
Automatic Heap Sizing: Taking Real Memory Into Account

Ting Yang Matthew Hertz Emery D. Berger Scott F. Kaplan† J. Eliot B. Moss
tingy@cs.umass.edu hertz@cs.umass.edu emery@cs.umass.edu sfkaplan@cs.amherst.edu moss@cs.umass.edu

Department of Computer Science †Department of Computer Science
University of Massachusetts Amherst College

Amherst, MA 01003 Amherst, MA 01002-5000

ABSTRACT
Heap size has a huge impact on the performance of gar-
bage collected applications. A heap that barely meets
the application’s needs causes excessive GC overhead,
while a heap that exceeds physical memory induces pag-
ing. Choosing the best heap size a priori is impossible in
multiprogrammed environments, where physical memory
allocations to processes change constantly. We present
an automatic heap-sizing algorithm applicable to differ-
ent garbage collectors with only modest changes. It re-
lies on an analytical model and on detailed information
from the virtual memory manager. The model character-
izes the relation between collection algorithm, heap size,
and footprint. The virtual memory manager tracks recent
reference behavior, reporting the current footprint and al-
location to the collector. The collector uses those values
as inputs to its model to compute a heap size that max-
imizes throughput while minimizing paging. We show
that our adaptive heap sizing algorithm can substantially
reduce running time over fixed-sized heaps.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Mem-
ory management (garbage collection)

General Terms
Design, Performance, Algorithms

Keywords
garbage collection, virtual memory, paging

1. INTRODUCTION
Java and C# have made garbage collection (GC) much
more widely used. GC provides many advantages, but it
also carries a potential liability: paging, a problem known
for decades. Early on, Barnett devised a simple model of
the relationship between GC and paging [6]. One of his

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ISMM’04, October 24–25, 2004, Vancouver, British
Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/0010 ...$5.00.

conclusions is that total performance depends on that of
the swap device, thus showing that paging costs can dom-
inate. An optimal policy is to control the size of the heap
based on the amount of free memory. Moon observed
that when the heap accessed by collection is larger than
real memory, the collector spends most of its time thrash-
ing [18]. Because disks are 5 to 6 orders of magnitude
slower than RAM, even a little paging ruins performance.
Thus we must hold essentially all of a process’s pages—
its footprint—in real memory to preserve performance.

The footprint of a collected process is largely deter-
mined by its heap size. A sufficiently small heap prevents
paging during collection, but an overly small heap causes
more frequent collections. Ideally, one should choose the
largest heap size for which the entire footprint is cached.
That size collects garbage often enough to keep the foot-
print from overflowing real memory, while minimizing
collection time.

Unfortunately, from a single process’s viewpoint, avail-
able real memory is not constant. In a multiprogrammed
environment, the operating system’s virtual memory man-
ager (VMM) dynamically allocates memory to each pro-
cess and to the file system cache. Thus space allocated
to one process changes over time in response to memory
pressure–the demand for memory space exhibited by the
workload. Even in systems with large main memories,
large file system caches induce memory pressure. Disk
accesses caused by paging or misses in the file cache hurt
system performance.

Contributions: We present here an automatic adaptive
heap-sizing algorithm. Periodically, it obtains the current
real memory allocation and footprint of the process from
the VMM. It then adjusts the heap size so that the new
footprint just fits in the allocation. It thus prevents pag-
ing during collection while minimizing time spent doing
collection. To adjust the heap size effectively, the algo-
rithm uses an analytical model to find how changes to
the specific collector’s heap size will affect its footprint.
We have models for semi-space and Appel collectors, and
show that the models give reliable predictions.

We also present the design of a VMM that gathers the
data necessary to calculate the footprint our models need.
This VMM tracks references only to less recently used
(“cool”) pages. It dynamically adjusts the number of re-
cently used (“hot”) pages, whose references it does not

track, to keep the added overhead below a target thresh-
old. We show that a target threshold of only 1% gathers
sufficient reference distribution information.

In exchange for this 1%, our algorithm selects heap
sizes on the fly, reducing GC time and nearly eliminat-
ing paging. It reduces total time by up to 90% (typically
by 10–40%). Our simulation results show, for a variety
of benchmarks, using both semi-space and Appel collec-
tors, that our algorithm selects good heap sizes for widely
varying real memory allocations. Thus far we have de-
veloped models only for non-incremental, stop-the-world
collection, but in future work hope to extend the approach
to include incremental and concurrent collectors.

2. RELATED WORK
Heap sizing: Kim and Hsu examine the paging behavior
of GC for the SPECjvm98 benchmarks [17]. They run
each program with various heap sizes on a system with
32MB of RAM. They find that performance suffers when
the heap does not fit in real memory, and that when the
heap is larger than real memory it is often better to grow
the heap than to collect. They conclude that there is an
optimal heap size for each program for a given real mem-
ory. We agree, but choosing optimal sizes a priori does
not work in the context of multiprogramming: available
real memory changes dynamically.

The work most similar to ours is by Alonso and Appel,
who also exploit VMM information to adjust the heap
size [1]. Their collector periodically queries the VMM
for the current amount of available memory, and adjusts
the heap size in response. Our work differs from theirs
in several key respects. While their approach shrinks the
heap when memory pressure is high, they do not expand
and thus reduce GC frequency when pressure is low. They
also rely on standard interfaces to the VMM, which pro-
vide, at best, a coarse estimate of memory pressure. Our
VMM algorithm, however, captures detailed reference in-
formation and provides reliable values.

Brecht et al. adapt Alonso and Appel’s approach to con-
trol heap growth. Rather than interact with the VMM,
they offer ad hoc rules for two given memory sizes [10].
These sizes are static, so their technique works only if the
application always has that specific amount of memory.
Also, using the Boehm-Weiser mark-sweep collector [9],
they cannot prevent paging by shrinking the heap.

Cooper et al. dynamically adjust the heap size of an
Appel-style collector according to a given memory usage
target [11]. If the target matches the amount of free mem-
ory, their approach adjusts the heap to make full use of
it. Our work automatically identifies the target size using
data from the VMM. Furthermore, our model captures
the relation between footprint and heap size, making our
approach more general.

There are several existing systems that adjust their heap
size depending on the current environment. MMTk [8]
and BEA JRockit [7] can, in response to the live data ratio
or pause time, change their heap size using a set of pre-
defined ratios. HotSpot [14] has the ability to adjust heap
size with respect to pause time, throughput, and footprint
limits given as command line arguments. Novell Netware
Server 6 [19] polls the VMM every 10 seconds, and short-

ens its GC invocation interval to collect more frequently
when memory pressure is high. All of these rely on pre-
defined parameters or command-line arguments to adjust
the heap size, making adaptation slow and inaccurate.
Given our communication with the VMM and analytical
model, our algorithm selects good heap sizes quickly and
precisely controls the application footprint.

