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Although the quest for more accurate solutions is pushing deep learning research towards larger
and more complex algorithms, edge devices demand efficient inference and therefore reduction in
model size, latency and energy consumption. One technique to limit model size is quantization,
which implies using fewer bits to represent weights and biases. Such an approach usually results
in a decline in performance. Here, we introduce a method for designing optimally heterogeneously
quantized versions of deep neural network models for minimum-energy, high-accuracy, nanosecond
inference and fully automated deployment on chip. With a per-layer, per-parameter type automatic
quantization procedure, sampling from a wide range of quantizers, model energy consumption and
size are minimized while high accuracy is maintained. This is crucial for the event selection procedure
in proton–proton collisions at the CERN Large Hadron Collider, where resources are strictly limited
and a latency of O(1) µs is required. Nanosecond inference and a resource consumption reduced by
a factor of 50 when implemented on field-programmable gate array hardware are achieved.

FIG. I. An ultra-compressed deep neural network for particle identification on a Xilinx FPGA.
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I. INTRODUCTION

With edge computing, real-time inference of deep neural
networks (DNNs) on custom hardware has become increas-
ingly relevant. Smartphone companies are incorporating
Artificial Intelligence (AI) chips in their design for on-
device inference to improve user experience and tighten
data security, and the autonomous vehicle industry is
turning to application-specific integrated circuits (ASICs)
to keep the latency low. While the typical acceptable
latency for real-time inference in applications like those
above is O(1) ms [1, 2], other applications may require
sub-microsecond inference. For instance, high-frequency
trading machine learning (ML) algorithms are running
on field-programmable gate arrays (FPGAs) to make de-
cisions within nanoseconds [3]. At the extreme inference
spectrum end of both the low-latency (as in high-frequency
trading) and limited-area (as in smartphone applications)
is the processing of data from proton-proton collisions at
the Large Hadron Collider (LHC) at CERN [4]. In the
particle detectors around the LHC ring, tens of terabytes
of data per second are produced from collisions occurring
every 25 ns. This extremely large data rate is reduced by
a real-time event filter processing system – the trigger –
which decides whether each discrete collision event should
be kept for further analysis or be discarded. Data is
buffered close to the detector while the processing occurs,
with a maximum latency of O(1) µs to make the trigger
decision. High selection accuracy in the trigger is crucial
in order to keep only the most interesting events while
keeping the output bandwidth low, reducing the event
rate from 40 MHz to 100 kHz. In 2027 the LHC will
be upgraded from its current state, capable of producing
up to one billion proton-proton collisions per second, to
the so-called High Luminosity-LHC (HL-LHC) [5]. This
will involve increasing the number of proton collisions
occurring every second by a factor of five to seven, ulti-
mately resulting in a total amount of accumulated data
one order of magnitude higher than what is possible with
the current collider. With this extreme increase, ML so-
lutions are being explored as fast approximations of the
algorithms currently in use to minimize the latency and
maximize the precision of tasks that can be performed.

Hardware used for real-time inference in particle detec-
tors usually has limited computational capacity due to
size constraints. Incorporating resource-intensive models
without a loss in performance poses a great challenge. In
recent years many developments aimed at providing effi-
cient inference from the algorithmic point of view. This
includes compact network design [6–10], weight and filter
pruning [11, 12] or quantization. In post-training quan-
tization [13–17] the pre-trained model parameters are
translated into lower precision equivalents. However, this
process is, by definition, lossy and sacrifices model per-
formance. Therefore, solutions to do quantization-aware
training have been suggested [18–27]. In these, a fixed
numerical representation is adopted for the whole model,
and the model training is performed enforcing this con-

straint during weight optimization. More recently [28–31],
it is argued that some layers may be more accommodating
for aggressive quantization, whereas others may require
more expensive arithmetic. This suggests that per-layer
heterogeneous quantization is the optimal way to achieve
higher accuracy at low resource cost, however, might
require further specialization of the hardware resources.
In this paper, we introduce a novel workflow for find-

ing the optimal heterogeneous quantization per layer and
per parameter type for a given model, and deploying
that model on FPGA hardware. Through minimal code
changes, the model footprint is minimized while retain-
ing high accuracy, and then translated into low-latency
firmware. This paper makes the following contributions:

• We have implemented a range of quantization meth-
ods in a common library, which provide a broad
base from which optimal quantizations can easily
be sampled;

• We introduce a novel method for finding the optimal
heterogeneous quantization for a given model, re-
sulting in minimum area or minimum power DNNs
while maintaining high accuracy;

• We have made these methods available online
in easy-to-use libraries, called QKeras and Au-
toQKeras1, where simple drop-in replacement of
Keras [32] layers makes it straightforward for users
to transform Keras models to their equivalent
deep heterogeneously quantized versions, which are
trained quantization aware. Using AutoQKeras, a
user can trade-off accuracy by model size reduction
(e.g. area or energy);

• We have added support for quantized QKeras mod-
els in the library, hls4ml [13], which converts these
pre-trained quantized models into highly-parallel
FPGA firmware for ultra low-latency inference.

To demonstrate the significant practical advantages of
these tools for high-energy physics and other inference on
the edge applications:

• We conduct an experiment consisting of classify-
ing events in an extreme environment, namely the
triggering of proton-proton collisions at the CERN
LHC, where resources are limited and a maximum
latency of O(1 )µs is imposed;

• We show that inference within 60 ns and a reduction
of the model resource consumption by a factor of 50
can be achieved through automatic heterogeneous
quantization, while maintaining similar accuracy
(within 3% of the floating point model accuracy);

• We show that the original floating point model ac-
curacy can be maintained for homogeneously quan-
tized DNNs down to a bit width of six while re-
ducing resource consumption up to 75 % through
quantization-aware training with QKeras.

The proposed pipeline provides a novel, automatic end-to-
end flow for deploying ultra low latency, low-area DNNs

1 https://github.com/google/qkeras

https://github.com/google/qkeras
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on chip. This will be crucial for the deployment of ML
models on FPGAs in particle detectors and other fields
with extreme inference and low-power requirements.

The remainder of the paper is organized as follows.
In Section II we discuss previous work related to model
quantization and model compression with a focus on par-
ticle detectors. In Section V we uncover the novel library
for training ultra low-latency optimally heterogeneously
quantized DNNs, QKeras. Section VI describes the pro-
cedure of automatic quantization for optimizing model
size and accuracy simultaneously. Finally, in Sections VII
we deploy these optimally quantized QKeras models on
FPGAs and evaluate their performance.

II. MOTIVATION

The hardware triggering system in a particle detector at
the CERN LHC is one of the most extreme environments
one can imagine deploying DNNs. Latency is restricted to
O(1 )µs, governed by the frequency of particle collisions
and the amount of on-detector buffers. The system con-
sists of a limited amount of FPGA resources, all of which
are located in underground caverns 50-100 meters below
the ground surface, working on thousands of different
tasks in parallel. Due to the high number of tasks being
performed, limited cooling capabilities, limited space in
the cavern, and the limited number of processors, algo-
rithms must be kept as resource-economic as possible. In
order to minimize the latency and maximize the precision
of tasks that can be performed in the hardware trigger,
ML solutions are being explored as fast approximations
of the algorithms currently in use. To simplify the im-
plementation of these, a general library for converting
pre-trained ML models into FPGA or application-specific
integrated circuits (ASIC) firmware has been developed,
hls4ml [13]. The package comprises a library of opti-
mized C++ code for common network layers, which can
be synthesized through a high-level synthesis (HLS) tool.
Converters are provided for multiple model formats, like
TensorFlow [33], Keras [32] ,PyTorch [34] and ONNX [35].

