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Automatic hyoid bone detection 
in fluoroscopic images using deep 
learning
Zhenwei Zhang  1, James L. Coyle2 & Ervin Sejdić1

The displacement of the hyoid bone is one of the key components evaluated in the swallow study, as its 
motion during swallowing is related to overall swallowing integrity. In daily research settings, experts 
visually detect the hyoid bone in the video frames and manually plot hyoid bone position frame by 
frame. This study aims to develop an automatic method to localize the location of the hyoid bone in the 
video sequence. To automatically detect the location of the hyoid bone in a frame, we proposed a single 
shot multibox detector, a deep convolutional neural network, which is employed to detect and classify 
the location of the hyoid bone. We also evaluated the performance of two other state-of-art detection 
methods for comparison. The experimental results clearly showed that the single shot multibox 
detector can detect the hyoid bone with an average precision of 89.14% and outperform other auto-
detection algorithms. We conclude that this automatic hyoid bone tracking system is accurate enough 
to be widely applied as a pre-processing step for image processing in dysphagia research, as well as a 
promising development that may be useful in the diagnosis of dysphagia.

Dysphagia, a common condition among older individuals, is de�ned as an impairment in swallowing function 
during eating and drinking1. Dysphagia causes subjective discomfort and objective di�culty in the formation or 
transportation of a bolus from mouth to stomach, and prevention of errant entry of swallowed material into the 
airway. Dysphagia is a frequent clinical sign in patients with stroke, head and neck cancer and a variety of other 
medical conditions2–4. �e prevalence of dysphagia is very high: stroke is the most commonly reported etiology 
with over 50% of patients exhibiting dysphagia in the immediate post-onset stage of recovery, diminishing to a 
lower prevalence of around 11% within 6 months of onset5. Additionally, chronic dysphagia a�ects 7.2% of people 
with other neurological diseases, and 4.9% of patients treated for head and neck cancer6. Up to 40% of people over 
65 years old and more than 60% of adults in nursing home7 su�er from dysphagia. It is estimated that 25–50% of 
Americans over 602 and 17% of citizens over 65 in Europe8 will su�er from dysphagia, leading to increased risk of 
poor nutrition or dehydration. �e variation in estimation may be due to di�erent de�nitions of dysphagia, the 
method of swallowing assessment and the number of patients investigated. As a more immediate clinical conse-
quence, dysphagia may lead to misdirection of food and colonized saliva into the airway, possibly causing pneu-
monia and chronic lung disease. In many cases aspiration occurs without any obvious clinical signs of dysphagia 
(silent aspiration), postponing early identi�cation and preventive treatment therefore lowering patient survival9. 
E�orts to accurately evaluate swallowing function early a�er the onset of conditions leading to dysphagia can 
mitigate many of these health risks10.

�e video�uoroscopic swallowing studies (VFSS), also known as modi�ed barium swallow study, is the gold 
standard test for dysphagia evaluation11–14. VFSS, unlike bedside clinical examination, enables the examiner to 
visualize oral, pharyngeal and upper esophageal structure and function during patient swallowing. VFSS also 
evaluate errors of biomechanical coordination that lead to bolus misdirection. Patients with dysphagia may not 
exhibit overt signs of swallowing problems at the bedside. VFSS excels at allowing clinicians to identify occult dis-
orders in airway protection and biomechanical errors leading to impaired airway protection and transfer of food 
to the digestive system. Airway closure and upper esophageal sphincter opening are largely in�uenced by the tim-
ing and displacement of the hyolaryngeal complex during the pharyngeal stage of swallowing. During VFSS, the 
hyoid bone is the most salient anatomic structure for detecting hyolaryngeal motion15. Hyolaryngeal excursion is 
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an important feature considered by clinicians and researchers because disordered motion may signify dysphagia. 
Clinicians make subjective judgments about the completeness of hyoid displacement by gross visual inspection of 
VFSS images. In dysphagia research labs, expert judges annotate hyoid position and its key components in each 
image frame. However, the subjective clinical process is prone to judgment error, and frame-by-frame annotation 
done by researchers is time consuming and is prone to inter- and intra-rater variation16.