Virtual Memory Interfaces: Systems typically offer
programs a way to communicate detailed information to
the VMM, but expose very little in the other direction.
Most UNIX-like systems support the madvise system
call, by which applications may offer information about
their reference behavior to the VMM. We know of no sys-
tems that expose more detailed information about an ap-
plication’s virtual memory behavior beyond memory res-
idency.1 Our interface is even simpler: the VMM gives
the program two values: its footprint (how much memory
the program needs to avoid significant paging), and its al-
location (real memory currently available). The collector
uses these values to adjust heap size accordingly.

3. GC PAGING BEHAVIOR ANALYSIS
To build robust mechanisms for controlling paging behav-
ior of collected applications it is important first to under-
stand those behaviors. Hence we studied those behaviors
by analyzing memory reference traces for a set of bench-
marks, executed under each of several collectors, for a
number of heap sizes. The goal was to reveal, for each
collector, the regularities in the reference patterns and the
relation between heap size and footprint.

Methodology overview: We instrument a version of
Dynamic SimpleScalar (DSS) [13] to generate memory
reference traces. We pre-process these with the SAD ref-
erence trace reduction algorithm [15, 16]. (SAD stands
for Safely Allowed Drop, which we explain below.) For a
given reduction memory size of m pages, SAD produces
a substantially smaller trace that triggers the same exact
sequence of faults for a simulated memory of at least m
pages, managed with least-recently-used (LRU) replace-
ment. SAD drops most references that hit in memories
smaller than m, keeping only those needed to ensure that
the LRU stack order is the same for pages in stack posi-
tions m and beyond. We then process the SAD-reduced
traces with an LRU stack simulator to obtain the number
of faults for all memory sizes no smaller than m pages.
For this we extend SAD to handle mmap and munmap
sensibly, which we describe briefly in Section 4.1 and in
extensive detail in a separate technical report [22].

Application platform: We use Jikes RVM v2.0.3 [3, 2]
built for PowerPC Linux as our Java platform. We opti-
mized the system images to the highest optimization level
and included all normal run-time system components in
the images, to avoid run-time compilation of those com-
ponents. The most cost-effective mode for running Jikes
RVM uses its adaptive compilation system. Because the
adaptive system uses time-driven sampling to invoke op-
timization, it is non-deterministic. We desire comparable
deterministic executions to make our experiments repeat-
able, so we took compilation logs from seven runs of each
1The POSIX mincore call reports whether pages are “in-core”.

benchmark using the adaptive system and, if a method
was optimized in a majority of runs, direct the system to
compile the method initially to the highest optimization
level found in a majority of those logs where it was op-
timized. We call this the pseudo-adaptive system, and it
indeed achieves the goals of determinism and high simi-
larity to typical adaptive system runs.

Collectors: We evaluate three collectors: mark-sweep
(MS), semi-space (SS), and generational copying collec-
tion in the style of Appel (Appel) [4]. MS is one of the
original “Watson” collectors written at IBM. It allocates
via segregated free lists and uses separate spaces and col-
lection triggers for small and large objects (where “large”
means larger than 2KB). SS and Appel come from the
Garbage Collector Toolkit (GCTk) that was developed at
the University of Massachusetts Amherst and contributed
to the Jikes RVM open source repository. They do not
have a separate space for large objects. SS is a straightfor-
ward copying collector that, when a semi-space (half of
the heap) fills, collects the heap by copying reachable ob-
jects to the other semi-space. Appel adds a nursery, into
which it allocates new objects. Nursery collections copy
survivors into the current old-generation semi-space. If
the space remaining is too small, Appel then does an old-
generation semi-space collection. The new nursery size is
always half the total heap size allowed, minus the space
used in the old generation. Both SS and Appel allocate
linearly in their allocation area.

Benchmarks: We use a representative selection of pro-
grams from SPECjvm98. We run these on their “large”
(size 100) inputs. We also use ipsixql, an XML data-
base program, and pseudojbb, which is the SPECjbb
benchmark modified to perform a fixed number of itera-
tions (thus making time and collector comparisons more
meaningful).
3.1 Results and Analysis
We first consider the results for jack and javac under
the SS collector. The results for the other benchmarks are
strongly similar (the full set of graphs of faults and esti-
mated GC and mutator times are available at http://www-
ali.cs.umass.edu/˜tingy/CRAMM/results/). Figures 1(a)
and 1(d) show the number of page faults for varying real
memory allocations. Each curve comes from one simu-
lation of the benchmark in question, at a particular fixed
heap size. Note that the vertical scales are logarithmic
and that the final drop in each curve happens in order of
increasing heap size, i.e., the smallest heap size drops to
zero page faults at the smallest allocation.

We see that each curve has three regions. At the small-
est real memory sizes, we see extremely high paging. Cu-
riously, larger heap sizes perform better for these small
real memory sizes! This happens because most of the
paging occurs during collection, and a larger heap size
causes fewer collections, and thus less paging.

The second region of each curve is a broad, flat area
representing substantial paging. For a range of real mem-
ory allocations, the program repeatedly allocates in the
heap until the heap is full, and the collector then walks
over most of the heap, copying reachable objects. Both
steps are similar to looping over a large array, and require

an allocation equal to a semi-space to avoid paging. (Sep-
arating faults during collection and faults during mutator
execution supports this conclusion.)

Finally, the third region of each curve is a sharp drop
in faults that occurs once the allocation is large enough
to capture the “looping” behavior. The final drop occurs
at an allocation that is nearly half the heap size plus a
constant (about 30MB for jack). This regularity sug-
gests that there is a base amount of memory needed for
the Jikes RVM system and the application code, plus ad-
ditional memory for a semi-space of the heap.

From this analysis we see that, for most memory sizes,
collector faults dominate mutator (application) faults, and
that mutator faults have a component that depends on
heap size. This dependence results from the mutator’s
allocation of objects in the heap between collections.

The behavior of MS strongly resembles that of SS, as
shown in Figures 1(b) and 1(e). The final drop in these
curves tends to occur at the heap size plus a constant,
which is logical in that MS allocates to its heap size, and
then collects. MS shows other plateaus, which we sus-
pect have to do with there being some locality in each
free list, but the paging experienced on even the lowest
plateau gives a substantial increase in program running
time. This shows that it is important to select a heap size
whose final drop-off is contained by the current real mem-
ory allocation.

The curves for Appel (Figures 1(c) and 1(f)) are more
complex than those for SS, but still show a consistent final
drop in page faults at half the heap size plus a constant.
3.2 Proposed Heap Footprint Model
These results lead us to propose that the minimum real
memory R required to run an application at heap size
h without substantial paging is approximately a � h � b,
where a is a constant dependent on the collection algo-
rithm (e.g., 1 for MS and 0.5 for SS and Appel) and b
depends partly on Jikes RVM and partly on the applica-
tion itself. The intuition behind the formula is this: an ap-
plication repeatedly fills its available heap (1

2
� h for Appel

and SS; h for MS), and then, during a full heap collection,
copies out of that heap the portion that is live (b).