Although other libraries for the translation of ML mod-
els to FPGA firmware exist, as summarized in Refs. [36–
39], hls4ml targets extreme low-latency inference in order
to stay within the strict constraints of O(1 )µs imposed
by the hardware trigger systems. In addition, the unique
aspect of hls4ml is the support for multiple HLS-vendor
backends like Xilinx Vivado HLS, Intel Quartus HLS [40]
and Mentor Catapult HLS [41], all of which are in use at
the LHC experiments. The Vivado HLS backend is the
most advanced and therefore the one used in this paper.

The hls4ml conversion process maps the user-provided
neural network model into a given vendor-specific ab-
straction (like Vivado HLS), with easy-to-use handles
to tune performance. The hls4ml NN architecture is
introduced in [13]. A model-specific, layer-unrolled ar-
chitecture is used in order to produce ultra low latency,
resource efficient inference engines for particle physics.

Computation for each NN layer is carried out in distinct
hardware elements of the target device, which allows for
high computational throughput through the layer pipeline,
as well as fine-grained configuration of each layer (includ-
ing quantization). A simple handle, named “Reuse Factor”
enables users to control the parallelization of the com-
putation, again at a per-layer level. In the fully parallel
model, using a Reuse Factor of 1, each individual mul-
tiplication of the NN layers is carried out on different
resources (whether FPGA DSPs or LUTs). With a Reuse
Factor greater than 1, multiplication elements are reused
sequentially to reduce the resource cost, at the expense
of latency and throughput. This simple handle enables
rapid design space exploration as well as configurability to
target specific constraints in available resources, latency,
and throughput.

In addition, the data access at the NN input and output,
as well as the data movement between NN layers, can be
configured to be fully parallel or fully serial. The former
option is used to target ultra low latency, high throughput
inference in the real-time processing of particle physics
experiments, while the latter can be used to fit larger NN
models within the available FPGA resources when ultra
low latency is not as much of a constraint.

The hls4ml library is implemented as a Python pack-
age to facilitate ease of use for non-experts, as well as
consistency with other popular Deep Learning libraries.
The first step in the conversion into FPGA firmware
consists of translating a given model into an internal rep-
resentation of the network graph. During this conversion,
user-specified optimization configurations are attached to
the model, such as the choice of quantization and paralleli-
sation. The internal representation is written out into an
HLS project, assigning the appropriate layers of the target
NN and the user configuration. This HLS project can
then be synthesized with the FPGA vendor tools, generat-
ing an IP core that can be used in the target application.
Many commonly used NN layers are supported: Dense;
Convolution; BatchNormalization; and several Activation
layers. In addition, domain specific layers can be easily
added, one example being compressed distance-weighted
graph networks [42].

In hls4ml, the precision used to represent weights,
biases, activations, and other components are configurable
through post-training quantization, replacing the floating
point values by lower precision fixed-point ones. This
allows compression of the model size, but to some extent
sacrifices accuracy. Recently, support for binary and
ternary precision DNNs [43] trained quantization-aware
has been included in the library. This greatly reduces
the model size, but requiring such an extremely low-
precision of each parameter type sacrifices accuracy and
generalization.

As demonstrated in Refs. [28–31], mixed-precision quan-
tization, i.e. keeping some layers at higher precision and
some at lower precision, is a promising approach to achieve
smaller models with high accuracy. However, finding the
optimal heterogeneous quantization per layer and per
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parameter type, hereby referred to as quantization config-
uration, is extremely challenging, with the search space
increasing exponentially with the number of layers in a
model [30]. A solution for finding the mixed quantization
configuration that yields best generalization/accuracy us-
ing the Hessian spectrum is proposed in Ref. [30]. For ML
applications in hardware triggering systems, the resources
one has at disposal, as well as the minimum tolerable
model accuracy, are usually known. Finding the best
model for a given task is, therefore, a fine compromise
between the desired model compression and accuracy with
respect to the floating point based model. Both factors
must be considered when tuning quantization. The goal
of this work is hence to provide a method for finding the
optimal mixed-precision configuration for a given model,
accounting for both the desired model size and accuracy
when optimizing the architecture, and to transform these
into highly parallel firmware for ultra low-latency infer-
ence on chip.

III. RELATED WORK

Closely related to the work presented here are the
FINN [44] and FINN-R [45] frameworks from Xilinx Re-
search Labs, which aim to deploy quantized neural net-
works on Xilinx FPGAs. The same group have also
developed a library for quantization-aware training, Bre-

vitas [46], based on PyTorch model formats. The Log-
icNets design flow [47], also from Xilinx Research Labs,
allows for the training of quantized DNNs that map to
highly efficient Xilinx FPGA implementations. A com-
parison between the approach presented here and Logic-
Nets is provided in Section VII. The FP-DNN [48] frame-
work takes TensorFlow [33]-described DNNs as input and
maps them onto FPGAs. The open-source alternative
DNNWeaver [49] automatically generates accelerator Ver-
ilog code using optimized templates. Other frameworks
focusing on the mapping of convolutional architectures
onto efficient hardware design include Snowflake [50], fp-
gaConvNet [51–53] and Ref. [54]. For other work on
FPGA DNN inference, we refer to the recent surveys at
Refs. [36–39, 55]. TensorFlow Lite [56] is a set of tools
for on-device inference with low latency and small binary
sizes, targeting mobile, embedded and internet of things
(IoT) devices. Currently, TensorFlow Lite supports de-
ployment on Android and iOS devices, embedded Linux,
and microcontrollers.

Our approach differs from those above with its emphasis
on being a multi-backend tool, embracing a fully on-
chip design to target the microsecond latency imposed in
physics experiments. The hls4ml library is completely
open-source, and aims to provide domain scientists with
easy-to-use software for deploying highly efficient ML
algorithms on hardware.
In HAQ [28], a hardware-aware automated framework

for quantization is introduced. The automization proce-
dure consists of computing the curvature of the weight

space of a layer, assuming a low curvature will require a
lower bit-precision for the weights. Our approach differs
from HAQ by combining reduced bit-precision with filter
or neuron unit tuning, where the number of filters or
neurons can be automatically tuned during the scan. In
this case, the problem becomes highly non-linear, and we
therefore take advantage of an AutoML-type of approach.
A Bayesian optimization or randomized search is per-
formed to find a solution that encompasses the precision
used for the weights and activations, and the number of
units or filters of the layer.

