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cases got similar clinical risk scores as the two experts. The 

presented fully automatic labeling algorithm can identify 

and assign labels to the extracted coronary centerlines for 

both RD and LD circulations.

Keywords Coronary computed tomography angiography 

(CCTA) · