if (!strlen(name) || strlen(name) >= 8)

9 return 0;

10 User *user = malloc(sizeof(User));

11 user->display = &printf;

12 user->n = malloc(strlen(name) + 1);

13 strlcpy(user->n, name, 8);

14 user->id = malloc(sizeof(unsigned));

15 get_uuid(user->id);

16 return user;

17 }

18

19 void destroy(User *user) {

20 free(user->id);

21 free(user->n);

22 free(user);

23 }

24

25 void rename(User *user, char *new) {

26 strlcpy(user->n, new, 12);

27 }

28

29 void display(User *user) {

30 user->display(user->n);

31 }

Listing 1: Example API offered by a target program.

directly interact with the allocator in an arbitrary man-

ner. An exploit developer must first discover the allocator

interactions that can be indirectly triggered via the appli-

cation’s API, and then leverage these to solve the layout

problem. In practice, both problems are usually solved

manually; this requires expert knowledge of the internals

of both the heap allocator and the application’s use of it.

1.1 An Example

Consider the code in Listing 1 showing the API for a

target program. The rename function contains a heap-

based overflow if the new name is longer than the old

name. One way for an attacker to exploit the flaw in the

rename function is to try to position a buffer allocated

to hold the name for a User immediately before a User

structure. The User structure contains a function pointer

as its first field and an attacker in control of this field can

redirect the control flow of the target to a destination of

their choice by then calling the display function.

As the attacker cannot directly interact with the alloca-

tor, the desired heap layout must be achieved indirectly

Figure 1: An series of interactions which result in a name

buffer immediately prior to a User structure.

utilising those functions in the target’s API which per-

form allocations and deallocations. While the create

and destroy functions do allow the attacker to make al-

locations and deallocations of a controllable size, other

allocator interactions that are unavoidable also take place,

namely the allocation and deallocation of the buffers for

the User and id. We refer to these unwanted interactions

as noise, and such interactions, especially allocations, can

increase the difficulty of the problem by placing buffers

between the source and destination.

Figure 1 shows one possible sequence in which the

create and destroy functions are used to craft the de-

sired heap layout.2 The series of interactions performed

by the attacker are as follows:

1. Four users are created with names of length 7, 3, 1,

and 3 letters, respectively.

2. The first and the third user are destroyed, creating

two holes: One of size 24 and one of size 18.

3. A user with a name of length 7 is created. The allo-

cator uses the hole of size 18 to satisfy the allocation

request for the 12-byte User structure, leaving 6 free

bytes. The request for the 8-byte name buffer is

satisfied using the 24-byte hole, leaving a hole of

16 bytes. An allocation of 4 bytes for the id then

reduces the 6 byte hole to 2.

4. A user with a name of length 3 is created. The

16-byte hole is used for the User object, leaving

4 bytes into which the name buffer is then placed.

This results in the name buffer, highlighted in green,

being directly adjacent to a User structure.

Once this layout has been achieved an overflow can

be triggered using the rename function, corrupting the

display field of the User object. The control flow of the

2Assume a best-fit allocator using last-in-first-out free lists to store

free chunks, no limit on free chunk size, no size rounding and no inline

allocator metadata. Furthermore, assume that pointers are 4 bytes in

size and that a User structure is 12 bytes in size.
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application can then be hijacked by calling the display

function with the corrupted User object as an argument.

1.2 Contributions

Our contributions are as follows:

1. An analysis of the heap layout manipulation (HLM)

problem as a standalone task within the context of

automatic exploit generation, outlining its essential

aspects and describing the factors which influence

its complexity.

2. SIEVE, an open source framework for constructing

benchmarks for heap layout manipulation and evalu-

ating algorithms.

3. A pseudo-random black box search algorithm for

heap layout manipulation. Using SIEVE, we evalu-

ate the effectiveness of this algorithm on three real-

world allocators, namely dlmalloc, avrlibc and

tcmalloc.

4. An architecture, and proof-of-concept implementa-

tion, for a system that integrates automatic HLM into

the exploit development process. The implementa-

tion, SHRIKE, automatically solves heap layout con-

straints that arise when constructing exploits for the

PHP interpreter. SHRIKE also demonstrates a novel

approach to integrating an automated reasoning en-

gine into the exploit development process. The ex-

ploit developer produces a partial exploit with mark-

ers indicating heap layout problems to be solved.

SHRIKE takes this partial exploit as input and com-

pletes it by solving these problems.

The source code for SHRIKE and SIEVE can be found

at https://sean.heelan.io/heaplayout.

2 The Heap Layout Manipulation Problem

in Deterministic Settings

As of 2018, the most common approach to solving heap

layout manipulation problems is manual work by experts.

An analyst examines the allocator’s implementation to

gain an understanding of its internals; then, at run-time,

they inspect the state of its various data structures to

determine what interactions are necessary in order to ma-

nipulate the heap into the required layout.

Heap layout manipulation primarily consists of two

activities: creating and filling holes in memory. A hole

is a free area of memory that the allocator may use to

service future allocation requests. Holes are filled to force

the positioning of an allocation of a particular size else-

where, or the creation of a fresh area of memory under

the management of the allocator. Holes are created to

capture allocations that would otherwise interfere with

the layout one is trying to achieve. This process is doc-

umented in the literature of the hacking and computer

Figure 2: The challenges in achieving a particular layout

vary depending on whether the allocator behaves deter-

ministically or non-deterministically and whether or not

the starting state of the heap is known.

security communities, with a variety of papers on the in-

ternals of individual allocators [1,4,20,22], as well as the

manipulation and exploitation of those allocators when

embedded in applications [3, 19, 27].

The process is complicated by the fact that – when

constructing an exploit – one cannot directly interact with

the allocator, but instead must use the API exposed by

the target program. Manipulating the heap state via the

program’s API is often referred to as heap feng shui in

the computer security literature [28]. Discovering the re-

lationship between program-level API calls and allocator

interactions is a prerequisite for real-world HLM but can

be addressed separately, as we demonstrate in section 4.2.

2.1 Problem Restrictions for a

Deterministic Setting

There are four variants of the HLM problem, as shown

in Figure 2, depending on whether the allocator is

deterministic or non-deterministic and whether the start-

ing state is known or unknown. A deterministic allocator

is one that does not utilise any random behaviour when

servicing allocation requests. The majority of allocators

are deterministic, but some, such as the Windows sys-

tem allocator, jemalloc and the DIEHARD family of

allocators [6, 24], do utilise non-determinism to make ex-

ploitation more difficult. The starting state of the heap at

which the attacker can begin interacting with the allocator

is given the allocations and frees that have taken place

up to that point. For the starting state to be known, this

sequence of interactions must be known.

In this paper we consider a known starting state and a

deterministic allocator, and assume there are no other ac-

tors interacting with the heap. While restricted, this both

corresponds to a set of real world exploitation scenarios

and provides a building block for addressing the other

three problem variants.

Local privilege escalation exploits are a scenario in

which these restrictions are usually met, as the attacker

can often tell what allocations and deallocations take place

prior to their interactions. For remote and client-side

targets, the starting state is usually not known. However,
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for some such targets it is possible to force the creation

of a new heap in a predictable state.