IV. PARTICLE IDENTIFICATION IN THE
HARDWARE TRIGGER

A crucial task performed by the trigger system that
could be greatly improved by a ML algorithm, both in
terms of latency and accuracy, is the identification and
classification of particles coming from each proton-proton
collision. In this paper, we analyze the publicly available
dataset introduced in Ref. [13, 57]. Here, a dataset [58]
for the discrimination of jets, a collimated spray of par-
ticles, stemming from the decay and/or hadronization
of five different particles was presented. It consists of
quark (q), gluon (g), W boson, Z boson, and top (t)
jets, each represented by 16 physics-motivated high-level
features. In Ref. [13], this data set was used to train
a DNN for deployment on a Xilinx FPGA. This model
was compressed through post-training quantization in
order to further reduce the FPGA resource consump-
tion and provides a baseline to measure the benefits of
quantization-aware training with heterogeneous quantiza-
tion, over post-training quantization.

Adopting the same architecture as in Ref. [13], we use a
fully-connected neural network consisting of three hidden
layers (64, 32, and 32 nodes, respectively) with ReLU
activation functions, shown in Fig. II. The output layer
has five nodes, yielding a probability for each of the five
classes through a Softmax activation function. The model
definition in TensorFlow Keras is given in Listing 1.
As in [13], the weights of this network are homoge-

neously quantized post-training to a fixed [pont precision
yielding the best compromise between accuracy, latency,
and resource consumption. This is found to be a fixed
point precision, or bit width, of 14 bits with 6 integer bits,
in the following referred to as 〈14, 6〉. We refer to this
configuration as the baseline full model (BF). We then
train a second pruned version of the BF model, hereby
referred to as baseline pruned (BP). This model has 70%
of its weights set to zero through an iterative process
where small weights are removed using the TensorFlow
Pruning API [59], following what was done in Ref. [13].
This reduces the model size and resource consumption sig-
nificantly, as all zero-multiplications are excluded during
the firmware implementation. We then create one hetero-
geneously quantized version of the BP model, where each
layer is quantized independently post-training to yield
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Dense (64) 

〈4,0〉

Dense (32) 

Ternary

Input (16) 

〈16,6〉

Dense (32) 

〈2,1〉

ReLU ReLU ReLU Softmax

Dense (5) 

w: Binary b:〈8,3〉

 〈16,6〉〈16,6〉〈4,2〉  〈3,1〉  〈4,2〉

FIG. II. Model architecture for the fully-connected NN architecture under study. The numbers in brackets are the precisions
used for each layer, quoted as 〈B, I〉, where B is the precision in bits and I the number of integer bits. When different precision
is used for weights and biases, the quantization is listed as w and b, respectively. These have been obtained using the per-layer,
per-parameter type automatic quantization procedure described in Section VI.

TABLE I. Per-layer quantization for the different baseline models (quantized post-training). When different precision is used for
weights and biases, the quantization is listed as w and b, respectively.

Model Precision
Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF/BP 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉
BH w:〈8, 3〉 b:〈4,2〉 〈13, 7〉 〈7, 2〉 〈10, 5〉 〈5, 2〉 〈8, 4〉 w:〈7, 3〉 b:〈4,1〉 〈16, 6〉

Listing 1. TensorFlow Keras model definition.

from tensorflow.keras. layers import Input
from tensorflow.keras. layers import Dense, Activation
from tensorflow.keras. layers import BatchNormalization
x = Input((16))
x = Dense(64)(x)
x = BatchNormalization()(x)
x = Activation(’relu ’ )(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(’relu ’ )(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(’relu ’ )(x)
x = Dense(5)(x)
x = Activation(’softmax’)(x)

the highest accuracy possible at the lowest resource cost.
We start with an initial configuration of the model quan-
tization using a wide bit-width, then iteratively reduce

the bit-width until reaching a threshold in accuracy loss
relative to the initial floating-point model, evaluated on
the training set. We iterate over the model in layer order,
finding the appropriate precision for weights, biases, and
output of a given layer, before moving to the next. We
apply a more strict threshold in accuracy for earlier layers,
since each round of precision reduction only degrades the
accuracy. In this case we restrict to a 1% accuracy differ-
ence in the first layer, loosening to 2% for the final layer.
This model is referred to as the baseline heterogeneous
(BH) model. A summary of the per-layer quantizations for
the baselines is given in Table I. From Ref. [13], we know
that a post-training quantization of this model results in
a degradation in model accuracy. The smaller the model
footprint is made through post-training quantization, the
larger the accuracy degradation becomes. To overcome
this, we develop a novel library that, through minimal
code changes, allows us to create deep heterogeneously
quantized versions of Keras model, trained quantization-
aware. In addition, as the amount of available resources
on chip is known in advance, we want to find the optimal
model for a given use-case allowing a trade-off between
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model accuracy and resource consumption. We therefore
design a method for performing automatic quantization,
minimizing model area while maximizing accuracy simul-
taneously through a novel loss function. These solutions,
simple heterogeneous quantization-aware training and
automatic quantization are explained in the following
sections.

V. QKERAS: OBTAINING OPTIMAL
HETEROGENEOUS QUANTIZATION

Keras [32] is a high-level API designed for building and
training deep learning models. It is used for fast prototyp-
ing, advanced research, and production. To simplify the
procedure of quantizing Keras models, we introduce QK-
eras [60]: A quantization extension to Keras that provides
a drop-in replacement for layers performing arithmetic
operations. This allows for efficient training of quantized
versions of Keras models.

QKeras is designed using Keras’ design principle, i.e.
being user-friendly, modular, extensible, and minimally
intrusive to Keras native functionality. The code is based
on the work of Refs. [18, 22], but provides a significant
extension to these. This includes providing a richer set
of layers (for instance including ternary and stochastic
ternary quantization), extending the functionality by pro-
viding functions to aid the estimation of model area and
energy consumption, allowing for simple conversion be-
tween non-quantized and quantized networks, and pro-
viding a method for performing automatic quantization.
Importantly, the library is written in such a way that
all the QKeras layers maintain a true drop-in replace-
ment for Keras ones so that minimal code changes are
necessary, greatly simplifying the quantization process.
During quantization, QKeras uses the straight-through
estimator (STE) [19], where the forward pass applies the
quantization functions, but the backward pass assumes
the quantization as the identity function to make the
gradient differentiable.
For the model in Listing 1, creating a deep quantized

version requires just a few code changes. An example
conversion is shown in Listing. 2. The necessary code
modifications consist of typing Q in front of the orig-
inal Keras data manipulation layer name and specify-
ing the quantization type, i.e. the kernel quantizer
and bias quantizer parameters in a QDense layer. We
change only data manipulation layers that perform some
form of computation that may change the data input type
and create variables (trainable or not). Data transport
layers, namely layers performing some form of change of
data ordering, without modifying the data itself, remain
the same, e.g. Flatten. When quantizers are not speci-
fied, no quantization is applied to the layer and it behaves
as the un-quantized Keras layer2.