In sum, we suggest that required real memory is a lin-
ear function of heap size. We now test this hypothesis
using results derived from those already presented. In
particular, suppose for a threshold value t, we desire that
the estimated paging cost not exceed t times the appli-
cation’s running time with no paging. For a given value
of t, we can plot the minimum real memory allocation
required across of a range of heap sizes such that the pag-
ing overhead does not exceed t. Note that the linear re-
lationship between required real memory and heap size
results from the garbage collector’s large, loop-like be-
havior and is independent of how the page fault overhead
is charged. While in later experiments we charge 5 � 106

instructions for each hard fault, this only helps show the
improvements our methods provide. For modern systems
this page fault cost is very conservative, and real systems
may benefit even more than we show in our simulated
results.

Figure 2 shows, for jack and javac and the three

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 40 60 80 100

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

SemiSpace _228_jack Total faults (log)

18MB
24MB
30MB
36MB
48MB
60MB
72MB
96MB

120MB

(a) SS total faults for jack

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 40 60 80 100 120 140 160

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

MarkSweep _228_jack Total faults (log)

6MB
12MB
18MB
24MB
30MB
36MB
48MB
60MB
72MB
96MB

120MB

(b) MS total faults for jack

 1

 10

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

Appel _228_jack Total faults (log)

12MB
18MB
24MB
30MB
36MB
48MB
60MB
72MB
96MB

120MB

(c) Appel total faults for jack

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 40 60 80 100 120 140 160

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

SemiSpace _213_javac Total faults (log)

30MB
40MB
50MB
60MB
80MB

100MB
120MB
160MB
200MB
240MB

(d) SS total faults for javac

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

MarkSweep _213_javac Total faults (log)

25MB
30MB
40MB
50MB
60MB
80MB

100MB
120MB
160MB
200MB
240MB

(e) MS total faults for javac

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 40 60 80 100 120 140 160

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

Appel _213_javac Total faults (log)

25MB
30MB
40MB
50MB
60MB
80MB

100MB
120MB
160MB
200MB
240MB

(f) Appel total faults for javac

Figure 1: Page faults according to real memory size and heap size.

collectors, plots of the real memory allocation needed
to keep paging costs within a threshold at varying heap
sizes. We see that the linear model is excellent for MS
and SS, and still good for Appel, across a large range of
heap sizes and thresholds. The model is also relatively in-
sensitive to the threshold value. The only deviation from
our linear model is a “jump” within the Appel results.
This occurs when Appel reaches the heap sizes where it
performs only nursery collections and not full heap col-
lections. On each side of this heap size, however, there
are two distinct regimes that are both linear.

For some applications, our linear model does not hold
as well. Figure 3 shows the results for ipsixql un-
der Appel. For smaller threshold values the linear rela-
tionship is still strong, modulo the shift from some full
collections to none in Appel. While we note that larger
threshold values ultimately give substantially larger de-
partures from linearity, users are most likely to choose
small values for t in an attempt to avoid paging alto-
gether. Only under extreme memory pressure would a
larger value of t be desirable. The linear model appears
to hold well enough for smaller t to consider using it to
drive an adaptive heap-sizing mechanism.

4. DESIGN AND IMPLEMENTATION
Given the footprint and allocation for a process, the model
described in Section 3.2 can help select a good heap size.
To implement this idea, we modify two garbage collec-
tors and the underlying virtual memory manager (VMM).
Specifically, we change the VMM to collect information
sufficient to calculate the footprint and to offer an inter-
face to communicate this to the collectors, and we change
the garbage collectors to adjust the heap size dynamically.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

R
ea

l M
em

or
y

N
ee

de
d

(M
B

)

Heap Size (MB)

Appel ipsixql

1
0.8
0.6
0.5
0.4
0.3
0.2
0.1

0.05

(a) Memory needed for ipsixql under Appel

Figure 3: Real memory required to obtain a given
paging overhead for ipsixql.

We implement the modified collectors in Jikes RVM [3,
2], which we run on Dynamic SimpleScalar [13]. These
are the same tools that generated the traces discussed in
Section 3.2. We also enhance the VMM model within
DSS to track and communicate the process footprint.
4.1 Emulating a Virtual Memory Manager
DSS is an instruction-level CPU simulator that emulates
the execution of a process under PPC Linux. We first en-
hanced its emulation of the VMM to model more realisti-
cally the operation of a real system. Since our algorithm
relies on a VMM that conveys both the current alloca-
tion and the current footprint to the garbage collector, it

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

R
ea

l M
em

or
y

N
ee

de
d

(M
B

)

Heap Size (MB)

MarkSweep _228_jack

1
0.8
0.6
0.5
0.4
0.3
0.2
0.1

0.05

(a) Memory needed for jack under MS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120

R
ea

l M
em

or
y

N
ee

de
d

(M
B

)

Heap Size (MB)

SemiSpace _228_jack

1
0.8
0.6
0.5
0.4
0.3
0.2
0.1

0.05

(b) Memory needed for jack under SS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120

R
ea

l M
em

or
y

N
ee

de
d

(M
B

)

Heap Size (MB)

Appel _228_jack

1
0.8
0.6
0.5
0.4
0.3
0.2
0.1

0.05

(c) Memory needed for jack under Ap-
pel

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

R
ea

l M
em

or
y

N
ee

de
d

(M
B

)

Heap Size (MB)

MarkSweep _213_javac

1
0.8
0.6
0.5
0.4
0.3
0.2
0.1

0.05

(d) Memory needed for javac under
MS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

R
ea

l M
em

or
y

N
ee

de
d

(M
B

)

Heap Size (MB)

SemiSpace _213_javac

1
0.8
0.6
0.5
0.4
0.3
0.2
0.1

0.05

(e) Memory needed for javac under SS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

R
ea

l M
em

or
y

N
ee

de
d

(M
B

)

Heap Size (MB)

Appel _213_javac

1
0.8
0.6
0.5
0.4
0.3
0.2
0.1

0.05

(f) Memory needed for javac under
Appel

Figure 2: Real memory required across a range of heap sizes to obtain a given paging overhead.

is critical that the emulated VMM be sufficiently realistic
to approximate the overheads imposed by our methods.

A low cost replacement policy: Our emulated VMM
uses a SEGQ [5] structure to organize pages; that is, main
memory is divided into two segments where the more
recently used pages are placed in the first segment—a
hot set of pages—while less recently used pages are in
the second segment—the cold set. When a new page is
faulted into main memory, it is placed in the first (hot)
segment. If that segment is full, one page is moved into
the second segment. If the second segment is full, a page
is evicted to disk, thus becoming part of the evicted set.

For the hot set we use the CLOCK algorithm, a com-
mon, low-overhead algorithm that approximates LRU. It
uses hardware reference bits to move pages into the cold
set in approximate LRU order. Our model maintains 8
reference bits. As the CLOCK passes a particular page,
we shift its byte of reference bits left by one position and
or the hardware referenced bit into the low position of the
byte. The rightmost one bit of the reference bits deter-
mines the relative age of the page. When we need to evict
a hot set page to the cold set, we choose the page of oldest
age that comes first after the current CLOCK pointer loca-
tion. Eight reference bits provides nine age levels. These
additional age levels enable us more accurately to adjust
the hot set size as we describe in Section 4.2.