When unknown starting states and non-determinism

must be dealt with, approaches such as allocating a large

number of objects on the heap in the hope of corrupting

one when the vulnerability is triggered are often used.

However, in the problem variant we address it is usually

possible to position the overflow source relative to a spe-

cific target buffer. Thus our objective in this variant of the

HLM problem is as follows:

Given the API for a target program and a means

by which to allocate a source and destination

buffer, find a sequence of API calls that position

the destination and source at a specific offset

from each other.

2.2 Challenges

There are several challenges that arise when trying to

perform HLM and when trying to construct a general,

automated solution. In this section we outline those that

are most likely to be significant.

2.2.1 Interaction Noise

Before continuing we first must informally define the con-

cept of an ‘interaction sequence’: an allocator interaction

is a call to one of its allocation or deallocation functions,

while an interaction sequence is a list of one or more

interactions that result from the invocation of a function

in the target program’s API. As an attacker cannot directly

invoke functions in the allocator they must manipulate

the heap via the available interaction sequences. As an

example, when the create function from Listing 1 is

called the resulting interaction sequence consists of three

interactions in the form of the three calls to malloc. The

destroy function also provides an interaction sequence

of length three, in this case consisting of three calls to

free.

For a given interaction sequence there can be interac-

tions that are beneficial, and assist with manipulation of

the heap into a layout that is desirable, and also interac-

tions that are either not beneficial (but benign), or in fact

are detrimental to the heap state in terms of the layout one

is attempting to achieve. We deem those interactions that

are not actively manipulating the heap into a desirable

state to be noise.

For example, the create function from Listing 1 pro-

vides the ability to allocate buffers between 2 and 8 bytes

in size by varying the length of the name parameter. How-

ever, two other unavoidable allocations also take place –

one for the User structure and one for the id. As shown

in Figure 1, some effort must be invested in crafting the

heap layout to ensure that the noisy id allocation is placed

out of the way and a name and User structure end up next

to each other.

2.2.2 Constraints on Allocator Interactions

An attacker’s access to the allocator is limited by what is

allowed by the program they are interacting with. The in-

terface available may limit the sizes that may be allocated,

the order in which they may be allocated and deallocated,

and the number of times a particular size may be allo-

cated or deallocated. Depending on the heap layout that

is desired, these constraints may make the desired layout

more complex to achieve, or even impossible.

2.2.3 Diversity of Allocator Implementations

The open ended nature of allocator design and implemen-

tation means any approach that involves the production

of a formal model of a particular allocator is going to be

costly and likely limited to a single allocator, and perhaps

even a specific version of that allocator. While avrlibc

is a mere 350 lines of code, most of the other allocators

we consider contain thousands or tens of thousands of

lines of code. Their implementations involve complex

data structures, loops without fixed bounds, interaction

with the operating system and other features that are of-

ten terminally challenging for semantics-aware analyses,

such as model checking and symbolic execution. A de-

tailed survey of the data structures and algorithms used in

allocators is available in [34].

2.2.4 Interaction Sequence Discovery

Since in most situations one cannot directly interact with

the allocator, an attacker needs to discover what interac-

tion sequences with the allocator can be indirectly trig-

gered via the program’s API. This problem can be ad-

dressed separately to the main HLM problem, but it is

a necessary first step. In section 4.2 we discuss how we

solved this problem for the PHP language interpreter.

3 Automatic Heap Layout Manipulation

We now present our pseudo-random black box search

algorithm for HLM, and two evaluation frameworks we

have embedded it in to solve heap layout problems on

both synthetic benchmarks and real vulnerabilities. The

algorithm is theoretically and practically straightforward.

There are two strong motivations for initially avoiding

complexity.

Firstly, there is no existing prior work on automatic

HLM and a straightforward algorithm provides a baseline

that future, more sophisticated, implementations can be

compared against if necessary.

Secondly, despite the potential size of the problem

measured by the number of possible combinations of

available interactions, there is significant symmetry in the

solution space for many problem instances. Since our

measure of success is based on the relative positioning of
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two buffers, large equivalence classes of solutions exist

as:

1. Neither the absolute location of the two buffers, nor

their relative position to other buffers, matters.

2. The order in which holes are created or filled usually

does not matter.

It is often possible to solve a layout problem using

significantly differing input sequences. Due to these solu-

tion space symmetries, we propose that a pseudo-random

black box search could be a solution for a sufficiently

large number of problem instances as to be worthwhile.

To test this hypothesis, and demonstrate its feasibility

on real targets, we constructed two systems. The first,

described in section 3.1 allows for synthetic benchmarks

to be constructed with any allocator exposing the standard

ANSI interface for dynamic memory allocation. The sec-

ond system, described in section 3.2, is a fully automated

HLM system designed to work with the PHP interpreter.

3.1 SIEVE: An Evaluation Framework for

HLM Algorithms

To allow for the evaluation of search algorithms for HLM

across a diverse array of benchmarks we constructed

SIEVE. It allows for flexible and scalable evaluation of

new search algorithms, or testing existing algorithms on

new allocators, new interaction sequences or new heap

starting states. There are two components to SIEVE:

1. The SIEVE driver which is a program that can

be linked with any allocator exposing the malloc,

free, calloc and realloc functions. As input it

takes a file specifying a series of allocation and deal-

location requests to make, and produces as output

the distance between two particular allocations of

interest. Allocations and deallocations are specified

via directives of the following forms:

(a) <malloc size ID>

(b) <calloc nmemb size ID>

(c) <free ID>

(d) <realloc oldID size ID>

(e) <fst size>

(f) <snd size>

Each of the first four directives are translated into

an invocation of their corresponding memory man-

agement function, with the ID parameters providing

an identifier which can be used to refer to the re-

turned pointers from malloc, calloc and realloc,

when they are passed to free or realloc. The fi-

nal two directives indicate the allocation of the two

buffers that we are attempting to place relative to

each other. We refer to the addresses that result

from the corresponding allocations as addrFst and

Algorithm 1 Find a solution that places two allocations

in memory at a specified distance from each other. The

integer g is the number of candidates to try, d the required

distance, m the maximum candidate size and r the ratio

of allocations to deallocations for each candidate.

1: function SEARCH(g,d,m,r)

2: for i← 0,g−1 do

3: cand← ConstructCandidate(m,r)
4: dist← Execute(cand)
5: if dist = d then

6: return cand

7: return None

8: function CONSTRUCTCANDIDATE(m,r)

9: cand← InitCandidate(GetStartingState())
10: len← Random(1,m)
11: fstIdx← Random(0, len−1)
12: for i← 0, len−1 do

13: if i = fstIdx then

14: AppendFstSequence(cand)
15: else if Random(1,100)≤ r then

16: AppendAllocSequence(cand)
17: else

18: AppendFreeSequence(cand)

19: AppendSndSequence(cand)
20: return cand

addrSnd, respectively. After the allocation direc-

tives for these buffers have been processed, the value

of (addrFst−addrSnd) is produced.