E�orts by researchers to develop hyoid tracking methods that combine human judgment with automated 
image processing and machine learning are still quite limited. Patrick et al. proposed a method to de�ne the hyoid 
bone in a calibration frame by identifying a region of interest manually and using Sobel edge detection to track 
the hyoid bone in subsequent frames17. Hoaasin et al. proposed a semi-automatic hyoid bone tracking system that 
can match the hyoid bone by Haar classi�er matching. However, their method still requires manual identi�cation 
of regions that clearly contain the hyoid bone18. Lee et al. developed a so�ware platform that extracted the trajec-
tory of the moving hyoid bone by calculating local binary patterns and multi-scale local binary patterns19. Kim et 
al. developed so�ware which can track, smooth and segment the hyoid bone motion from VFSS20.

Remarkable progress has been made in medical imaging techniques due to the large number of databases and 
deep convolutional neural networks (CNNs)21,22. Currently, the ideas of CNNs are mainly employed in various 
medical imaging modalities such as conventional X-ray �uoroscopy, MRI and CT for classi�cation and segmenta-
tion23–26. �e medical applications of CNNs techniques are to help clinicians diagnose and classify diseases more 
quickly, including segmentation of various tissues such as brain and organs; classi�cation of cancer, fractures, 
neurological diseases and biomedical image retrieval systems. Research based on segmentation and object detec-
tion has closely followed the development of CNNs in the last few years. Almost all recent works for the object 
detectors and segmentation are based on CNNs, a deep architecture using pretraining on ImageNet which is 
trainable end-to-end. Girshick et al. �rst described Region-based Convolutional Neural Networks (RCNN) that 
dramatically increased the performance of object detection compared to traditional features based classi�ers27. 
Traditional methods usually use sliding windows for region proposal, histograms of gradient orientation (HoG) 
or scale-invariant feature transform (SIFT) as feature extraction28,29, and support vector machine (SVM) and 
Boosting methods as classi�ers30,31. Fast-RCNN extended the idea of RCNN and improved system performance 
by sharing the computation across the proposed image regions32. �en, Faster-RCNN improved the region pro-
poser method and sped up the overall process33. In this method, only one CNN is trained and the region proposal 
reused the results of the same CNN instead of running a separate searching algorithm in the previous work. You 
Only Look Once (YOLO)34 and Single Shot MultiBox Detector (SSD)35 are existing methods that focus on better 
computation speed and performance. �ese two methods classify and regress a set of anchor boxes without using 
the idea of Regions of Interests. YOLO applies a simpler network structure, predicting bounding boxes and class 
probabilities directly from the last convolutional feature maps. SSD uses features from di�erent layers progres-
sively to predict the various size of bounding boxes. Features from the early layers were applied to predict the 
small-sized boxes while features from the latter layers are applied for larger boxes.

In previous research related to the hyoid bone motion, users manually marked a region of interest in the �rst 
frame a�er which their algorithm tracked or detected the motion of hyoid bone. �e number of images used in 
these studies was not representative of a patient population. �e hyoid bone motion analysis provides meaning-
ful solutions in clinical research settings. However, the manual tracking is time consuming and impractical in 
real-life cases. Improved hyoid bone localization and an automatic hyoid bone tracking system can help clinicians 
provide a quicker assessment of the patient. �erefore, we sought to develop a so�ware platform that can localize 
the region of interest containing the hyoid bone in subsequent video frames. �e proposed method relies on the 
CNN based object detection method. We hypothesized that our detection algorithms would accurately detect the 
location of the hyoid bone in each video frame with high accuracy when compared to the gold-standard manual 
detection method (visual inspection with frame-by-frame plotting).

�e paper is organized as follows. Section 2 reports the background and the current state-of-the-art object 
detection methods; section 3 proposes the methodology, followed by the analysis of the experimental results and 
discussion; and section 4 concludes the paper.