Using page protections, we can maintain cold set pages
in order of their eviction from the hot set. When the pro-
gram references a page in the cold set, the VMM restores
the page’s permissions and moves it into the hot set, po-
tentially forcing some other page out of the hot set and

into the cold set. Thus, the cold set behaves like a normal
LRU queue.

We modify DSS to emulate both hardware reference
bits and protected pages. Our emulated VMM uses these
capabilities to implement our CLOCK/LRU SEGQ pol-
icy. For a given real memory size, it records the number
of minor page faults on protected pages and the number
of major page faults on non-resident pages. By later as-
cribing service times for minor and major fault handling,
we can determine the running time spent in the VMM.

Handling unmapping: As was the case for the SAD
and LRU algorithms, our VMM emulation needs to deal
with mapping and unmapping pages. As the cold and
evicted sets work essentially as one large LRU queue, we
handle unmapped pages within these sets as we did for
the LRU stack algorithm. Now suppose an unmap oper-
ation causes k pages in the hot set to be unmapped. Our
strategy shrinks the hot set by k pages and puts k place
holders at the head of the cold set. We then allow future
faults from the cold or evicted sets to grow the hot set
back to its target size. (The previously cited Web page
gives details.)
4.2 Virtual Memory Footprint Calculations
Existing real VMMs lack capabilities critical for support-
ing our heap sizing algorithm. Specifically, they do not
gather sufficient information to calculate the footprint of
a process, and they lack a sufficient interface for inter-
acting with our modified garbage collectors. We describe
the modifications required to a VMM, which we applied
to our emulated VMM, to add these capabilities.

We also modify our VMM to measure the current foot-
print of a process, where footprint is defined as the small-
est allocation whose page faulting will increase the to-
tal running time by more than a fraction t over the non-
paging running time.2. When t � 0, the corresponding al-
location may waste space caching pages that receive very
little use. When t is small but non-zero, the correspond-
ing allocation may be substantially smaller in compari-
son, and yet still yield only trivial amounts of paging, so
we think non-zero thresholds lead to a more useful defi-
nition of footprint.

LRU histograms: To calculate the footprint, the VMM
records an LRU histogram [20, 21]. For each reference
to a page found at position i of the LRU queue for that
process, we increment a count H � i � . This histogram al-
lows the VMM to calculate the number of page faults that
would occur for each possible real memory allocation to
the process. The VMM computes the footprint as the al-
location size where the number of faults is just below the
number that would cause the running time to exceed the
threshold t.

Maintaining a true LRU queue would impose too much
overhead in a real VMM. Instead, our VMM uses the
SEGQ structure described in Section 4.1 that approxi-
mates LRU at low cost. Under SEGQ, we maintain his-
togram counts only for references to pages in the cold
and evicted sets. Such references incur a minor or major
fault, respectively, and thus give the VMM an opportu-
nity to increment the appropriate histogram entry. Since
the hot set is much smaller than the footprint, the missing
histogram information on the hot set does not harm the
footprint calculation.

In order to avoid large space overheads, we group queue
positions and their histogram entries together into bins.
Specifically, we use one bin for each 64 pages (256KB
given our page size of 4KB). This bin size is small enough
to provide a sufficiently accurate footprint measurement
while reducing the space overhead substantially.

Mutator vs. collector referencing: The mutator and
garbage collector exhibit drastically different reference
behaviors. Furthermore, when the heap size is changed,
the reference pattern of the garbage collector itself will
change, while the reference pattern of the mutator differs
only slightly (and only from objects moving during col-
lection).

Therefore, the VMM relies on notification from the col-
lector as to when collection begins and when it ends. One
histogram records the mutator’s reference pattern, and an-
other histogram records the collector’s. When the heap
size changes, we clear the collector’s histogram, since the
previous histogram data no longer provides a meaningful
projection of future memory needs.

When the VMM calculates the footprint of a process, it
combines the counts from both histograms, thus incorpo-
rating the page faulting behavior of both phases.
2Footprint has sometimes been used to mean the total number of
unique pages used by a process, and sometimes the memory size at
which no page faulting occurs. Our definition is taken from this sec-
ond meaning. We choose not to refer to it as a working set because
that term has a larger number of poorly defined meanings.

Histogram decay: Since programs exhibit phase be-
havior, the VMM periodically applies an exponential de-
cay to the histogram. Specifically, it multiplies each his-
togram entry by a decay factor α � 63

64 , ensuring that older
histogram data has diminishing influence on the footprint
calculation. Previous research has shown that the decay
factor is not a sensitive parameter when using LRU his-
tograms to guide adaptive caching strategies [20, 21].

To ensure that the VMM rapidly decays the histogram
during a phase change, we first must identify that a phase
change is occurring. The VMM, therefore, maintains a
virtual memory clock (this is distinct from, and should not
be confused with, the clock of the CLOCK algorithm). A
reference to a page in the evicted set advances the clock
by 1 unit. A reference to a page in the cold set, whose po-
sition in the SEGQ system is i, advances the clock by f � i � .
Assuming the hot set contains h pages and the cold set
contains c pages, then h � i 	 h

�
c and f � i �
� i � h

c .3 The
contribution of the reference to the clock’s advancement
increases linearly from 0 to 1 as the position nears the end
of the cold set, thus causing references to pages that are
closer to eviction to advance the clock more rapidly.

Once the VMM clock advances M
16 units for an M-page

allocation, the VMM decays the histogram. The larger
the memory, the longer the decay period, since one must
reference a larger number of previously cold or evicted
pages to constitute a phase change.

Hot set size management: A typical VMM uses a
large hot set to avoid minor faults. The cold set is used as
a “last chance” for pages to be re-referenced before being
evicted to disk. In our case, though, we want to maximize
the useful information (LRU histogram) that we collect,
so we want the hot set to be as small as possible, without
causing undue overhead from minor faults. We thus set
a target minor fault overhead, stated as a fraction of ap-
plication running time, say 1% (a typical value we used).
As we will describe, we periodically consider the over-
head in the recent past. We calculate this overhead as
the (simulated) time spent on minor faults since the last
time we checked, divided by the total time since the last
time we checked. For “time” we use the number of in-
structions simulated, assuming an approximate execution
rate of 109 instructions/sec. We charge 2000 instructions
(equivalent to 2µs) per minor fault. If the overhead ex-
ceeds 1.5%, we increase the hot set size; if it is less than
0.5%, we decrease it (details in a moment). This simple
adaptive mechanism worked quite well to keep the over-
head within bounds, and the 1% value provided sufficient
information for the rest of our mechanisms to work.