2. The SIEVE framework which provides a Python API

for running HLM experiments. It has a variety of fea-

tures for constructing candidate solutions, feeding

them to the driver and retrieving the resulting dis-

tance, which are explained below. This functionality

allows one to focus on creating search algorithms for

HLM.

We implemented a pseudo-random search algorithm

for HLM on top of SIEVE, and it is shown as Algorithm 1.

The m and r parameters are what make the search pseudo-

random. While one could potentially use a completely

random search, it makes sense to guide it away from

candidates that are highly unlikely to be useful due to

extreme values for m and r. There are a few points to note

on the SIEVE framework’s API in order to understand the

algorithm:

• The directives to be passed to the driver are

represented in the framework via a Candidate

class. The InitCandidate function creates a new

Candidate.

• Often one may want to experiment with performing

HLM after a number of allocator interactions, repre-

senting initialisation of the target application before
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the attacker can interact, have taken place. SIEVE

can be configured with a set of such interactions

that can be retrieved via the GetStartingState

function. InitCandidate can be provided with the

result of GetStartingState (line 9).

• The available interaction sequences impact the

difficulty of HLM, i.e. if an attacker can trig-

ger individual allocations of arbitrary sizes they

will have more precise control of the heap lay-

out than if they can only make allocations of

a single size. To experiment with changes in

the available interaction sequences, the user of

SIEVE overrides the AppendAllocSequence and

AppendFreeSequence3 functions to select one of

the available interaction sequences and append it to

the candidate (lines 16-18).

• The directive to allocate the first buffer of interest

is placed at a random offset within the candidate

(line 14), with the directive to allocate the second

buffer of interest placed at the end (line 19). To

experiment with the addition of noise in the alloca-

tion of these buffers, the AppendFstSequence and

AppendSndSequence functions can be overloaded.

• The Execute function takes a candidate, serialises

it into the form required by the SIEVE driver, exe-

cutes the driver on the resulting file and returns the

distance output by the driver (line 4).

• As the value output by the driver is (addrFst −

addrSnd), to search for a solution placing the buffer

allocated first before the buffer allocated second, a

negative value can be provided for the d parameter

to Search. Providing a positive value will search

for a solution placing the buffers in the opposite or-

der. In this manner overflows and underflows can be

simulated, with either temporal order of allocation

for the source and destination (line 5).

The experimental setup used to evaluate pseudo-

random search as a means for solving HLM problems

on synthetic benchmarks is described in section 4.1.

3.2 SHRIKE: A HLM System for PHP

For real-world usage the search algorithm must be embed-

ded in a system that solves a variety of other problems

in order to allow the search to take place. To evaluate

the feasibility of end-to-end automation of HLM we con-

structed SHRIKE, a HLM system for the PHP interpreter.

We choose PHP as it has a number of attributes that make

it ideal for experimentation. PHP combines a large, mod-

ern application containing complex functionality, with a

language that is relatively stable and easy to work with

in an automated fashion. On top of that, it has an open

3AppendFreeSequence function will detect if there are no allo-

cated buffers to free and redirect to AppendAllocSequence instead.

Interaction
Sequence
Discovery

Target
Structure
Discovery

SEARCHTemplate Layout
Solution

Regression
Tests

Figure 3: Architecture diagram for SHRIKE

version control system and bug tracker.

Furthermore, PHP is an interesting target from a se-

curity point of view as the ability to exploit heap-based

vulnerabilities locally in PHP allows attackers to increase

their capabilities in situations where the PHP environment

has been hardened [12].

The architecture of SHRIKE is shown in Figure 3. We

implemented the system as three distinct phases:

• A component that identifies fragments of PHP code

that provide distinct allocator interaction sequences

(Section 3.2.1).

• A component that identifies dynamically allocated

structures that may be useful to corrupt or read as

part of an exploit, and a means to trigger their allo-

cation (Section 3.2.2).

• A search procedure that pieces together the frag-

ments triggering allocator interactions to produce

PHP programs as candidates (Section 3.2.4). The

user specifies how to allocate the source and destina-

tion, as well as how to trigger the vulnerability, via a

template (Section 3.2.3).

The first two components can be run once and the re-

sults stored for use during the search. If successful, the

output of the search is a new PHP program that manipu-

lates the heap to ensure that when the specified vulnera-

bility is triggered the source and destination buffers are

adjacent.

To support the functionality required by SHRIKE we

implemented an extension for PHP. This extension pro-

vides functions that can be invoked from a PHP script to

enable a variety of features including recording the allo-

cations that result from invoking a fragment of PHP code,

monitoring allocations for the presence of interesting data,

and checking the distance between two allocations. We

carefully implemented the functionality of this extension

to ensure that it does not modify the heap layout of the

target program in any way that would invalidate search
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results. However, all results are validated by executing

the solutions in an unmodified version of PHP.

3.2.1 Identifying Available Interaction Sequences

To discover the available interaction sequences it is neces-

sary to construct self-contained fragments of PHP code

and determine the allocator interactions each fragment

triggers. Correlating code fragments with the resulting

allocator interactions is straightforward: we instrument

the PHP interpreter to record the allocator interactions

that result from executing a given fragment. Constructing

valid fragments of PHP code that trigger a diverse set of

allocator interactions is more involved.

We resolve the latter problem by implementing a fuzzer

for the PHP interpreter that leverages the regression tests

that come with PHP, in the form of PHP programs. This

idea is based on previous work that used a similar ap-

proach for the purposes of vulnerability detection [17,18].

The tests provide examples of the functions that can be

called, as well as the number and types of their arguments.

The fuzzer then mutates existing fragments, to produce

new fragments with new behaviours.

To tune the fuzzer towards the discovery of fragments

that are useful for HLM, as opposed to vulnerability dis-

covery, we made the following modifications:

• We use mutations that are intended to produce an

interaction sequence that we have not seen before,

rather than a crash. For example, fuzzers will often

replace integers with values that may lead to edge

cases, such as 0, 232−1, 231−1 and so on. We are

interested in triggering unique allocator interactions

however, and so we predominantly mutate tests using

integers and string lengths that relate to allocation

sizes we have not previously seen.

• Our measure of fitness for a generated test is not

based on code coverage, as is often the case with vul-

nerability detection, but is instead based on whether

a new allocator interaction sequence is produced,

and the length of that interaction sequence.

• We discard any fragments that result in the inter-

preter exiting with an error.

• We favour the shortest, least complex fragments with

priority being given to fragments consisting of a

single function call.

As an example, lets discuss how the regression test in

Listing 2 would be used to discover interaction sequences.

From the regression test the fuzzing specification

shown in Listing 3 is automatically produced. Fuzzing

specifications indicate the name of functions that can

be called, along with the types of their arguments.

SHRIKE then begins to fuzz the discovered functions,

using the specifications to ensure the correct types

are provided for each argument. For example, the

1 $image = imagecreatetruecolor(180, 30);

2 imagestring($image, 5, 10, 8, "Text",

0x00ff00);

3 $gaussian = array(

4 array(1.0, 2.0, 1.0),

5 array(2.0, 4.0, 2.0)

6 );

7 var_dump(imageconvolution($image,

$gaussian, 16, 0));

Listing 2: Source for a PHP test program.