Material and Methods
Data Collection. In this investigation, 265 patients with swallowing di�culty underwent video�uoroscopic 
examination at the Presbyterian University Hospital of the University of Pittsburgh Medical Center (Pittsburgh, 
Pennsylvania). �e protocol for this study was approved by the Institutional Review Board at the University of 
Pittsburgh and all participants provided informed consent. All experiments were performed in accordance with 
relevant guidelines and regulations. �e age range of these subjects was from 19 to 94, and the average age was 
64.833 ± 13.56 years old. �e distribution of ages is illustrated in Fig. 1. �ere were no signi�cant di�erences in 
hyoid bones between younger and older patients in the detection task. �e main di�erence in the anatomy of 
the hyoid bone across the lifespan is density and when the greater cornua fuses to the body of the hyoid. Hyoid 
bone tracking with VFSS relies on identi�cation of landmarks on the body of the hyoid bone without regard to 
cornua36. Patients swallowed radiopaque liquid boluses of di�erent consistencies and volumes as well as pureed 
food and cookies during their VFSS examination. �e volumes and viscosity of material administered to patients 
were determined during the examinations in real time by clinicians based on factors such as the patient’s history 
and clinical indications. �ese liquids included thin liquid (Varibar �in Liquid with <5 cPs viscosity), and 
nectar-thick liquid (Varibar Nectar with about 300 cPs viscosity). �e position of patients during swallowing was 
primarily neutral head position though some swallows were performed in a head-neck �exion position. Patients 
swallowed liquid boluses from a spoon containing 3–5 mL volumes, or self-administered boluses from a cup 
containing patient self-selected, comfortable volumes between 10–20 mL.

Video�uoroscopy was set at 30 pulses per second (full motion) and video images were acquired at 60 frames 
per second by a video card (AccuStream Express HD, Foresight Imaging, Chelmsford, MA) and collected into a 
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hard drive with a LabVIEW program. �e videos were two-dimensional digital movie clips of 720 × 1080 reso-
lution, and in this investigation, we down-sampled the video clips to 30 frames/second to eliminate duplicated 
frames.

Methods. In this investigation, our solution is to build a detection system based on the single shot multibox 
detector, which is one of the most popular detection algorithms in recent years. �e SSD algorithm can generate 
high detection performance at the cost of high computational complexity. �us, we also evaluated the perfor-
mance of several other state-of-the-art detection methods, i.e., Faster-RCNN and YOLOv2, for comparison. �e 
following paragraphs describe the SSD approach, the data set ground truth creation and the training and testing 
details.

Network Architecture. Machine learning has been widely used in medical imaging and videos to help users 
better understand the properties of these data37. Neural networks are one of the most popular types of machine 
learning models. �e basic idea of neural networks is to multiply the input data with layers of weighted connec-
tions. Deep neural networks consist of a typical architecture of neural networks, constructed by multiple layers. 
Each layer implements a series of convolution operators on input, followed by a non-linear activation function, 
such as a logistic function or a recti�ed linear unit (Relu). �en a pooling layer is applied to reduce the size 
of features to the following layers38. Popular convolutional neural networks for image tasks include AlexNet39, 
GoogleNet40, VGG net41 and Residual Net42.

�e SSD is a feed-forward convolutional neural network built on image classi�cation neural network, called 
base network, such as VGGNet, ZFNet or ResNet35. Eight additional convolutional feature layers are added a�er 
these base networks to replace the last few layers of the base networks. �e size of these layers decreased progres-
sively and were used as output layers for the prediction of detections at multiple resolutions. SSD integrated both 
higher and lower feature layers, as the lower layers contain better location information and the higher layers have 
more image details43. �e images are divided into di�erent grid sizes which are associated to default bounding 
boxes. �e correspondence between the position of the default box and the feature cell are �xed. SSD predicts the 
objects based on default boxes instead of predicting the bounding boxes directly. �e default boxes are assigned 
with di�erent scales and aspect ratios, which provides information on di�erent object scales. �e scale of each 
feature map is manually designed as:
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with various scales and aspect ratios from all locations of added feature maps, SSD predictions can cover di�erent 
input sizes and shapes. Figure 2 illustrates the idea of default boxes.