How do we add or remove pages from the hot set? We
grow the hot set by k pages by moving the k hottest pages
of the cold set into the hot set. To shrink the hot set,
we run the CLOCK algorithm to evict pages from the hot
set, but without updating the reference bits used by the
CLOCK algorithm. In this way, the coldest pages in the
3If the cold set is large, the high frequency of references at lower
queue positions may advance the clock too rapidly. Therefore, for a
total allocation of M pages, we define c ��
 max � c � M2 � , h ��
 min � h � M2 � ,
and f � i �
 i � h �

c � .

hot set (insofar as reference bits can specify age) end up
at the head of cold set, with the most recently used nearer
the front (i.e., in proper age order).

How do we trigger consideration of hot set size adjust-
ment? To determine when to grow the hot set, we count
what we call hot set ticks. We associate a weight with
each LRU queue entry from positions h

�
1 through h

�
c,

weighting each position w ��� h � c
�

1 � i ��� c. Thus, po-
sition h

�
1 has weight 1 and h

�
c
�

1 has weight 0. For
each minor fault, we increment the hot set tick count by
the weight of the position of the fault. When the tick
count exceeds one-quarter of the size of the hot set (e.g.,
more than 25% turnover of the hot set), we trigger a size
adjustment test. Note that the chosen weighting counts
faults near the hot set boundary more than ones far from
it. If we have a high overhead that we can fix with mod-
est hot set growth, we will quickly find it; conversely, if
we have many faults from the cold end of the cold set,
we may be encountering a phase change and should not
adjust the hot set size too eagerly.

To handle shrinking of the hot set, we consider the pas-
sage of (simulated) real time. If, upon handling a fault,
we have not considered an adjustment within the past τ
seconds, we trigger consideration. We use a τ of 16 � 106

instructions, or 16ms.
When we want to grow the hot set, how do we com-

pute a new size? Using the current overhead, we de-
termine the number of faults by which we exceeded our
target overhead since the last time we considered adjust-
ing the hot set size. We multiply this times the average
hot-tick weight of minor faults since that time, namely
hot ticks / minor faults; we call the resulting number N:

W � hot ticks � minor faults

target faults ��� ∆t � 1% ��� 2000

N � W ��� actual faults � target faults �
Multiplying by W avoids adjusting too eagerly. Using
recent histogram counts for pages at the hot end of the
cold set, we add pages to the hot set until we have added
ones that account for N minor faults since the last time
we considered adjusting the hot set size.

When we want to shrink the hot set, how do we compute
a new size? In this case, we do not have histogram infor-
mation, so we assume that (for changes that are not too
big) the number of minor faults changes linearly with the
number of pages removed from the hot set. Specifically,
we compute a desired fractional change:

fraction ��� target faults � actual faults ��� target faults

Then, to be conservative, we reduce the hot set size by
only 20% of this fraction:

reduction � hot set size � fraction ��� 20

In our simulations, we found this scheme works well.
VMM/GC interface: The collector and VMM com-

municate with system calls. The collector initiates com-
munication at the beginning and ending of each collec-
tion. When the VMM receives a system call marking the

beginning of a collection, it switches from the mutator to
the collector histogram. It returns no information to the
collector at that time.

When the VMM receives a system call for the ending
of a collection, it performs a number of tasks. First, it
calculates the footprint of the process based on the his-
tograms and the page fault threshold t. Second, it deter-
mines the current main memory allocation to the process.
Third, it switches from the collector to the mutator his-
togram. Finally, it returns to the collector the footprint
and allocation values. The collector may use these values
to calculate a new heap size such that its footprint fits into
the allocated space.
4.3 Adjusting Heap Size
In Section 3 we described the virtual memory behavior of
the MS, SS, and Appel collectors in Jikes RVM. We now
describe how we modify the SS and Appel collectors to
adjust their heap size in response to available real mem-
ory and the application’s measured footprint. (Note that
MS, unless augmented with compaction, cannot readily
shrink its heap. We must therefore drop it from further
consideration.) We first consider the case where Jikes
RVM starts with a requested heap size and then adjusts
the heap size after each collection in response to the cur-
rent footprint and available memory. This results in a
scheme that adapts to changes in available memory dur-
ing a run. We then augment this scheme with a first
adjustment at startup, so we can account for the initial
amount of available real memory. We first describe this
mechanism for the Appel collector and then describe the
far simpler mechanism for SS.

Basic adjustment scheme: We adjust the heap size af-
ter most garbage collections and thereby derive a new
nursery size. We do not perform adjustments follow-
ing small nursery collections, because the footprints com-
puted from these collections are misleadingly small. We
define “small” as a nursery less than 50% of the maxi-
mum amount we can allocate. We call this 50% constant
the nursery filter factor.

We adjust differently after nursery and full heap collec-
tions. After a nursery collection, we compute the survival
rate (bytes copied divided by size of from-space) from the
completed collection. If this survival rate is greater than
any survival rate yet seen, we estimate the footprint of the
next full heap collection:

eff � current footprint
�

2 � survival rate � old space size

where the old space size is its size before the nursery col-
lection.4 We call this footprint the estimated future foot-
print, or eff for short. Because this calculation prevents
over-eager growing of the heap after nursery collections,
we do not modify the heap size when eff is less than
available memory. Nursery collection footprints tend to
be smaller than full heap collection footprints; hence our
caution about using them to grow the heap.
4The factor 2 � survival rate is intended to estimate the volume of old
space data referenced and copied. It is optimistic about how densely
packed the survivors are in from-space. A more conservative value is
1 � survival rate.

When eff is greater than available memory, or follow-
ing a full heap collection, we adjust the heap size as we
now describe. We first estimate the slope of the footprint
versus heap size curve (this corresponds to the slope of
the curves in Figure 2). Generally, we use the footprint
and heap size of the two most recent collections to deter-
mine this slope. After the first collection, however, we
assume a slope of 2 (for ∆heap size / ∆footprint) since we
have only one data point. If we are considering growing
the heap, we then conservatively multiply the slope by 1

2 .
We call this constant the conservative factor and use it to
control how conservatively we should grow the heap. In
Section 5, we provide sensitivity analyses for the conser-
vative and nursery filter factors.

Using simple algebra, we compute the target heap size
from the slope, current and old footprint, and old heap
size (“old” refers to after the previous collection; “cur-
rent” means after the current collection):

old size
�

slope ��� current footprint � old footprint �
Startup heap size: The huge potential cost from pag-

ing during the first collection caused us to add a heap ad-
justment at program startup. Using the current available
memory size supplied by the VMM, we compute the ini-
tial heap size as:

Min � initial heap size � 2 ��� available � 20MB ���
Heap size adjustment for SS: SS uses the same adjust-

ment algorithms as Appel. The critical difference is that,
lacking a nursery, SS performs only full heap collections
and adjusts its heap size accordingly.

5. EXPERIMENTAL EVALUATION
To test our algorithm we run the benchmarks from Sec-
tion 3 using the same heap sizes as Section 3.2 and a se-
lection of fixed main memory allocation sizes. We exam-
ine each parameter combination with both the standard
garbage collectors (which use a static heap size) and our
dynamic heap-sizing collectors. We select real memory
allocations that reveal the effects of large heaps in small
allocations and small heaps in large allocations. In par-
ticular, we try to evaluate the ability of our algorithm to
grow and to shrink the heap, and to compare its perfor-
mance to statically-sized collectors in both cases.