1 imagecreatetruecolor(I, I)

2 imagestring(R, I, I, I, T, I)

3 array(F, F, F)

4 array(R, R)

5 var_dump(R)

6 imageconvolution(R, R, I, I)

Listing 3: The function fuzzing specifications produced

from parsing Listing 2. The letters replacing the function

arguments indicate their types. ‘R’ for a resource, ‘I’ for

an integer, ‘F’ for a float and ‘T’ for text.

code fragments $x = imagecreatetruecolor(1,

1), $x = imagecreatetruecolor(1, 2), $x =

imagecreatetruecolor(1, 3) etc. might be created

and executed to determine what, if any, allocator

interactions they trigger.

The output of this stage is a mapping from fragments

of PHP code to a summary of the allocator interaction se-

quences that occur as a result of executing that code. The

summary includes the number and size of any allocations,

and whether the sequence triggers any frees.

3.2.2 Automatic Identification of Target Structures

In most programs there is a diverse set of dynamically al-

located structures that one could corrupt or read to violate

some security property of the program. These targets may

be program-specific, such as values that guard a sensitive

path; or they may be somewhat generic, such as a function

pointer. Identifying these targets, and how to dynamically

allocate them, can be a difficult manual task in itself. To

further automate the process we implemented a compo-

nent that, as with the fuzzer, splits the PHP tests into

standalone fragments and then observes the behaviour of

these fragments when executed. If the fragment dynam-

ically allocates a buffer and writes what appears to be

a pointer to that buffer, we consider the buffer to be an

interesting corruption target and store the fragment. The

user can indicate in the template which of the discovered

corruption targets to use, or the system can automatically

select one.
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1 <?php

2 $quote_str = str_repeat("\xf4", 123);

3 #X-SHRIKE HEAP-MANIP

4 #X-SHRIKE RECORD-ALLOC 0 1

5 $image = imagecreate(1, 2);

6 #X-SHRIKE HEAP-MANIP

7 #X-SHRIKE RECORD-ALLOC 0 2

8 quoted_printable_encode($quote_str);

9 #X-SHRIKE REQUIRE-DISTANCE 1 2 0

10 ?>

Listing 4: Exploit template for CVE-2013-2110

3.2.3 Specifying Candidate Structure

Different vulnerabilities require different setup in order

to trigger e.g. the initialisation of required objects or the

invocation of multiple functions. To avoid hard-coding

vulnerability-specific information in the candidate cre-

ation process, we allow for the creation of candidate tem-

plates that define the structure of a candidate. A template

is a normal PHP program with the addition of directives

starting with #X-SHRIKE4. The template is processed

by SHRIKE and the directives inform it how candidates

should be produced and what constraints they must satisfy

to solve the HLM problem. The supported directives are:

• <HEAP-MANIP [sizes]> Indicates a location

where SHRIKE can insert heap-manipulating se-

quences. The sizes argument is an optional list

of integers indicating the allocation sizes that the

search should be restricted to.

• <RECORD-ALLOC offset id> Indicates that

SHRIKE should inject code to record the address

of an allocation and associate it with the provided

id argument. The offset argument indicates

the allocation to record. Offset 0 is the very next

allocation, offset 1 the one after that, and so on.

• <REQUIRE-DISTANCE idx idy dist> Indicates

that SHRIKE should inject code to check the distance

between the pointers associated with the provided

IDs. Assuming x and y are the pointers associated

with idx and idy respectively, then if (x− y = dist)
SHRIKE will report the result to the user, indicating

this particular HLM problem has been solved. If

(x− y 6= dist) then the candidate will be discarded

and the search will continue.

A sample template for CVE-2013-2110, a heap-based

buffer overflow in PHP, is shown in Listing 4. In sec-

tion 4.3 we explain how this template was used in the

construction of a control-flow hijacking exploit for PHP.

4As the directives begin with a ‘#’ they will be interpreted by the

normal PHP interpreter as a comment and thus can be run in both our

modified interpreter and an unmodified one.

Algorithm 2 Solve the HLM problem described in the

provided template t. The integer g is the number of can-

didates to try, d the required distance, m the maximum

number of fragments that can be inserted in place of each

HEAP-MANIP directive, and r the ratio of allocations to

deallocation fragments used in place of each HEAP-MANIP

directive.

1: function SEARCH(t,g,m,r)

2: spec← ParseTemplate(t)
3: for i← 0,g−1 do

4: cand← Instantiate(spec,m,r)
5: if Execute(cand) then

6: return cand

7: return None

8: function INSTANTIATE(spec,m,r)

9: cand← NewPHPProgram()
10: while n← Iterate(spec) do

11: if IsHeapManip(n) then

12: code← GetHeapManipCode(n,m,r)
13: else if IsRecordAlloc(c) then

14: code← GetRecordAllocCode(n)
15: else if IsRequireDistance(n) then

16: code← GetRequireDistanceCode(n)
17: else

18: code← GetVerbatim(n)

19: AppendCode(cand,code)

20: return cand

3.2.4 Search

The search in SHRIKE is outlined in Algorithm 2. It

takes in a template, parses it and then constructs and

executes PHP programs until a solution is found or the

execution budget expires. Candidate creation is shown

in the Instantiate function. Its first argument is a

representation of the template as a series of objects. The

objects represent either SHRIKE directives or normal PHP

code and are processed as follows:

• The HEAP-MANIP directive is handled via the

GetHeapManipCode function (line 12). The

database, constructed as described in section 3.2.1,

is queried for a series of PHP fragments, where each

fragment allocates or frees one of the sizes speci-

fied in the sizes argument to the directive in the

template. If no sizes are provided then all available

fragments are considered. If multiple fragments ex-

ist for a given size then selection is biased towards

fragments with less noise. Between 1 and m frag-

ments are selected and returned. The r parameter

controls the ratio of fragments containing allocations

to those containing frees.

• The RECORD-ALLOC directive is handled via the
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GetRecordAllocCode function (line 14). A PHP

fragment is returned consisting of a call to a function

in our extension for PHP that associates the specified

allocation with the specified ID.

• The REQUIRE-DISTANCE directive is handled via

the GetRequireDistanceCode function (line 16).

A PHP fragment is returned with two components.

Firstly, a call to a function in our PHP extension that

queries the distance between the pointers associated

with the given IDs. Secondly, a conditional statement

that prints a success indicator if the returned distance

equals the distance parameter.

• All code that is not a SHRIKE directive is included

in each candidate verbatim (line 18).

The Execute function (line 5) converts the candidate

into a valid PHP program and invokes the PHP interpreter

on the result. It checks for the success indicator printed

by the code inserted to handle the REQUIRE-DISTANCE

directive. If that is detected then the solution program

is reported. Listing 5 in the appendix shows a solution

produced from the template in Listing 4.

4 Experiments and Evaluation

The research questions we address are as follows:

• RQ1: What factors most significantly impact the

difficulty of the heap layout manipulation problem

in a deterministic setting?