2 The only exception is the QBatchNormalization layer. Here, when

Listing 2. Quantized QKeras model example.

from tensorflow.keras. layers import Input, Activation
from qkeras import quantized bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization

x = Input((16))
x = QDense(64,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(5,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = Activation(’softmax’)(x)

The second code change is to pass appropriate quantiz-
ers, e.g. quantized bits. In the example above, QKeras
is instructed to quantize the kernel and bias to a bit-
width of 6 and 0 integer bits. The parameter alpha can
be used to change the absolute scale of the weights while
keeping them discretized within the chosen bit width.
For example, in a binary network, rather than using the
representations ±1, one can use ± alpha. In QKeras,
by setting alpha=“auto”, we also allow for the value of
alpha to be computed during training from the absolute
scale of the weights in question. Further details can be
found in Methods XIIB.
QKeras works by tagging all variables, weights and

biases created by Keras as well as the output of arithmetic
layers, by quantized functions. Quantized functions are
specified directly as layer parameters and then passed
to QActivation, which acts as a merged quantization
and activation function. Quantizers and activation layers
are treated interchangeably. To minimize code changes,
the quantizers’ parameters have carefully crafted and
predefined defaults or are computed internally for optimal
setup.
The quantized bits quantizer used above performs

no quantizers are specified, a power-of-2 quantizer is used for γ, σ
and β, while µ remains unquantized. This has worked best when
attempting to implement quantization efficiently in hardware and
software (γ and σ become shift registers and β maintains the
dynamic range aspect of the center parameter).
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mantissa quantization:

2int−b+1clip(round(x ∗ 2b−int−1),−2b−1, 2b−1 − 1), (1)

where x is the input, b specifies the number of bits for
the quantization, and int specifies how many bits of bits
are to the left of the decimal point.

The quantizer used for the activation functions in
Listing. 2, quantized relu, is a quantized version of
ReLU [61]. Two input parameters are passed, namely
the precision, in this case 6 bits, and number of integer
bits, in this case zero, respectively. The class has further
attributes, for instance allowing for stochastic rounding
of the activation function, all of which are described in
detail in Ref. [60]. Fig. III shows the quantized ReLU
function for three different bit widths and two different
numbers of integer bits.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

ReLU
quantized_relu( bits=2, integer=0 )
quantized_relu( bits=3, integer=0 )
quantized_relu( bits=3, integer=1 )
quantized_relu( bits=6, integer=0 )

FIG. III. The quantized relu function as implemented in
QKeras for a 2- (purple), 3-bit (green and blue) and 6-bit
(yellow) precision and for 0 or 1 integer bits. The unquantized
ReLU function is shown for comparison (orange).

Through simple code changes like those above, a large
variety of quantized models can be created. The full list
of quantizers and layers is given in Methods XIIA, or in
the QKeras code repository [60].

We use QKeras to create a range of deep homogeneously
quantized models, trained quantization-aware and based
on the same architecture as the baseline model, which will
provide a direct comparison between post-training quan-
tization and models trained using QKeras. The model in
Listing. 2 is an example of such a homogeneously quan-
tized model. Finally, we want to create an optimally het-
erogeneously quantized QKeras model with a significantly
reduced resource consumption, without compromising the
model accuracy. The search space for finding such a con-
figuration is large and exponential in layers. We therefore
attempt to automatize the process by allowing users to
scan through all the available quantizers in QKeras to
find the configuration which fits the available chip area
while maintaining high accuracy.

VI. AUTOQKERAS: RESOURCE-AWARE
AUTOMATIC QUANTIZATION

As described in Section II, there are several methods
for finding the optimal quantization configuration for
a given model. These usually proceed by calculating
the sensitivity of a given layer to quantization through
evaluation of how small disturbances within that layer
influence the loss function.
Often, as for instance in Refs [29, 30], only maximiza-

tion of the model’s accuracy and ability to generalize is
considered. However, when doing inference on the edge,
resources are often limited and shared between multiple
applications. This is for instance the case in particle de-
tectors, where a single FPGA is used to perform multiple
different tasks. The desired accuracy and size constraints
of the model in question are known in advance, and it
is desirable to optimize the precision configuration con-
sidering both model accuracy and size. Some methods,
like HAQ [28], does perform such a hardware-aware op-
timization. However, only the weight precision per layer
is considered. When models are strongly quantized, it is
often the case that more or fewer filters in convolutional
layers, or neurons in densely connected layers, are nec-
essary. A fine-tuning of the number of units per layer is
therefore crucial to achieve the highest possible accuracy
at the lowest resource cost.
In this paper, we introduce a method for performing

automatic quantization where the user can trade off model
area or energy consumption by accuracy in an application-
specific way. The per-layer weight precision, as well as
the number of neurons or filters per layer, are optimized
simultaneously. By defining a forgiving factor based on
the tolerated drop in accuracy for a given reduction in
resource-cost, the best quantization configuration and
number of units per layer, for a set of given size or en-
ergy constraints, can be found. We consider both energy
minimization and bit-size minimization as a goal in the
optimization.

A. Approximating relative model energy
consumption

In order to target a reduction in model energy consump-
tion, a high-level estimate of the model energy is needed.
Here, we only concern ourselves with the difference in
energy-consumption when comparing models using differ-
ent quantizations, and not the absolute energy, as this
is highly hardware specific. To this end, we assume an
energy model where the energy consumption of a given
layer is defined as

Elayer = Einput + Eparameters + EMAC + Eoutput.

These correspond to the energy cost of reading inputs
Einput, parameters Eparameters and output Eoutput, and
the energy required to perform Multiply and Accumulate
(MAC) operations EMAC. For the first three, in a similar
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way to compulsory accesses in cache analysis [62], we only
consider the first access to the data, as only compulsory
accesses are independent of the hardware architecture
and memory hierarchy of an accelerator, when comparing
models using the same architecture. We also assume a
fully unrolled implementation on the hardware (as is the
case with hls4ml). For the MAC energy estimation, we
only consider the energy needed to compute the MAC.
We do not include energy usage of registers, or glue and
pipeline logic that will affect the overall energy profile of
the device. For a given architecture this energy consump-
tion is known, and here we assume a 45 nm process and
follow the energy table given in Ref. [63].

Although this model provides a good initial estimate,
it has high-variance concerning the actual energy con-
sumption one finds in practice, especially for different
architectural implementations. However, when comparing
the energy of two different models, or models of different
quantizations, both implemented in the same technology,
this simple energy model is sufficient. The reason is that
one can assume that the real energy of a layer is some
linear combination of the high-level energy model, i.e.
EReal
layer = k1 × Elayer + k2, where k1 and k2 are constants

that depend on the architecture of the accelerator and
in the implementation process technology. The slope can
be considered as a factor accounting for the additional
storage needed to keep the model running, and the off-
set corresponds to logic that is required to perform the
operations. When comparing the energy consumption of
two layers with different quantizations, L1 and L2, for
the same model architecture, we have that EReal

L1 > EReal
L2

if, and only if, the estimated energy EL1 > EL2.

For these reasons, only relative energy estimates are
considered during the automatic quantization, and users
cannot target a specific energy value.

To facilitate easy estimation of the relative energy con-
sumption or model bit-size when comparing different QK-
eras models, we have implemented a tool in the QKeras
library, QTools, which performs both data type map gen-
eration and energy consumption estimation. A data type
map for weights, biases, multipliers, etc., of each layer
is generated, where the data type map includes opera-
tion types, variable sizes, quantizer types and bits. The
output is an estimate of the per-layer energy consump-
tion in pico-Joules, as well as a dictionary of data types
per layer. Included in the energy calculation is a set of
other tuneable specifications, like whether parameters and
activations are stored on static random-access memory
(SRAM) or dynamic random-access memory (DRAM),
or whether data is loaded from DRAM to SRAM. The
precision of the input can also be defined for a better
energy estimate. The full list of options can be found
in Ref. [60]. The QTools library provides an additional
metric for model tuning when both accuracy and energy
consumption, or model size, needs to be considered.