We compare the performance of collectors by measur-
ing their estimated running time, derived from the num-
ber of instructions simulated. We simply charge a fixed
number of instructions for each page fault to estimate to-
tal execution time. We further assume that writing back
dirty pages can be done asynchronously so as to interfere
minimally with application execution and paging. We ig-
nore other operating system costs, such as application I/O
requests. These modeling assumptions are reasonable be-
cause we are interested primarily in order-of-magnitude
comparative performance estimates, not in precise abso-
lute time estimates. The specific values we use assume
that a processor achieves an average throughput of 1 �
109 instructions/sec and that a page fault stalls the appli-
cation for 5ms, or 5 � 106 instructions. We also attribute
2,000 instructions to each soft page fault, i.e., 2µs, as

mentioned in Section 4.2. For our adaptive semi-space
collector, we use the threshold t � 5% for computing
the footprint. For our adaptive Appel collector we use
t � 10%. (Appel completes in rather less time overall and
since there are a number of essentially unavoidable page
faults at the end of a run, 5% was unrealistic for Appel.)
5.1 Adaptive vs. Static Semi-space
Figure 4 shows the estimated running time of each bench-
mark for varying initial heap sizes under the SS collector.
We see that for nearly every combination of benchmark
and initial heap size, our adaptive collector changes to a
heap size that performs at least as well as the static col-
lector. The leftmost side of each curve shows initial heap
sizes and corresponding footprints that do not consume
the entire allocation. The static collector under-utilizes
the available memory and performs frequent collections,
hurting performance. Our adaptive collector grows the
heap size to reduce the number of collections without in-
curring paging. At the smallest initial heap sizes, this
adjustment reduces the running time by as much as 70%.

At slightly larger initial heap sizes, the static collector
performs fewer collections as it better utilizes the avail-
able memory. On each plot, we see that there is an initial
heap size that is ideal for the given benchmark and allo-
cation. Here, the static collector performs well, while our
adaptive collector often matches the static collector, but
sometimes increases the running time a bit. Only pseu-
dojbb and 209 db experience this maladaptivity. We be-
lieve that fine tuning our adaptive algorithm will likely
eliminate these few cases.

When the initial heap size becomes slightly larger than
the ideal, the static collector’s performance worsens dra-
matically. This initial heap size yields a footprint that is
slightly too large for the allocation. The resultant paging
for the static allocator has a huge impact, slowing execu-
tion under the static allocator 5 to 10 fold. Meanwhile, the
adaptive collector shrinks the heap size so that the allo-
cation completely captures the footprint. By performing
slightly more frequent collections, the adaptive collector
consumes a modest amount of CPU time to avoid a sig-
nificant amount of paging, thus reducing the running time
by as much as 90%.

When the initial heap size grows even larger, the perfor-
mance of the adaptive collector remains constant. How-
ever, the running time with the static collector decreases
gradually. Since the heap size is larger, it performs fewer
collections, and it is those collections and their poor ref-
erence locality that cause the excessive paging. As we
observe in Section 3.1, if a static collector is going to use
a heap size that causes paging, it is better off using an
excessively large heap size.

Observe that for these larger initial heap sizes, even the
adaptive allocator cannot match the performance achieved
with the ideal heap size. This is because the adaptive col-
lector’s initial heap sizing mechanism cannot make a per-
fect prediction, and the collector does not adjust to a bet-
ter heap size until after the first full collection.

A detailed breakdown: Table 1 provides a breakdown
of the running time shown in one of the graphs from Fig-
ure 4. Specifically, it provides results for the adaptive

and static semi-space collectors for varying initial heap
sizes with 213 javac. It indicates, from left to right: the
number of instructions executed (billions), the number of
minor and major faults, the number of collections, the
percentage of time spent handling minor faults, the num-
ber of major faults that occur within the first two collec-
tions with the adaptive collector, the number of collec-
tions before the adaptive collector learns (“warms-up”)
sufficiently to find its final heap size, and the percentage
of improvement in terms of estimated time.

We see that at small initial heap sizes, the adaptive col-
lector adjusts the heap size to reduce the number of col-
lections, and thus the number of instructions executed,
without incurring paging. At large initial heap sizes, the
adaptive mechanism dramatically reduces the major page
faults. Our algorithm found its target heap size within two
collections, and nearly all of the paging occurred during
that “warm-up” time. Finally, it controlled the minor fault
cost well, approaching but never exceeding 1%.
5.2 Adaptive vs. Static Appel
Figure 5 shows the estimated running time of each bench-
mark for varying initial heap sizes under the Appel col-
lector. The results are qualitatively similar to those for the
adaptive and static semi-space collectors. For all bench-
marks, the adaptive collector gives significantly improved
performance for large initial heap sizes that cause heavy
paging with the static collector. It reduces running time
by as much as 90%.

For about half of the benchmarks, the adaptive collector
improves performance almost as dramatically for small
initial heap sizes. However, for the other benchmarks,
there is little or no improvement. The Appel algorithm
uses frequent nursery collections, and less frequent full
heap collections. For our shorter-lived benchmarks, the
Appel collector incurs only 1 or 2 full heap collections.
Therefore, by the time that the adaptive collector selects
a better heap size, the execution ends.

Furthermore, our algorithm is more likely to be mal-
adaptive when its only information is from nursery col-
lections. Consider 228 jack at an initial heap size of
36MB. That heap size is sufficiently small that the static
collector incurs no full heap collections. For the adap-
tive collector, the first several nursery collections create a
footprint that is larger than the allocation, so the collector
reduces the heap size. This heap size is small enough to
force the collector to perform a full heap collection that
references far more data than the nursery collections did.
Therefore, the footprint suddenly grows far beyond the al-
location and incurs heavy paging. The nursery collection
leads the adaptive mechanism to predict an unrealistically
small footprint for the select heap size.

Although the adaptive collector then chooses a much
better heap size following the full heap collection, exe-
cution terminates before the system can realize any ben-
efit. In general, processes with particularly short running
times may incur the costs of having the adaptive mecha-
nism find a good heap size, but not reap the benefits that
follow. Unfortunately, most of these benchmarks have
short running times that trigger only 1 or 2 full heap col-
lections with pseudo-adaptive builds.

Parameter sensitivity: It is important, when adapting
the heap size of an Appel collector, to filter out the mis-
leading information produced during small nursery col-
lections. Furthermore, because a maladaptive choice to
grow the heap too aggressively may yield a large footprint
and thus heavy paging, it is important to grow the heap
conservatively. The algorithm described in Section 4.3
employs two parameters: the conservative factor, which
controls how conservatively we grow the heap in response
to changes in footprint or allocation, and the nursery fil-
ter factor, which controls which nursery collections to ig-
nore.