• RQ2: Is pseudo-random search an effective approach

to heap-layout manipulation?

• RQ3: Can heap layout manipulation be automated

effectively for real-world programs?

We conducted two sets of experiments. Firstly, to in-

vestigate the fundamentals of the problem we utilised

the system discussed in section 3.1 to construct a set

of synthetic benchmarks involving differing combina-

tions of heap starting states, interaction sequences, source

and destination sizes, and allocators. We chose the

tcmalloc (v2.6.1), dlmalloc (v2.8.6) and avrlibc

(v2.0) allocators for experimentation. These allocators

have significantly different implementations and are used

in many real world applications.

An important difference between the allocators used

for evaluation is that tcmalloc (and PHP) make use of

segregated storage, while dlmalloc and avrlibc do

not. In short, for small allocation sizes (e.g. less than

a 4KB) segregated storage pre-segments runs of pages

into chunks of the same size and will then only place

allocations of that size within those pages. Thus, only

allocations of the same, or similar, sizes may be adjacent

to each other, except for the first and last allocations in

Table 1: Synthetic benchmark results after 500,000 can-

didate solutions generated, averaged across all starting se-

quences. The full results are in Table 4 in the appendix. All

experiments were run 9 times and the results presented are

an average.

Allocator Noise

%

Overall

Solved

%

Natural

Solved

%

Reversed

Solved

avrlibc-r2537 0 100 100 99

dlmalloc-2.8.6 0 99 100 98

tcmalloc-2.6.1 0 72 75 69

avrlibc-r2537 1 51 50 52

dlmalloc-2.8.6 1 46 60 31

tcmalloc-2.6.1 1 52 58 47

avrlibc-r2537 4 41 44 38

dlmalloc-2.8.6 4 33 49 17

tcmalloc-2.6.1 4 37 51 24

the run of pages which may be adjacent to the last or first

allocation from other size classes.

Secondly, to evaluate the viability of our search algo-

rithm on real world applications we ran SHRIKE on 30

different layout manipulation problems in PHP. All ex-

periments were carried out on a server with 80 Intel Xeon

E7-4870 2.40GHz cores and 1TB of RAM, utilising 40

concurrent analysis processes.

4.1 Synthetic Benchmarks

The goal of evaluation on synthetic benchmarks is to dis-

cover the factors influencing the difficulty of problem in-

stances and to highlight the capabilities and limitations of

our search algorithm in an environment that we precisely

control. The benchmarks were constructed as follows:

• In real world scenarios it is often the case that the

available interaction sequences are noisy. To in-

vestigate how varying noise impacts problem dif-

ficulty, we constructed benchmarks in which varying

amounts of noise are injected during the allocation

of the source and destination. In Table 1, a value of

N in the ‘Noise’ column means that before and after

the first allocation of interest, N allocations of size

equal to the second allocation of interest allocation

are made.

• We initialise the heap state prior to executing the

interactions from a candidate by prefixing each can-

didate with a set of interactions. Previous work [34]

has outlined the drawbacks that arise when using

randomly generated heap states to evaluate allocator

performance. To avoid these drawbacks we captured
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Figure 4: For an allocator that splits chunks from the start

of free blocks, the natural order, shown on the left, of

allocating the source and then the destination produces

the desired layout, while the reversed order, shown on the

right, results in an incorrect layout.

the initialisation sequences of PHP5, Python and

Ruby to use in our benchmarks. A summary of the

relevant properties of these initialisation sequences

can be found in the appendices in table 2.

• As it is not feasible to evaluate layout manipulation

for all possible combinations of source and destina-

tion sizes, we selected 6 sizes, deemed to be both

likely to occur in real world problems and to exercise

different allocator behaviour. The sizes we selected

are 8, 64, 512, 4096, 16384 and 65536. For each pair

of sizes (x,y) there are four possible benchmarks to

be run: x allocated temporally first overflowing into

y, x allocated temporally first underflowing into y, y

allocated temporally first overflowing into x, and y

allocated temporally first underflowing into x. This

produces 72 benchmarks to run for each combina-

tion of allocator (3), noise (3) and starting state (4),

giving 2592 benchmarks in total.

• For each source and destination combination size,

we made available to the analyser an interaction se-

quence which triggers an allocation of the source

size, an interaction sequence which triggers an al-

location of the destination size, and interaction se-

quences for freeing each of the allocations.

The m and r parameters to Algorithm 1 were set to

1000 and .98 respectively6.The g parameter was set to

500,000. A larger value would provide more opportuni-

ties for the search algorithm to find solutions, but with

2592 total benchmarks to run, and 500,000 executions

taking in the range of 5-15 minutes depending on the

number of interactions in the starting state, this was the

maximum viable value given our computational resources.

The results of the benchmarks averaged across all starting

states can be found in Table 1, with the full results in the

appendices in Table 4.

5PHP makes use of both the system allocator and its own allocator.

We captured the initialisation sequences for both.
6To determine reasonable values for these parameters, we con-

structed a small, distinct set of benchmarks explicitly for this purpose

and separate to those used in our evaluation.

Figure 5: A solution for the reversed allocation order to

corruption direction relationship. A hole is created via a

placeholder which can then be used for the source.

To understand the ‘% Natural’ and ‘% Reversed’

columns in the results table we must define the concept

of the allocation order to corruption direction relation-

ship. We refer to the case of the allocation of the source

of an overflow temporally first, followed by its destina-

tion, or the allocation of the destination of an underflow

temporally first, followed by its source as the natural re-

lationship. This is because most allocators split space

from the start of free chunks and thus, for an overflow, if

the source and destination are both split from the same

chunk and the source is allocated first then it will naturally

end up before the destination. The reverse holds for an

underflow. We refer to the relationship as reversed in the

case of the allocation of the destination temporally first

followed by the source for an overflow, or the allocation

of the source temporally first followed by the destination

for an underflow. We expect this case to be harder to solve

for most allocators, as the solution is more complex than

for the natural relationship. A visualisation of this idea

can be seen in Figure 4 and a solution for the reversed

case is shown in Figure 5.

From the benchmarks a number of points emerge:

• When segregated storage is not in use, as with

dlmalloc and avrlibc, and when there is no noise,

98% to 100% of the benchmarks are solved.

• Segregated storage significantly increases problem

difficulty. With no noise, the overall success rate

drops to 72% for tcmalloc.

• With the addition of a single noisy allocation, the

overall success rate drops to close to 50% across all

allocators.

• The order of allocation for the source and destina-

tion matters. A layout conforming to the natural

allocation order to corruption direction relationship

was easier to find in all problem instances. With

four noisy allocations the success rate for problems

involving the natural allocation order ranges from
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44% to 51%, but drops to between 17% and 38%

for the reversed order. It is also worth noting that

the difference in success rate between natural and

reversed problem instances is lower for avrlibc

than for dlmalloc and tcmalloc. This is because

in some situations avrlibc will split space from

free chunks from the end instead of from the start.

Thus, a reversed order problem can be turned into

a natural order problem by forcing the heap into

such a state, and this is often easier than solving the

reversed order problem.