B. Defining a forgiving factor

With the high-level estimate of a given layers energy
consumption provided by QTools, we define a forgiving
factor to be targeted during automatic quantization of
the model, providing a total loss function which combines
energy cost and accuracy. The forgiving factor allows one
to tolerate a degradation in a given metric, such as model
accuracy, if the model gain in terms of some other metric,
like model size, is significantly larger. Here, we allow the
forgiving metric to be either minimization of the model
bit-size or minimization of the model energy consumption.
The forgiving factor is defined by

FF = 1 +∆acc × logR(S×
Cref

Ctrial

), (2)

where ∆acc is the tolerated reduction in accuracy in per-
cent, R is the factor stating how much smaller energy
the optimized model must have compared to the origi-
nal model (as a multiplicative factor to the FF metric)
and S is a parameter to reduce the reference size, effec-
tively forcing the tuner to choose smaller models. The
parameters Cref and Ctrial refer to the cost (energy or
bits) of the reference model and the quantization trial
model being tested, respectively. The forgiving factor
can be interpreted in the following way: If we have a
linear tolerance for model accuracy degradation (or any
other performance metric), we should be able to find a
multiple of that degradation in terms of the cost reduction
of the implementation. It enables an automatic quanti-
zation procedure to compensate for the loss in accuracy
when comparing two models, by acting as a multiplicative
factor.
tAutomatic quantization and re-balancing are then

performed by treating quantization and re-balancing of
an existing DNN as a hyper parameter search in Keras
Tuner [64] using random search, hyperband [65] or Gaus-
sian processes. We design an extension to Keras Tuner
called AutoQKeras, which integrates the forgiving factor
defined in Eq. 2 and the energy estimation provided by
QTools. This allows for simultaneously tuning of the
model quantization configuration and the model architec-
ture. For instance, AutoQKeras allows for tuning of the
number of filters in convolutional layers and the number
of neurons in densely connected layers. This fine-tuning
is critical, as when models are strongly quantized, more
or fewer filters might be needed. Fewer filters might be
necessary in cases where a set of filter coefficients get
quantized to the same value.
Consider the example of quantizing two set of filter

coefficient [−0.3, 0.2, 0.5, 0.15] and [−0.5, 0.4, 0.1, 0.65].
If we apply a binary quantizer with scale =
⌈

log2(
∑

|w|
N

)
⌉

, where w are the filter coefficients and
N is the number of coefficients, we will end up
with the same filter binary([−0.3, 0.2, 0.5, 0.15]) =
binary([−0.5, 0.4, 0.1, 0.65]) = [−1, 1, 1, 1] ×0.5. In this
case, we are assuming a scale is a power-of-2 number so
that it can be efficiently implemented as a shift operation.
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On the other hand, more filters might be needed as deep
quantization drops information. To recover some of the
boundary regions in layers that perform feature extraction,
more filters might be needed when the layer is quantized.
Lastly, certain layers are undesirable to quantize, often
the last layer of a network. In principle, we do not know
if by quantizing a layer we need more or less filters or
neurons, and as a result, there are advantages to treating
these problems as co-dependent problems, as we may be
able to achieve a lower number of resources. Note that
AutoQKeras does not completely remove model layers.

In AutoQKeras, one can specify which layers to quan-
tize by specifying the index of the corresponding layer in
Keras. If attempting to quantize the full model in a single
shot, the search space becomes very large. In AutoQK-
eras, there are two methods to cope with this: grouping
layers to use the same choice of quantization, or quantiza-
tion by blocks. For the former, regular expressions can be
provided to specify layer names that should be grouped
to use the same quantization. In the latter case, blocks
are quantized sequentially, either from inputs to outputs
or by quantizing higher energy blocks first. If blocks are
quantized one-by-one, assuming each block has N choices
and the model consists of B blocks, one only needs to
try N ×B, rather than NB options. Although this is an
approximation, it is a reasonable trade-off considering the
explosion of the search space for individual filter selections,
weight and activation quantization. Whether to quantize
sequentially from inputs to outputs or starting from the
block that has the highest energy impact, depends on
the model. For example for a network like ResNet [66],
and if filter tuning is desirable, one needs to group the
layers by the ResNet block definition and quantize the
model sequentially to preserve the number of channels for
the residual block. A few optimizations are performed
automatically during model training. First, we dynam-
ically reduce the learning rate for the blocks that have
already been quantized so that they are still allowed to
train, but at a slower pace. Also, we dynamically adjust
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FIG. IV. ROC curves of false positive rate (FPR) versus true
positive rate (TPR) for the Baseline Full (BF), quantized 6-bit
(Q6), AutoQKeras Energy Optimized (QE) and AutoQKeras
Bits Optimized (QB) models.

the learning rate for the layer we are trying to quantize
as opposed to the learning rate of the unquantized layers.
Finally, we transfer the weights of the model blocks we
have already quantized whenever possible (when shapes
remain the same).

We then use AutoQKeras to find the optimal quantiza-
tion configurations for the baseline model for extremely
resource-constrained situations, one targeting a minimiza-
tion of the model’s footprint in terms of model energy
(QE) and one minimizing the footprint in terms of model
bit-size (QB), using the different available targets in Au-
toQKeras. We want to reduce the resource footprint by
at least a factor of 4 while allowing the accuracy to drop
by at most 5%. We also allow for tuning of the num-
ber of neurons for each dense layer, for the same reason
given above for model filter tuning. The model is quan-
tized sequentially per block, where one block consists of a
Dense layer and a ReLU layer. The resulting quantization
configuration is listed in Table II. A very aggressive quan-
tization configuration is obtained for both optimizations,
with both binary and ternary quantizers and a bit-width
of 4 at maximum for kernels. Despite the large search
space, the obtained configurations are very similar as is to
be expected due to the strong correlation between model
energy and bit size. Whenever an input or the kernel
has one (binary) or two (ternary) bits, we can completely
eliminate multiplication operations in an implementation,
saving valuable multiplier resources.

The preferred number of neurons per layer is half that
of the original (32, 16, 16 rather than 64, 32, 32).

We then compare the relative energy consumption and
bit size of the QE and QB models as computed with
QTools, with respect to the simple homogeneously quan-
tized model using a 6-bit precision in Listing 2, hereby
referred to as Q6.

The QE and QB model energy consumption is reduced
by 75% when compared to the Q6 model and, despite
the aggressive quantization and reduction in neurons per
layer, only a ∼ 3% degradation in accuracy is observed
for both . The total bit size is reduced by 80%. The QB
model obtains a slightly smaller energy footprint than the
QE model, alluding to some degree of randomness when
scanning such a large search space. The relative power
consumption when implemented on FPGA hardware will
be discussed in Section VII.