We carried out a sensitivity test on these parameters.
We tested all combinations of conservative factor values
of 0.66, 0.50, 0.40 ! and nursery filter factor values of
 0.25, 0.5, 0.75 ! . Figure 6 shows javac under the adap-
tive Appel collector for all nine combinations of these pa-
rameter values. Many of the data points in this plot over-
lap. Specifically, varying the conservative factor has no
effect on the results. For the nursery filter factor, values of
0 � 25 and 0 � 5 yield identical results, while 0 � 75 produces
slightly improved running times at middling to large ini-
tial heap sizes. The effect of these parameters is domi-
nated by the performance improvement that the adaptivity
provides over the static collector.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel _213_javac with 60MB Sensitivity Analysis

FIX heap insts
0.66x0.25
0.66x0.50
0.66x0.75
0.50x0.25
0.50x0.50
0.50x0.75
0.40x0.25
0.40x0.50
0.40x0.75

Figure 6: 213 javac under the Appel collectors given
a 60MB initial heap size. We tested the adaptive col-
lector with 9 different combinations of parameter set-
tings, where the first number of each combination is
the conservative factor and the second number is the
nursery filter factor. The adaptive collector is not sen-
sitive to the conservative factor, and is minimally sen-
sitive to the nursery filter factor.

Dynamically changing allocations: The results pre-
sented so far show the performance of each collector for
an unchanging allocation of real memory. Although the
adaptive mechanism finds a good, final heap size within
two full heap collections, it is important that the adaptive
mechanism also quickly adjust to dynamic changes in al-
location that occur mid-execution.

Figure 7 shows the result of running 213 javac with
the static and adaptive Appel collectors using varying ini-

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

SemiSpace _202_jess with 40MB

AD heap insts
FIX heap insts

(a) 202 jess 40MB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 20 40 60 80 100 120 140 160

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

SemiSpace _209_db with 50MB

AD heap insts
FIX heap insts

(b) 209 db 50MB

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

SemiSpace _213_javac with 60MB

AD heap insts
FIX heap insts

(c) 213 javac 60MB

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

SemiSpace _228_jack with 40MB

AD heap insts
FIX heap insts

(d) 228 jack 40MB

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

SemiSpace ipsixql with 60MB

AD heap insts
FIX heap insts

(e) ipsixql 60MB

 0

 20

 40

 60

 80

 100

 120

 140

 40 60 80 100 120 140 160 180 200 220 240

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

SemiSpace pseudojbb with 100MB

AD heap insts
FIX heap insts

(f) pseudojbb 100MB
Figure 4: The estimated running time for the static and adaptive SS collectors for all benchmarks over a range of
initial heap sizes.

Heap Insts (" 109) Minor faults Major faults GCs Minor fault cost MF W Ratio
(MB) Ad Fix Ad Fix Ad Fix Ad Fix Ad Fix 2GC Ad/Fix

30 15.068 42.660 210,611 591,028 207 0 15 62 0.95% 0.95% 0 2 62.28%
40 15.251 22.554 212,058 306,989 106 0 15 28 0.95% 0.93% 0 1 30.04%
50 14.965 16.860 208,477 231,658 110 8 15 18 0.95% 0.94% 0 1 8.22%
60 14.716 13.811 198,337 191,458 350 689 14 13 0.92% 0.94% 11 1 4.49%
80 14.894 12.153 210,641 173,742 2,343 27,007 14 9 0.96% 0.97% 2236 1 81.80%

100 13.901 10.931 191,547 145,901 1,720 35,676 13 7 0.94% 0.90% 1612 2 88.92%
120 13.901 9.733 191,547 128,118 1,720 37,941 13 5 0.94% 0.89% 1612 2 88.63%
160 13.901 8.540 191,547 111,533 1,720 28,573 13 3 0.94% 0.88% 1612 2 85.02%
200 13.901 8.525 191,547 115,086 1,720 31,387 13 3 0.94% 0.91% 1612 2 86.29%
240 13.901 7.651 191,547 98,952 1,720 15,041 13 2 0.94% 0.87% 1612 2 72.64%

Table 1: A detailed breakdown of the events and timings for 213 javac under the static and adaptive SS collector
over a range of initial heap sizes. Warm-up is the time, measured in the number of garbage collections, that the
adaptivity mechanism required to select its final heap size.

tial heap sizes. Each plot shows results both from a static
60MB allocation and a dynamically changing allocation
that begins at 60MB. The left-hand plot shows the results
of increasing that allocation to 75MB after 2 billion in-
structions (2 sec), and the right-hand plot shows the re-
sults of shrinking to 45MB after the same length of time.

When the allocation grows, the static collector benefits
from the reduced page faulting that occurs at sufficient
large initial heap sizes. However, the adaptive collec-
tor matches or improves on that performance. Further-
more, the adaptive collector is able to increase its heap
size in response to the increased allocation, and reduce
the garbage collection overhead suffered when the allo-
cation does not increase.

The qualitative results for a shrinking allocation are
similar. The static collector’s performance suffers due to

the paging caused by the reduced allocation. The adaptive
collector’s performance suffers much less from the re-
duced allocation. When the allocation shrinks, the adap-
tive collector will experience page faulting during the next
collection, after which it selects a new, smaller heap size
at which it will collect more often.

Notice that when the allocation changes dynamically,
the adaptive allocator dominates the static collector: there
is no initial heap size at which the static collector matches
the performance of the adaptive allocator. Under chang-
ing allocations, adaptivity is necessary to avoid excessive
collection or paging.

We also observe that there are no results for the adap-
tive collector for initial heap sizes smaller than 50MB.
When the allocation shrinks to 45MB, paging always oc-
curs. The adaptive mechanism responds by shrinking its

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel _202_jess with 40MB

AD heap insts
FIX heap insts

(a) 202 jess 40MB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120 140 160

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel _209_db with 50MB

AD heap insts
FIX heap insts

(b) 209 db 50MB

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel _213_javac with 60MB

AD heap insts
FIX heap insts

(c) 213 javac 60MB

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel _228_jack with 40MB

AD heap insts
FIX heap insts

(d) 228 jack 40MB

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel ipsixql with 60MB

AD heap insts
FIX heap insts

(e) ipsixql 60MB

 0

 20

 40

 60

 80

 100

 120

 40 60 80 100 120 140 160 180 200 220 240

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel pseudojbb with 100MB

AD heap insts
FIX heap insts

(f) pseudojbb 100MB
Figure 5: The estimated running time for the static and adaptive Appel collectors for all benchmarks over a range
of initial heap sizes.

heap. Unfortunately, it selects a heap size that is smaller
than the minimum required to execute the process, and
the process ends up aborting. This results from the fail-
ure of our linear model, described in Section 3.2, to corre-
late heap sizes and footprints reliably at such small heap
sizes. We believe we can readily address this problem
in future work. Since our collectors can already change
heap size, we believe that a simple mechanism can grow
the heap rather than allowing the process to abort. Such a
mechanism will make our collectors even more robust.