• We ran each experiment 9 times, and if all 9 ∗

500,000 executions are taken together then 78% of

the benchmarks are solved at least once. In other

words, only 22% of the benchmarks were never

solved by our approach, which is quite encourag-

ing given the simplicity of the algorithm.

4.2 PHP-Based Benchmarks

To determine if automatic HLM is feasible in real world

scenarios we selected three heap overflow vulnerabilities

and ten dynamically allocated structures that were identi-

fied by SHRIKE as being potentially useful targets (namely

structures that have pointers as their first field). Pairing

each vulnerability with each target structure provides a

total of 30 benchmarks. For each, we ran an experiment

in which SHRIKE was used to search for an input which

would place the overflow source and destination structure

adjacent to each other.

A successful outcome means the system can discover

how to interact with the underlying allocator via PHP’s

API, identify how to allocate sensitive data structures on

the heap, and construct a PHP program which places a

selected data structure adjacent to the source of an OOB

memory access. This saves an exploit developer a signifi-

cant amount of effort, allowing them to focus on how to

leverage the resulting OOB memory access.

Our evaluation utilised the following vulnerabilities:

• CVE-2015-8865. An out-of-bounds write vulnera-

bility in libmagic that exists in PHP up to version

7.0.4.

• CVE-2016-5093. An out-of-bounds read vulnera-

bility in PHP up to version 7.0.7, related to string

processing and internationalisation.

• CVE-2016-7126. An out-of-bounds write vulnera-

bility in PHP up to version 7.0.10, related to image

processing.

The ten target structures are described in the appendix

in Table 3 and the full details of all 30 experiments can

be found in Table 5. As with the synthetic benchmarks,

the m and r arguments to the Search function were set to

1000 and .98 respectively. Instead of limiting the number

of executions via the g parameter the maximum run time

for each experiment was set to 12 hours. The following

summarises the results:

• SHRIKE succeeds in producing a PHP program

achieving the required layout in 21 of the 30 ex-

periments run and fails in 9 (a 70% success rate).

• There are 15 noise-free benchmarks of which

SHRIKE solves all 15, and 15 noisy benchmarks

of which SHRIKE solves 6. This follows what one

would expect from the synthetic benchmarks.

• In the successful cases the analysis took on average

571 seconds and 720,000 candidates.

Of the nine benchmarks which SHRIKE does not solve,

eight involve CVE-2016-7126. The most likely reason for

the difficulty of benchmarks involving this vulnerability

is noise in the interaction sequences involved. The source

buffer for this vulnerability results from an allocation re-

quest of size 1, which PHP rounds up to 8 – an allocation

size that is quite common throughout PHP, and prone to

occurring as noise. There is a noisy allocation in the inter-

action sequence which allocates the source buffer itself,

several of the interaction sequences which allocate the

target structures also have noisy allocations, and all inter-

action sequences which SHRIKE discovered for making

allocations of size 8 involve at least one noisy allocation.

For example, the shortest sequence discovered for making

an allocation of size 8 is a call to imagecreate(57, 1)

which triggers an allocation of size 7360, two allocations

of size 8 and two allocations of size 57. In contrast, there

is little or no noise involved in the benchmarks utilising

CVE-2016-5093 and CVE-2015-8865.

4.3 Generating a Control-Flow Hijacking

Exploit for PHP

To show that SHRIKE can be integrated into the develop-

ment of a full exploit we selected another vulnerability

in PHP. CVE-2013-2110 allows an attacker to write a

NULL byte immediately after the end of a heap-allocated

buffer. One must utilise that NULL byte write to corrupt

a location that will enable more useful exploitation prim-

itives. Our aim is to convert the NULL byte write into

both an information leak to defeat ASLR and the ability

to modify arbitrary memory locations.

We first searched SHRIKE’s database for interaction

sequences that allocate structures that have a pointer as

their first field. This lead us to the imagecreate function

which creates a gdImage structure. This structure uses

a pointer to an array of pointers to represent a grid of

pixels in an image. By corrupting this pointer via the

NULL byte write, and then allocating a buffer we control

at the location it points to post-corruption, an attacker can

control the locations that are read and written from when

pixels are read and written.
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Listing 4 shows the template provided to SHRIKE. In

less than 10 seconds SHRIKE finds an input that places

the source immediately prior to the destination. Thus the

pointer that is the first field of the gdImage structure is

corrupted. Listing 5 in the appendices shows part of the

generated solution. After the corruption occurs the re-

quired memory read and write primitives can be achieved

by allocating a controllable buffer into the location where

the corrupted pointer now points. For brevity we leave out

the remaining details of the exploit, but it can be found

in full in the SHRIKE repository. The end result is a PHP

script that hijacks the control flow of the interpreter and

executes native code controlled by the attacker.

4.4 Research Questions

RQ1: What factors most significantly impact the dif-

ficulty of the heap layout manipulation problem in a

deterministic setting?

The following factors had the most significant impact

on problem difficulty:

• Noise. In the synthetic benchmarks, noise clearly

impacts difficulty. As more noise is added, more

holes typically have to be created. In the worst case

(dlmalloc) we see a drop off from a 99% overall

success rate to 33% when four noisy allocations are

included. A similar success rate is seen for avrlibc

and tcmalloc with four noisy allocations. In the

evaluation on PHP noise again played a significant

role, with SHRIKE solving 100% of noise-free in-

stances and 40% of noisy instances.

• Segregated storage. In the synthetic benchmarks

segregated storage leads to a decline in the overall

success rate on noise-free instances from 100-99%

to 72%.

• Allocation order to corruption direction relation-

ship. For all configurations of allocator, noise and

starting state, the problems involving the natural

order were easier. For the noise-free instances on

avrlibc and dlmalloc the difference is in terms

of solved problems is just 1-2%, but as noise is in-

troduced the success rate between the natural and

reversed benchmarks diverges. For dlmalloc with

four noisy allocations the success rate for the natural

order is 49% but only 17% for the reversed order, a

difference of 32%.

RQ2: Is pseudo-random search an effective ap-

proach to heap-layout manipulation?

Without segregated storage, when there is no noise

then 100-99% of problems were solved, with most exper-

iments taking 15 seconds or less. As noise is added the

rate of success drops to 51% and 46% for a single noisy

allocation, for dlmalloc and avrlibc respectively, and

then to 41% and 33% for four noisy allocations. The

extra constraints imposed on layout by segregated storage

present more of a challenge. On noise-free runs the rate

of success is 72% and drops to 52% and 37% as one and

four noisy allocations, respectively, are added. However,

as noted in section 4.1, if all 10 runs of each experiment

are considered together then 78% of the benchmarks are

solved at least once.

On the synthetic benchmarks it is clear that the effec-

tiveness of pseudo-random search varies depending on

whether segregated storage is in use, the amount of noise,

the allocation order to corruption direction relationship

and the available computational resources. In the best

case, pseudo-random search can solve benchmarks in sec-

onds, while in the more difficult ones it still attains a high

enough success rate to be worthwhile given its simplicity.