A set of convolutional �lters are applied to the added features layers to perform the bounding box regression 
and category classi�cation. For each feature layer of size m × n with p channels, a 3 × 3 × p small kernel �lter is 
applied to produce one value at each feature map cell, where the outputs are classi�cation scores as well as the 
o�sets relative to the bounding box shape.

�e label of SSD includes the class and the o�sets from the default boxes. �e default boxes are matched with 
ground truth if their intersection over union (IOU) is over 0.5. IOU is de�ned as Area of Overlap/Area of Union. 
�e loss function of SSD combines a so�max loss for the con�dence loss and a Smooth L1 loss for localization 
loss. �e overall objective loss function is

Figure 1. �e age range of participants are from 19 to 94. Most of subjects are in the age range 43–83 years old.
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where N is the number of matched default boxes and α is set to 1 by cross-validation. �e SSD framework is 
shown in Fig. 3. For more details of the SSD network and loss function please refer to35.

Training and Testing. Expert judges in VFSS image measurements manually annotated the hyoid bone loca-
tion (coordinate of le� corner, height and width) in each frame of the videos. To evaluate the reliability of the 
swallowing analysis, 10 swallow cases were utilized. �ree experts analyzed the same 10 swallows. Inter-rater 
reliability was tested between raters and experts analyzed the same cases one month later for intra-rater reliabil-
ity. ICC score were over 0.9 for all measures of reliability. �e swallow data were split and distributed to each of 
the experts. �eir annotations were considered as ground truth (gold standard). �e data were randomly sepa-
rated by patients: 70% of the patients were split into training data which contained around 30,000 frames with 
annotations, while 30% of the patients were split into test data which contained around 18,000 frames. We chose 
both VGG-16 and ResNet-101 as base networks, and considered two image resolutions for inputs: 300 × 300 
and 500 × 500. We compared models trained on both base networks and both resolutions inputs. �e input with 
size 500 × 500 should provide better performance as more details can be detected in higher resolution images. 
However, a larger image size increases the computation complexity. Furthermore, we compared the results with 
YOLO and Faster-RCNN and used a training procedure similar to the original papers. We chose 0.0005 as our 
learning rate with multi-steps, dividing by 10 for iteration 4000 and 8000. �e momentum is 0.9 and gamma is 
0.1 for the optimizers.

Evaluation of Accuracy. �e performance of the detection module is measured by mean average precision 
(mAP), which is the most commonly used evaluation method for object detection. Average precision estimated 
whether detected bounding boxes match the corresponding ground truth. Mean average precision is the area 
below the precision-recall curve, which integrates precision and recall while varying from 0 to 1. As we have just 

Figure 2. �e idea of default boxes applied in SSD. For each default box, the o�sets and con�dence for 
categories are predicted.

Figure 3. Architecture of Single shot multibox detector.
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one class to classify, mean average precision is the average precision for the hyoid bone class. �e bounding box 
is labeled as true positive if IOU is greater than 0.5. Precision evaluates the fraction of true positive bounding 
box over all predictions and recall evaluates the fraction of the true positive detected bounding boxes among all 
ground truths.

Results
Table 1 shows results of the state-of-the-art published methods on our VFSS image dataset. Overall, SSD 
method outperforms the results produced by YOLOv2 and Faster-RCNN. Among SSD method, VGGNet with 
input size of 500 × 500 produced the best result compared to ResNet and input size of 300 × 300. �e mAP of 
SSD500-VGGNet is 89.14%, which is 0.11% better than using ResNet-101 as base network and 2.45% better than 
using the smaller image input size. Figure 3 shows the example results by manual segmentation, SSD500-VGGNet, 
Faster-RCNN and YOLOv2. Figure 4 illustrated the performance of these methods on VFSS images. We selected 
two di�erent cases as examples: patient swallowing the bolus in neutral head position or in chin down position. 
In comparing automated hyoid detection to the ground truth, we used the bounding box to locate the hyoid 
bone. Most of the object detection methods use the bounding box to locate and classify the content inside. In the 
example case, all three tested methods revealed a positive result, detecting the hyoid bone location successfully. 
However, the Faster-RCNN method produced two regions of interest that it considered as the hyoid bone with a 
close con�dence score.