6. CONCLUSION AND FUTURE WORK
Garbage collectors are sensitive to heap size and main
memory allocation. We present a heap size analysis that
applies to different collectors and then show how it ap-
plies to the semi-space and Appel collectors. While the
underlying collection algorithms require little change to
implement our heap size adjustments, our adaptive col-
lectors match or improve upon the performance provided
of standard, static collectors in the vast majority of static
memory allocation experiments. Running times are often
improved by tens of percent and we show some improve-
ments of 90%. For heap sizes that are too large, we dras-
tically reduce paging, and for initial heap sizes that are
too small, we avoid excessive garbage collection.

In the presence of dynamically changing allocations,
we show that our adaptive collectors strictly dominate the
static collectors. Since no single heap size provides ideal
performance when allocations change, adaptivity is nec-
essary, and our adaptive algorithm finds a good heap size
within 1 or 2 full heap collections.

Our adaptive collectors demonstrate the substantial per-
formance benefits possible with dynamic heap resizing.
However, this work only begins exploration in this direc-

tion. We are now bringing our adaptive mechanism to
other garbage collection algorithms such as mark-sweep.
We also seek to improve the algorithm and avoid the few
cases in which it is maladaptive. We are also modify-
ing the Linux kernel to provide the VMM support from
Section 4.2, so that we may test this work on a real sys-
tem. We also want to extend a similar approach to incre-
mental and concurrent collectors. As their mutator and
GC phases are heavily mixed, we could use only one his-
togram to capture the reference pattern of the whole pro-
gram, and must adjust our model accordingly.

In other research, we are exploring a more fine-grained
approach using the collector to assist the VMM with page
replacement decisions [12], which we consider to be or-
thogonal and complementary to adaptive heap sizing. Fi-
nally, we are also developing new strategies for the VMM
to select allocations intelligently for each process, espe-
cially those garbage collected process that can flexibly
change their footprint in response. We believe that it will
allow the system to handle heavy memory pressure more
gracefully.

7. ACKNOWLEDGMENTS
This material is supported in part by the National Science
Foundation under grant number CCR-0085792. Emery
Berger was supported by NSF CAREER Award number
CNS-0347339. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the NSF. We are grateful to IBM Research for making
the Jikes RVM system available under open source terms,
and likewise to all those who developed SimpleScalar and
Dynamic SimpleScalar and made them similarly avail-
able. We also thank Xianglong Huang and Narendran

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel _213_javac with 60MB dynamic memory increase

AD heap AD memory
FIX heap AD memory
AD heap FIX memory
FIX heap FIX memory

(a) 213 javac 60MB # 75MB

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

E
st

im
at

ed
 ti

m
e

(b
ill

io
n

in
st

s)

Initial Heap Size (MB)

Appel _213_javac with 60MB dynamic memory decrease

AD heap AD memory
FIX heap AD memory
AD heap FIX memory
FIX heap FIX memory

(b) 213 javac 60MB # 45MB
Figure 7: Results of running 213 javac under the adaptive Appel collector over a range of initial heap sizes and
dynamically varying real memory allocations. During execution, we increase (left-hand plot) or decrease (right-
hand plot) the allocation by 15MB after 2 billion instructions.

Sachindran for their joint work in developing the pseudo-
adaptive compilation mechanism we use.

8. REFERENCES
[1] R. Alonso and A. W. Appel. An advisor for flexible working sets. In

Proceedings of the 1990 SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 153–162, Boulder, CO, May
1990.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalepeño virtual machine. IBM Systems Journal,
39(1):211–238, Feb. 2000.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,
D. Lieber, T. Ngo, M. Mergen, J. C. Shepherd, and S. Smith.
Implementing Jalepeño in Java. In Proceedings of SIGPLAN 1999
Conference on Object-Oriented Programming, Languages, &
Applications, volume 34(10) of ACM SIGPLAN Notices, pages
314–324, Denver, CO, Oct. 1999. ACM Press.

[4] A. Appel. Simple generational garbage collection and fast allocation.
Software: Practice and Experience, 19(2):171–183, Feb. 1989.

[5] O. Babaoglu and D. Ferrari. Two-level replacement decisions in paging
stores. IEEE Transactions on Computers, C-32(12):1151–1159, Dec.
1983.

[6] J. A. Barnett. Garbage collection versus swapping. Operating Systems
Review, 13(3):12–17, 1979.

[7] BEA WebLogic. Technical white paper—JRockit: Java for the
enterprise. http://www.bea.com/content/news events
/white papers/BEA JRockit wp.pdf.

[8] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High
Performance Garbage Collection in Java with MMTk. In ICSE 2004,
26th International Conference on Software Engineering, pages
137–146, May 2004.

[9] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807–820, Sept.
1988.

[10] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage
collection and heap growth to reduce the execution time of Java
applications. In Proceedings of the 2001 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages & Applications,
pages 353–366, Tampa, FL, June 2001.

[11] E. Cooper, S. Nettles, and I. Subramanian. Improving the performance
of SML garbage collection using application-specific virtual memory
management. In Conference Record of the 1992 ACM Symposium on
Lisp and Functional Programming, pages 43–52, San Francisco, CA,

June 1992.
[12] M. Hertz, Y. Feng, and E. D. Berger. Page-level cooperative garbage

collection. Technical Report TR-04-16, University of Massachusetts,
2004.

[13] X. Huang, J. E. B. Moss, K. S. Mckinley, S. Blackburn, and D. Burger.
Dynamic SimpleScalar: Simulating Java Virtual Machines. Technical
Report TR-03-03, University of Texas at Austin, Feb. 2003.

[14] JavaSoft. J2SE 1.5.0 Documentation—Garbage Collector Ergonomics.
Available at
http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html.

[15] S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson. Trace reduction for
virtual memory simulations. In Proceedings of the ACM SIGMETRICS
1999 International Conference on Measurement and Modeling of
Computer Systems, pages 47–58, 1999.

[16] S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson. Flexible reference trace
reduction for VM simulations. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 13(1):1–38, Jan. 2003.

[17] K.-S. Kim and Y. Hsu. Memory system behavior of Java programs:
Methodology and analysis. In Proceedings of the ACM SIGMETRICS
2002 International Conference on Measurement and Modeling of
Computer Systems, volume 28(1), pages 264–274, Santa Clara, CA,
June 2000.

[18] D. A. Moon. Garbage collection in a large LISP system. In Conference
Record of the 1984 ACM Symposium on Lisp and Functional
Programming, pages 235–245, 1984.

[19] Novell. Documentation: NetWare 6—Optimizing Garbage Collection.
Available at http://www.novell.com/documentation/index.html.

[20] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson. The EELRU adaptive
replacement algorithm. Performance Evaluation, 53(2):93–123, July
2003.

[21] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for
compressed caching in virtual memory systems. In Proceedings of The
1999 USENIX Annual Technical Conference, pages 101–116, Monterey,
California, June 1999. USENIX Association.

[22] T. Yang, E. D. Berger, M. Hertz, S. F. Kaplan, and J. E. B. Moss.
Autonomic heap sizing: Taking real memory into account. Technical
Report TR-04-14, University of Massachusetts, July 2004.