When embedded in SHRIKE, pseudo-random search

approach also proved effective, with similar caveats relat-

ing to noise. 100% of noise-free problems were solved,

while 40% of those involving noise were. On average the

search took less than 10 minutes and 750,000 candidates,

for instances on which it succeeded.

RQ3: Can heap layout manipulation be automated

effectively for real-world programs?

Our experiments with PHP indicate that automatic

HLM can be performed effectively for real world pro-

grams. As mentioned in RQ2, SHRIKE had a 70% success

rate overall, and a 100% success rate in cases where there

was no noise.

SHRIKE demonstrates that it is possible to automate

the process in an end-to-end manner, with automatic dis-

covery of a mapping from the target program’s API to

interaction sequences, discovery of interesting corruption

targets, and search for the required layout. Furthermore,

SHRIKE’s template based approach show that a system

with these capabilities can be naturally integrated into the

exploit development process.

4.5 Generalisability

Regarding generalisability, our experiments are not ex-

haustive and care must be taken in extrapolating to bench-

marks besides those presented. However, we believe

that the presented search algorithm and architecture for

SHRIKE are likely to work similarly well with other lan-

guage interpreters. SHRIKE depends firstly on some

means to discover language constructs and correlate them

with their resulting allocator interactions, and secondly

on a search algorithm that can piece together these frag-

ments to discover a required layout. The approach used

in SHRIKE to solve the first problem is based on previous

work on vulnerability detection that has been shown to

work on interpreters for Javascript and Ruby, as well as

PHP [17,18]. Our extensions, namely a different approach

to fuzzing as well as instrumentation to record allocator

interactions, do not threaten the underlying assumptions
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of the prior work. Our solution to the second problem,

namely the random search algorithm, has demonstrated

its capabilities on a diverse set of benchmarks. Thus, we

believe it is reasonable to expect similar results versus

targets that rely on allocators with a similar architecture.

4.6 Threats to Validity

The results on our synthetic benchmarks are impacted by

our choice of source and destination sizes. There may

be combinations of these that produce layout problems

that are significantly more or less difficult to solve. A

different set of starting sequences, or available interaction

sequences may also impact the results. We have attempted

to mitigate these issues by selecting diverse sizes and

starting sequences, and allowing the analysis engine to

utilise only a minimal set of interaction sequences.

Our results on PHP are affected by our choice of vul-

nerabilities and target data structures, and we could have

inadvertently selected for cases that are outliers. We have

attempted to mitigate this possibility by utilising ten dif-

ferent target structures and vulnerabilities in three com-

pletely different sub-components of PHP. The restriction

of our evaluation to a language interpreter also poses a

threat if considering generalisability, as the available inter-

action sequences may differ in other classes of software.

We have attempted to mitigate this threat by limiting the

interaction sequences used to those that contain an alloca-

tion of a size equal to one of the allocation sizes found in

the sequences which allocate the source and destination.

5 Related Work

The hacking and security communities have extensively

published on reverse engineering heap implementa-

tions [31, 35], leveraging weaknesses in those imple-

mentations for exploitation [21, 23, 25], and heap lay-

out manipulation for exploitation [19, 22]. There is also

work on constructing libraries for debugging heap inter-

nals [3] and libraries which wrap an application’s API

to provide layout manipulation primitives [28]. Manu-

ally constructed solutions for heap layout manipulation in

non-deterministic settings are also commonplace in the

literature of the hacking and security communities [7, 15].

Several papers [5,8,16] have focused on the AEG prob-

lem. These implementations are based on symbolic execu-

tion and exclusively focus on exploitation of stack-based

buffer overflows. More recently, as part of the DARPA

Cyber Grand Challenge [10] (CGC), a number automated

systems [13, 14, 29, 30] were developed which combine

symbolic execution and high performance fuzzing to iden-

tify, exploit and patch software vulnerabilities in an au-

tonomous fashion. As with earlier systems, none of the

CGC participants appear to specifically address the chal-

lenges of heap-based vulnerabilities. Over the course of

the CGC finals only a single heap-based vulnerability was

successfully exploited [11]. No details are available on

how this was achieved but it would seem likely that this

was an inadvertent success, rather than a solution which

explicitly reasoned about heap-based exploitation.

In [26] the authors present work on exploit generation

for heap-based vulnerabilities that is orthogonal to ours.

Using a driver program the system builds a database of

conditions on the heap layout that, if met, would allow for

corruption of heap metadata to be turned into a write-N

primitive [22]. To leverage these primitives in an exploit

for a real program it is assumed that an input is provided

for the program that results in the required heap layout

prior to triggering the metadata corruption. In this paper

we have demonstrated an approach to producing inputs

that satisfy heap layout constraints, and thus could be

used to process vulnerability triggers into inputs that meet

the requirements of their system.

Vanegue [33] defines a calculus for a simple heap al-

locator and also provides a formal definition [32] of the

related problem of automatically producing inputs which

maximise the likelihood of reaching a particular program

state given a non-deterministic heap allocator.

6 Conclusion

In this paper we have outlined the heap layout

manipulation problem as a distinct task within the context

of automated exploit generation. We have presented a

simple, but effective, algorithm for HLM in the case of

a deterministic allocator and a known starting state, and

shown that it can succeed in a significant number of syn-

thetic benchmarks. We have also described an end-to-end

system for HLM and shown that it is effective when used

with real vulnerabilities in the PHP interpreter.

Finally, we have demonstrated how a system for auto-

matic HLM can be integrated into exploit development.

The directives provided by SHRIKE allow the exploit de-

veloper to focus on the higher level concepts in the exploit,

while letting SHRIKE resolve heap layout constraints. To

the best of our knowledge, this is a novel approach to

adding automation to exploit generation, and shows how

an exploit developer’s domain knowledge and creativity

can be combined with automated reasoning engines to

produce exploits. Further research is necessary to expand

on the concept, but we believe such human-machine hy-

brid approaches are likely to be an effective means of

producing exploits for real systems.
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Appendix

Title
# Allocator

Interactions
# Allocs # Frees

php-emalloc 571 366 205

php-malloc 15078 12714 2634

python-malloc 6160 3710 2450

ruby-malloc 70895 51827 19068

Table 2: Summary of the heap initialisation se-

quences for synthetic benchmarks. All sequences

were captured by hooking the malloc, free,

realloc and calloc functions of the system allo-

cator, except for php-emalloc which was captured

by hooking the allocation functions of the custom

allocator that comes with PHP.

Type Size
Allocation

Function

gdImage 7360 imagecreate

xmlwriter object 16 xmlwriter open memory

php hash data 32 hash init

int * 8 imagecreatetruecolor

Scanner 24 date create

timelib tzinfo 160 mktime

HashTable 264 timezone identifier list

php interval obj 64 unserialize

int * 40 imagecreatetruecolor

php stream 232 stream socket pair

Table 3: Target structures used in evaluating SHRIKE.

Each has a pointer as its first field.