All models presented above are trained minimizing
the categorical crossentropy loss [67] using the Adam
optimizer [68]. A learning rate of 0.0001 is set as the
starting learning rate. If there is no improvement in the
loss for ten epochs, the learning rate is reduced by 50%
until a minimum learning rate of 10−6 is reached. The
batch size is 1,024 and the training proceeds for 100 epochs.
The training time for the models trained quantization-
aware with QKeras is increased by ×1.5 with respect to
the Keras equivalent.

Figure IV compares the classification performance of
the BF, Q6, QE and QB models for two different target
classes, top (t) and gluon (g). These classes were chosen
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FIG. V. The full workflow starting from a baseline TensorFlow Keras Model, which is then converted into an optimally quantized
equivalent through QKeras and AutoQKeras. This model is then translated into highly parallel firmware with hls4ml.

TABLE II. Per-layer quantization configuration and the relative model energy consumption for the AutoQKeras Energy
Optimized (QE) and AutoQKeras Bits Optimized (QB) models, compared to the simple homogeneously quantized model, Q6.

Model Acc. [%] Precision E
EQ6

Bits
BitsQ6

Dense ReLU Dense ReLU Dense ReLU Dense Softmax
QE 72.3 〈4, 0〉 〈4, 2〉 Ternary 〈3, 1〉 〈2, 1〉 〈4, 2〉 w: Stoc. Bin. b: 〈8, 3〉 〈16, 6〉 0.27 0.18
QB 72.8 〈4, 0〉 〈4, 2〉 Stoc. Bin. 〈4, 2〉 Ternary 〈3, 1〉 Stoc. Bin. 〈16, 6〉 0.25 0.17
Q6 74.8 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 1.00 1.00

as the ones where the original network, introduced in
Ref. [13], had the highest and lowest AUC scores, respec-
tively. Specifically, the receiver operating characteristic
(ROC) curves of false positive rate (FPR) versus true pos-
itive rate (TPR), and the corresponding area under the
curve (AUC) is shown. For particle detector trigger appli-
cations, it is often desirable to operate the algorithm at
very low false positive rates, ensuring that only the most
interesting events are kept while staying within the avail-
able trigger bandwidth. The classification performance
of the Q6 model is almost identical to the BF model for
FPRs down to 0.1%. The QE and QB models perform
slightly worse, with AUC scores 0.02 points lower than for
Q6 and BF. For a fixed FPR of 1%, the TPR for BF/Q6
is 60% and 55% for QE/QB. No significant degradation
at very low FPR, where typical trigger algorithms would
be operated, is observed.

With AutoQKeras, we give the user full flexibility to op-
timize the quantization configuration for a given use-case.
An estimate of the model size and energy consumption
can be computed using QTools and the user can then
proceed by instructing AutoQKeras how much energy or
bits it is desirable to save, given a certain accuracy-drop
tolerance. Going from a pre-defined Keras model to an
optimally quantized version (based on available resources)
that is ready for chip implementation, is made extremely
simple through these libraries.
The final, crucial step in this process is to take these

quantized models and make it simple to deploy them
in the trigger system FPGAs (or any hardware) while

making sure the circuit layout is optimal for ultra low-
latency constraint. We will address this in the following
section.

VII. ULTRA LOW-LATENCY, QUANTIZED
MODEL ON FPGA HARDWARE

To achieve ultra low-latency inference of QKeras models
on FPGA firmware, we introduce full integration of QK-
eras layers in the hls4ml library. The libraries together,
provide a streamlined process for bringing quantized Keras
models into particle detector triggering systems, while
staying within the strict latency and resource constraints
and performing high-accuracy inference.
When converting a QKeras model to an HLS project,

the model quantization configuration is passed to hls4ml
and enforced on the FPGA firmware. This ensures that
the use of specific, arbitrary precision in the QKeras model
is maintained during inference. For example, when using
a quantizer with a given alpha parameter (i.e., scaled
weights), hls4ml inserts an operation to re-scale the layer
output. For binary and ternary weights and activations,
the same strategies as in [43] are used. With binary layers,
the arithmetical value of -1 is encoded as 0, allowing
the product to be expressed as an XNOR operation. The
full workflow starting from a baseline TensorFlow Keras
model and up until FPGA firmware generation is shown
in Fig. V. This illustrates how, through two simple steps,
Keras models can be translated into ultra-compressed,
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highly parallel FPGA firmware.
We now compare the accuracy, latency and resource

consumption of the different models derived above: The
BF, BP, and BH models derived without using QKeras,
two models optimized using AutoQKeras minimizing the
model energy consumption, QE, and model bit consump-
tion, QB, as well as a range of homogeneously quantized
QKeras models scanning bit-widths from three to sixteen3.
We compare the resource consumption and latency on chip
for each model, to the model accuracy. The resources
at disposal on the FPGA are digital signal processors
(DSPs), lookup tables (LUTs), memory (BRAM) and
flip-flops (FF). In this case the BRAM is only used as
a LUT read-only memory for calculating the final Soft-
max function and is the same for all models, namely 1.5
units corresponding to a total of 54 Kb. For larger NNs
using a higher reuse factor, and longer latency, BRAM
may also be used to store model weights. The estimated
resource consumption and latency from logic-synthesis,
together with the model accuracy, are listed in Table III.
A fully parallel implementation is used, with an initiation
interval, the number of clock cycles between new data
inputs, of 1 in all cases. Resource utilization is quoted in
the percentage of total available resources, with absolute
numbers quoted in parenthesis.
The most resource-efficient model is the AutoQKeras

Energy Optimized (QE) model, reducing the DSP usage
by ∼ 98%, LUT usage by ∼ 80%, and the FF usage by
∼ 90%. The accuracy drop is less than 3% despite using
half the number of neurons per layer and overall lower
precision. The extreme reduction of DSP utilization is
especially interesting as, on the FPGA, DSPs are scarce
and usually become the critical resource for ML applica-
tions. DSPs are used for all MAC operations, however, if
the precision of the incoming numbers is much lower than
the DSP precision (which, in this case, is 18 bits) MAC
operations are moved to LUTs. This is an advantage,
as a representative FPGA for the LHC trigger system
has O(1000) DSPs compared to O(1) million LUTs. If
the bulk of multiplication operations is moved to LUTs,
this allows for deeper and more complex models to be
implemented. In our case, the critical resource reduces
from 56% of DSPs for the baseline to 3.4% of LUTs for
the 6-bit QKeras trained model with the same accuracy.
The latency is O(10) ns for all models.

In the final two columns of Table III, we compare the
relative energy estimation from QTools with the post
place-and-route power report from Vivado for the three
QKeras models, in both cases relative to the Q6 model.
Since the target clock frequency and model initiation
interval is identical across these models, the inference rate
is the same and taking the ratio of the power is equivalent

3 Each model is trained using QKeras version 0.7.4, translated into
firmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+
FPGA with a clock frequency of 200 MHz.

to taking the ratio of the energy. Very good agreement
between the QTools relative energy estimates and the
Vivado relative power estimates is observed for the QE
and QB models, and the energy ordering is the same for
all models.