Figure 5 illustrates results using the SSD500-VGGNet method with di�erent hyoid bone locations (under the 
mandible and behind the mandible), and the results are shown with di�erent image qualities. From these results, 
SSD500-VGGNet showed stable detection results, clearly �nding the hyoid bone. When the hyoid bone is hidden 
behind the mandible in case (a) and (b), the algorithm detected the hyoid bone with a relatively low con�dence 
score. It performed well in case (c) and (d) where the hyoid bone is present under the mandible.

Figure 6 shows the change of training loss function and the performance on test data during the training of 
SSD models. �ese �gures illustrate how the performance of the model changes during training. �e loss function 
dramatically decreased in the �rst 1000 iterations and the loss function only slightly decreased in the following 

Model Mean average precision

YOLOv2 33.10%

Faster-RCNN + ZF 69.01%

SSD300-VGG 84.37%

SSD300-ResNet 81.92%

SSD500-VGG 89.14%

SSD500-ResNet 89.03%

Table 1. Comparison of mAP with di�erent models.

Figure 4. �e identi�cation of hyoid bone using di�erent method: ground truth (yellow), SSD500-VGG 
(orange), Faster-RCNN (red), and YOLOv2 (pink).
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training iterations. �e training errors of SSD300-VGG were always higher than those of SSD500-VGG. SSD300 
with di�erent pre-trained models showed a similar training loss trend and test accuracy.

Discussion
In this investigation, we aimed to detect the location of the hyoid bone in the video�uoroscopic images without 
human intervention. �e hyoid bone is an important structure considered in dysphagia assessment. Its motion 
can be related to the severity of dysphagia and is used to assess treatment e�ectiveness. Manual tracking of hyoid 
bone data from VFSS is the gold standard accepted by experts and clinicians. Manually segmenting and anno-
tating is time-consuming and prone to judgment error. �e hyoid bone motion data presented in this paper can 
be applied in further investigations such as statistical methods and classi�cation based on machine learning. A 
quantitative and quali�ed computer-aided system is highly desirable in clinical work in which the availability of 
an expert clinician to judge VFSS is not ubiquitous. Currently in dysphagia research, human judgment is neces-
sary to annotate hyoid position in initial video frames. Elimination or mitigation of human judgment regarding 
hyoid motion could speed up image processing without compromising accuracy. �e following sections discuss 
the performance of each method and possible factors that may have in�uenced the results.

We examined the performance of di�erent object detection methods (Faster-RCNN, YOLOv2, and SSD) to 
locate hyoid bone in our VFSS image dataset. For the deep architecture, we employed the medium-size network 
VGGNet, the relatively larger-size network ResNet 101 for the SSD and a small network ZFNet for Faster-RCNN. 
YOLOv2 is from the original Darknet model34. �e SSD500-VGGNet achieved better results than other CNN 

Figure 5. Results on di�erent image conditions using SSD500-VGGNet: (a,b) hyoid bone hides behind 
mandible (c,d) hyoid bone is slightly blurred during motion.
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based models, indicating that it is the most suitable method for hyoid bone detection in VFSS images. It is not 
surprising that YOLO achieve the worst performance on VFSS data. �e hyoid bone is a small object in the VFSS 
images. YOLOv2 is a fast object detection method but is weak for small object detection as it applies global fea-
tures which doesn’t obtain enough details for small objects. SSD500 is better than SSD 300 in all settings by using 
ResNet-101 or VGGNet-16. �e reasons might be as follows. SSD resizes the input images to a �xed size: SSD300 
resizes the images into 300 × 300 while SSD500 resizes images into 500 × 500. �e training errors of SSD300 
model is higher than those in SSD500. Resizing the already small hyoid bone in images into a smaller size may 
result in a loss information. SSD300 cannot learn the details of the hyoid bone, which leads to worse performance. 
Furthermore, ResNet reached a similar mAP to VGGNet in SSD500 but it has worse performance in SSD300. 
ResNet-101 is a neural network with 101 layers, while VGG-16 has 16 layers. �e similar performance in SSD500 
may indicate that both networks provide detailed information for the added features layers. In the case of SSD300, 
the models with VGG networks had slightly smaller training loss a�er iteration 8000, which might explain why 
VGG performed better on test data. �e SSD method is a powerful tool to detect the hyoid bone location, how-
ever, training SSD models with ResNet-101 and VGGNet with larger input size is time-consuming. We imple-
mented our algorithms on the NVIDIA Tesla M40 GPU. It took over one week to train both the SSD500-VGG16 
models and SSD500 with ResNet-101. �e Faster-RCNN took only one day because ZFNet is a small neural 
network.