1 <?php

2 $quote_str = str_repeat("\xf4", 123);

3

4 $var_vtx_0 = str_repeat("747 X ", 58);

5 $var_vtx_1 = str_repeat("747 X ", 58);

6 $var_vtx_2 = str_repeat("747 X ", 58);

7 $var_vtx_3 = imagecreatetruecolor(346, 48);

8 <...>

9 shrike_record_alloc(0, 1);

10 $image = imagecreate(1, 2);

11 <...>

12 $var_vtx_300 = str_repeat("747 X ", 58);

13 $var_vtx_3 = 0;

14 <...>

15 shrike_record_alloc(0, 2);

16 quoted_printable_encode($quote_str);

17 $distance = shrike_get_distance(1, 2);

18 if ($distance != 384) {

19 exit("Invalid layout.\n");

20 }

Listing 5: Part of the solution discovered for using CVE-

2013-2110 to corrupt the gdImage structure, which is

the 1st allocation made by imagecreate on line 11.

Multiple calls are made to functions that have been

discovered to trigger the desired allocator interactions.

Frees are triggered by destroying previously created

objects, as can be seen with var shrike 3 on line 14.

The overflow source is the 1st allocation performed by

quoted printable encode on line 17
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Table 4: Synthetic benchmark results. For each experiment the search was run

for a maximum of 500,000 candidates. All experiments were run 9 times and

the results below are the average of those runs. ‘% Solved’ is the percentage of

the 72 experiments for each row in which an input was found placing the source

and destination adjacent to each other. ‘% Natural’ is the percentage of the 36

natural allocation order to corruption direction experiments which were solved. ‘%

Reversed’ is the percentage of the 36 reversed allocation order to corruption direction

experiments which were solved.

Allocator Start State Noise % Solved % Natural % Reversed

avrlibc-r2537 php-emalloc 0 100 100 100

avrlibc-r2537 php-malloc 0 100 100 100

avrlibc-r2537 python-malloc 0 100 100 100

avrlibc-r2537 ruby-malloc 0 99 100 98

dlmalloc-2.8.6 php-emalloc 0 99 100 99

dlmalloc-2.8.6 php-malloc 0 100 100 100

dlmalloc-2.8.6 python-malloc 0 99 100 97

dlmalloc-2.8.6 ruby-malloc 0 99 100 98

tcmalloc-2.6.1 php-emalloc 0 73 79 67

tcmalloc-2.6.1 php-malloc 0 77 80 75

tcmalloc-2.6.1 python-malloc 0 63 63 62

tcmalloc-2.6.1 ruby-malloc 0 75 78 71

avrlibc-r2537 php-emalloc 1 55 51 59

avrlibc-r2537 php-malloc 1 51 46 56

avrlibc-r2537 python-malloc 1 49 51 46

avrlibc-r2537 ruby-malloc 1 49 50 48

dlmalloc-2.8.6 php-emalloc 1 49 65 32

dlmalloc-2.8.6 php-malloc 1 49 62 37

dlmalloc-2.8.6 python-malloc 1 42 56 27

dlmalloc-2.8.6 ruby-malloc 1 43 58 27

tcmalloc-2.6.1 php-emalloc 1 52 59 45

tcmalloc-2.6.1 php-malloc 1 55 61 48

tcmalloc-2.6.1 python-malloc 1 50 52 48

tcmalloc-2.6.1 ruby-malloc 1 53 61 44

avrlibc-r2537 php-emalloc 4 43 44 42

avrlibc-r2537 php-malloc 4 40 41 40

avrlibc-r2537 python-malloc 4 42 47 37

avrlibc-r2537 ruby-malloc 4 39 45 33

dlmalloc-2.8.6 php-emalloc 4 34 51 16

dlmalloc-2.8.6 php-malloc 4 31 44 17

dlmalloc-2.8.6 python-malloc 4 33 50 16

dlmalloc-2.8.6 ruby-malloc 4 35 51 20

tcmalloc-2.6.1 php-emalloc 4 40 53 27

tcmalloc-2.6.1 php-malloc 4 39 53 25

tcmalloc-2.6.1 python-malloc 4 32 42 22

tcmalloc-2.6.1 ruby-malloc 4 38 54 22
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Table 5: Results of heap layout manipulation for vulnerabilities in PHP. Experiments were run for a

maximum of 12 hours. All experiments were run 3 times and the results below are the average of these

runs. ‘Src. Size’ is the size in bytes of the source allocation. ‘Dst. Size’ is the size in bytes of the

destination allocation. ‘Src./Dst. Noise’ is the number of noisy allocations triggered by the allocation

of the source and destination. ‘Manip. Seq. Noise’ is the amount of noise in the sequences available

to SHRIKE for allocating and freeing buffers with size equal to the source and destination. ‘Initial

Dist.’ is the distance from the source to the destination if they are allocated without any attempt at heap

layout manipulation. ‘Final Dist.’ is the distance from the source to the destination in the best result

that SHRIKE could find. A distance of 0 means the problem was solved and the source and destination

were immediately adjacent. ‘Time to best‘ is the number of seconds required to find the best result.

‘Candidates to best‘ is the number of candidates required to find the best result.

CVE ID
Src.

Size

Dst.

Size

Src./Dst.

Noise

Manip. Seq.

Noise

Initial

Dist.

Final

Dist.

Time to

Best

Candidates to

Best

2015-8865 480 7360 0 0 -16384 0 <1 106

2015-8865 480 16 0 0 -491424 0 170 218809

2015-8865 480 32 0 0 -96832 0 217 286313

2015-8865 480 8 0 1 -540664 0 642 862689

2015-8865 480 24 0 0 -151456 0 16 13263

2015-8865 480 160 0 0 -57344 0 <1 63

2015-8865 480 264 0 0 -137344 0 <1 84

2015-8865 480 64 1 0 -499520 0 12 13967

2015-8865 480 40 0 0 -128832 0 25 15113

2015-8865 480 232 0 0 -101376 0 <1 69

2016-5093 544 7360 1 0 84736 0 < 1 640

2016-5093 544 16 0 0 -402592 0 4202 5295968

2016-5093 544 32 0 0 -7776 0 2392 3014661

2016-5093 544 8 0 1 -406776 8 6905 9049924

2016-5093 544 24 0 0 -62624 0 202 231884

2016-5093 544 160 0 0 80640 0 < 1 104

2016-5093 544 264 0 0 -27712 0 < 1 76

2016-5093 544 64 1 0 -410624 0 487 607824

2016-5093 544 40 0 0 -31648 0 15 458

2016-5093 544 232 0 0 77312 0 3 116

2016-7126 1 7360 4 2 495576 0 958 1181098

2016-7126 1 16 0 4 4360 88 4816 6260800

2016-7126 1 32 1 1 398808 64 5594 7272200

2016-7126 1 8 3 2 -32 0 2662 3356935

2016-7126 1 24 3 1 344152 56 4199 5458700

2016-7126 1 160 14 1 483288 24 3005 3864430

2016-7126 1 264 0 1 379064 24 5917 7615179

2016-7126 1 64 1 3 -3912 72 2752 3539072

2016-7126 1 40 5 1 375248 144 7980 10134600

2016-7126 1 232 0 1 439288 40 5673 7908162
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