Further, we compare the results obtained using the
QKeras and hls4ml workflow to LogicNets [47]; another
work on extreme low-latency, low-resource, fully-unfolded
(II=1) FPGA implementations. The metrics are those
quoted in Table III. Two LogicNets models have been
evaluated: One using the same architecture as in this
paper, JSC-M, and another using a larger architecture
(32, 64, 192, 192, 16 number of neurons), JSC-L. For
JSC-M, an accuracy of 70.6% is quoted, 1.7 points lower
than the most resource-efficient model using QKeras and
hls4ml, QE. In addition, QE uses 1.2× fewer LUTs than
JSC-M. No DSPs are used in LogicNets, compared to the
66 DSPs in use by the QE model.

The latency has only been evaluated for JSC-L and is
quoted to be 13 ns, using a clock frequency of 384 MHz.
The final Softmax function has been removed from this
estimate. In high energy physics experiments, the final
Softmax layer is crucial since trigger thresholds usually
are set based on an algorithms false positive rate. The
threshold on the FPR is usually set as high as the trigger
bandwidth allows, maximizing the true positive rate while
straying within the bandwith-budget.

For a clock period of 5 ns, the QE model has a latency
of 55 ns, reduced to 45 ns when ignoring the final Softmax
layer. The JSC-L model has a latency of 13 ns for a clock
period of 2.6 ns.

Finally, we compare the accuracy and resource con-
sumption of a range of homogeneously quantized QKeras
models, scanning bit widths from three to sixteen. In
Fig. VI (left) the accuracy relative to the baseline model
evaluated with floating point precision is shown as a func-
tion of bit width. This is shown for the accuracy as
evaluated offline using TensorFlow QKeras (green line)
and the accuracy as evaluated on the FPGA (orange line).
We compare this to the performance achievable using the
baseline model and post-training quantization (purple
dashed line). The markers represent the accuracy of the
baseline, baseline pruned, baseline heterogeneous and Au-
toQKeras optimized models (again emphasizing that the
AutoQKeras models use half as many neurons per layer as
the baseline Keras model). Models trained with QKeras
retain performance very close to the baseline using as few
as 6-bits for all weights, biases, and activations. Accuracy
degrades slightly down to 98% of the baseline accuracy
at 3-bits precision.

Post-training homogeneous quantization of the base-
line model shows a much more significant accuracy loss,
with accuracy rapidly falling away below 14-bits. The
model resource utilization as a function of bit width for
homogeneously quantized QKeras models is shown in the
right plot in Fig. VI. The switch from DSPs to LUTs
mentioned above is clearly visible: below a bit width of
around 10, MAC operations are moved from the DSPs
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FIG. VI. Relative accuracy (left) and resource utilization (right) as a function of bit width. The right-hand panel shows the
metrics for the heterogeneously quantized models. The relative accuracy is evaluated with respect to the floating-point baseline
model. Resources are expressed as a percentage of the targeted FPGA: Xilinx VU9P.

TABLE III. Model accuracy, latency, resource utilization and relative energy estimate for six different models. The latency is
evaluated for a clock cycle of 200 MHz. Resources are listed as percentage of total, with absolute numbers quoted in parenthesis.
The energy is estimated relative to the Q6 model and correspond to the relative energy computed using QTools (second to last
column) and the relative power estimate from the post place-and-route report from Vivado (last column).

Model Accuracy [%] Latency [ns] Latency [clock cycles] DSP [%] LUT [%] FF [%]
EQK

EQK(Q6)
PHLS

PHLS(Q6)

BF 74.4 45 9 56.0 (1,826) 5.2 (48,321) 0.8 (20,132) - -
BP 74.8 70 14 7.7 (526) 1.5 (17,577) 0.4 (10,548) - -
BH 73.2 70 14 1.3 (88) 1.3 (15,802) 0.3 (8,108) - -
Q6 74.8 55 11 1.8 (124) 3.4 (39,782) 0.3 (8,128) 1.00 1.00
QE 72.3 55 11 1.0 (66) 0.8 (9,149) 0.1 (1,781) 0.27 0.30
QB 71.9 70 14 1.0 (69) 0.9 (11,193) 0.1 (1,771) 0.25 0.25

LogicNets JSC-M [47] 70.6 N/Aa N/A 0 (0) 1.2 (14,428) 0.02 (440) - -
LogicNets JSC-L [47] 71.8 13b 5 0 (0) 3.2 (37,931) 0.03 (810) - -

a Not evaluated.
b Using a clock frequency of 384 MHz.

to the LUTs and the critical resource consumption is
significantly reduced. For instance, in this case, using
a model quantized to 6-bit precision will maintain the
same accuracy while reducing resource consumption by
∼ 70%. The markers in Fig. VI show the resource con-
sumption of the heterogeneously quantized models. The
only model comparable in accuracy and resource con-
sumption to that of the AutoQKeras optimized models,
QE and QB, is the baseline heterogeneous. However, in
contrast to the QKeras models, BH has been pruned to a
weight sparsity of 70% which further reduces the resource
consumption (all zero multiplications are removed). In
addition, the process of manually quantizing a model
post-training is time-consuming and cumbersome, and
not guaranteed to always succeed due to its lossy nature.
AutoQKeras and hls4ml allows to quantize automatically
through quantization-aware training, with specific toler-
ances in terms of accuracy and area, greatly simplifying
the process.
In Ref. [69], the QKeras+hls4ml workflow has also

been demonstrated on convolutional architectures bench-

marked on the Streetview House Numbers dataset [70].
High accuracy matching the floating point model accuracy
can be maintained down to 6-bit precision with QKeras,
executed with 5µs latency. For larger convolutional ar-
chitectures like ResNet [66], hls4ml doesn’t scale due to
the very low latency target. Our main application is the
efficient implementation of tiny, custom models targeting
O(10) ns - O(1) µs latency.

VIII. CONCLUSION AND FUTURE WORK

We have introduced a novel library, QKeras, providing
a simple method for uncovering optimally heterogeneously
quantized DNNs for a set of given resource or accuracy
constraints. Through simple replacement of Keras layers,
models with heterogeneous per-layer, per-parameter type
precision, chosen from a wide range of novel quantizers,
can be defined and trained quantization-aware. A model
optimization algorithm which considers both model area



13

and accuracy is presented, allowing users to maximize the
model performance given a set of resource constraints, cru-
cial for high-performance inference on edge. Support for
these quantized models has been implemented in hls4ml,
providing the necessary chip layout instruction compo-
nents to enable ultra-fast inference of these tiny-footprint
models on a chip. We have demonstrated how on-chip
resource consumption can be reduced by a factor of 50
without much loss in model accuracy while performing
inference within O(10) ns. The methods presented here
provide crucial tools for inference on the extreme low-area
and low-latency edge, like that in particle detectors where
a latency of O(1)µs is enforced. Taking a pre-trained
model and making it suitable for hardware implementa-
tion on the edge, both in terms of latency and size, is
one of the bottlenecks for bringing ML applications into
extremely constrained computing environments (e.g. a de-
tector at a particle collider), and the workflow presented
here will allow for a streamlined and simple process, ulti-
mately resulting in a great improvement in the quality of
physics data collected in the future.