�e hyoid bone moves upward and forward during a patient’s swallow. It will sometimes rise into the radio-
graphic shadow of the mandible, obscuring its visibility by the judge/examiner. �e judges must compare adjacent 
frames to infer the hyoid’s actual location when it is obscured by the mandible. Figure 5(a) and (b) show the detec-
tion of the hyoid bone. Although the con�dence score is low, our algorithm can be considered successful because 
experts may not be able to locate the hyoid bone. Figure 5(c) and (d) are examples of blurred hyoid bone. �e 
hyoid bone may be blurred when it moves quickly between two frames, but the algorithm can detect the moving 
hyoid bone with a high con�dence score.

X-ray images vary in quality because clinicians control dosage to patients to the least amount of radiation as 
possible. �us, as shown in the Fig. 5, the brightness and, contrast of each x-ray image is di�erent, altering the 
amount of useful information in each image. As shown in Fig. 7, the SSD method detects the obscured hyoid 
bone location with a low con�dence score or does not detect the hyoid bone location, similar to a guess when 
humans attempt to locate these cases. We know the location of the hyoid bone as the pre-knowledge, and seek to 
�nd a target around the predicted location while eliminating impossible regions one by one. �e object detection 
algorithm classi�es the regions based on the default boxes, which is a direct way to make the decision and can’t 
fully make use of outside information.

We investigated the performance of our model in the hyoid bone location task, however, our research had 
several limitations. X-rays images are o�en low quality, and the quality may vary from machine to machine. 
Whether the model can achieve similar performances across varied image quality requires further investiga-
tion. Furthermore, our investigation included data from 265 patients from the same hospital, which may pro-
vide limited diagnostic variability in patients. Additional data should be collected to improve the performance 
and stability of our model. Prior research44 indicated that Faster-RCNN with inception ResNet v2 has the best 
object detection results when compared to other modern object detection methods. Furthermore, several stud-
ies focused on small object detection, such as feature pyramid network45, which may be a direction for further 
research to increase the detection performance of the hyoid bone. For clinical relevance, future work should 

Figure 6. �e in�uence of training loss and model performance of SSD models with di�erent input sizes and 
pre-trained models.
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investigate automatic segmentation of hyoid bone areas, examine data to determine whether or not hyoid dis-
placement is disordered, and determine if hyoid motion is the biomechanical etiology of impaired airway closure 
or upper esophageal sphincter opening. Moreover, since SSD detection methods detected the hyoid bone, future 
investigations will explore detecting other key components in video�uoroscopy images. Given the millions of 
VFSS studies implemented, high-accuracy component detection can save experts considerable time during their 
diagnosis.

Conclusion
In this paper, we investigated hyoid bone detection in video�uoroscopy images using a deep learning approach. 
We used 1434 swallows on VFSS videos as our dataset. �e hyoid bone location was manually annotated in 
each frame of the videos. We considered each frame as the single sample and trained 70% of the frames using 
state-of-the-art object detection methods. �e SSD-500 model tracked the location of the hyoid bone on each 
frame accurately. Ideally, hyoid bone motion information can be used for physiological analysis. We believe that 
this proposed model has the potential to improve the diagnosis assessment of dysphagia.
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