The generality and flexibility of the QKeras+hls4ml
workflow opens up for a wide array of possible future work.
This includes integration with other quantization libraries
targeting non-FPGA hardware, like TensorFlow Lite, as
well as those targeting FPGA synthesis, like FINN (and
the quantization library Brevitas) and HAQ. In addition,
while the energy estimator provides a good baseline for
relative energy consumption, as demonstrated, we hope
to extend the library to provide more device-specific ab-
solute energy estimates. We also plan to explore using
a combination of block energy and the curvature of the
weight space, as done in HAQ, when quantizing a net-
work one block at a time. Finally, work is ongoing to use
the QKeras+hls4ml workflow to deploy ML algorithms
for the next data taking period at CERN LHC both on
FPGAs and ASICs.

IX. CODE AVAILABILITY

The QKeras library, which also includes AutoQK-
eras and QTools, is available under github.com/
google/qkeras, where the work presented here is
using QKeras version 0.7.4. Examples on how to
run the library can be found in the notebook
subdirectory. The hls4ml library is available at
github.com/fastmachinelearning/hls4ml and all ver-
sions ≥ 0.2.1 support QKeras models (the work
presented here is based on version 0.2.1). For ex-
amples on how to use QKeras models in hls4ml,
the notebook part4 quantization at github.com/
fastmachinelearning/hls4ml-tutorial serves as a
general introduction.

X. DATA AVAILABILITY

The data used in this study are openly available at
Zenodo at Ref. [58] under DOI 10.5281/zenodo.3602260.
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XII. METHODS

A. Additional layers, quantizers and methods in
QKeras

In this section, we will give an overview of available
layers, quantizers and methods in QKeras.

The summary of available layers in QKeras is listed in
Table IV.

For several quantizers (including quantized bits), a
parameter called keep negative can be set.
If keep negative is true, negative numbers are not

clipped. With a lower number of bits, the rounding adds
more bias to the number system. Ref. [71] suggested using
stochastic rounding, which uses the fractional part of the
number as a probability to round the number up or down.

Stochastic rounding for quantized bits quantizers can
be turned on by setting use stochastic rounding =

github.com/google/qkeras
github.com/google/qkeras
github.com/fastmachinelearning/hls4ml
github.com/fastmachinelearning/hls4ml-tutorial
github.com/fastmachinelearning/hls4ml-tutorial
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Layers Quantizers
QDense,
QConv1D,
QConv2D,
QDepthwiseConv2D,
QSeparableConv2D,
QActivation,
QAveragePooling2D,
QBatchNormalization,
QOctaveConv2D,
QSimpleRNN,
QLSTM,
QGRU

quantized bits,
binary,
ternary,
bernoulli,
stochastic ternary,
stochastic binary,
smooth sigmoid,
hard sigmoid,
binary sigmoid,
smooth tanh,
hard tanh,
binary tanh,
quantized relu,
quantized ulaw,
quantized tanh,
quantized po2,
quantized relu po2

TABLE IV. List of available layers and quantizers in QKeras.

True. However, when an efficient hardware or software
implementation is considered, this flag should be avoided
in activation functions as it may affect the implementation
efficiency.
Activations have been migrated to QActivation, but

activation parameters passed directly in in convolutional
and dense layers will be recognized as well.
The bernoulli and stochastic functions rely on

stochastic versions of the activation functions, so they are
best suited for weights and biases. They draw a random
number with uniform distribution from sigmoid of the
input x, adding additional regularization. The result is
based on the expected value of the activation function.
The temperature parameter determines the steepness of
the sigmoid function.
The quantizers quantized relu and quantized tanh

are quantized versions of ReLU [61] and tanh functions.
The quantized po2 and quantized relu po2 quantiz-

ers perform exponent quantization, as defined in [72]. The
main advantage of this quantizer is that it provides a rep-
resentation that is very efficient for multiplication. The
parameter max value defines maximum value.
It should also be noted that the QSeparableConv2D

layer is implemented as a depthwise, followed by point-
wise quantized expansions, which is an extended form of
the SeparableConv2D implementation of MobileNet [73].
The reason we chose to use this version is that MobileNet’s
SeparableConv2D has an activation between the depth-
wise convolution and the pointwise convolution, where we
need to at least apply some form of quantization.
Besides the drop-in replacement of Keras layers, we

have written a few utility functions.
model quantize function converts a non-quantized

model into a quantized version, by applying a spec-
ified configuration for layers and activations. The
method model save quantized weights saves the quan-
tized weights in the model compatible with an inference
or writes the quantized weights in the file filename for

production. The method load qmodel loads and compiles
quantized Keras model. Methods print model sparsity
and print qstats print sparsity for the pruned layers in
the model and statistics of the number of operations per
operation type and layer. quantized model debug allows
for debugging and plotting model weights and activations.
Finally, extract model operations estimates which op-
erations are required for each layer of the quantized model,
e.g. xor, mult, adder etc.

B. Variance shift handling in QKeras

A critical aspect when training quantized versions of
tensors and trainable parameters, is the variance shift.
During training with very few bits, the variance may shift
a lot from its initialization. With popular initialization
methods, e.g. glorot normal, during the initial steps of
the training, all of the output tensors will become zero.
Consequently, the network will not be trained. For ex-
ample, in a VGG network [74] the fully connected layers
have 4096 elements, and any quantized representation
with less than 6 bits will turn the output of these layers
to be 0, as log2(

√

(4096)) = 6. For layer i, and minimum
quantization threshold ∆, the weights wi are quantized
by quantizer(wi) operation. When the gradient is com-
puted, the quantized weights will appear as a result of the
chain rule computation, as depicted in Fig. VII. With the
absolute values of all weights below ∆, the gradient will
vanish in all layers that transitively generates the inputs
to layer i. This applies to any large DNN.

FIG. VII. Variance shift and the effect of initialization in
gradient descent

QKeras mitigates this challenge by re-scaling the ini-
tialized weights appropriately. The parameter alpha is
used as a scaling factor. It can be considered as a way
to compute a shared exponent when used in weights [75].
It can be set to a given value manually, or overridden by
setting it to auto or auto po2. With alpha = "auto",
we compute scale as

∑

q(x)x/
∑

q(x)q(x) as in [24] for
the quantization function q, with a different value for each
output channel or output dimension of tensor x. This
provides a learned scaling factor that can be used dur-
ing training. With alpha = "auto po2" [19], the scaling
factor is set to be a power-of-2 number.
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For the ternary and stochastic ternary quantizers,
we iterate between scale computation and threshold com-
putation, as presented in [76], which searches for threshold
and scale tolerant to different input distributions. This
is especially important when we need to consider that
the threshold shifts depending on the input distribution,
affecting the scale as well, as pointed out by [77]. When
computing the scale in these quantizers with alpha =
"auto", we compute the scale as a floating point number.

With alpha = "auto po2", we enforce the scale to be a
power of 2, meaning that an actual hardware or software
implementation can be performed by just shifting the
result of the convolution or dense layer to the right or left
by checking the sign of the scale (positive shifts left, neg-
ative shifts right), and taking the log2 of the scale. This
behavior is compatible with shared exponent approaches,
as it performs a shift adjustment to the channel.
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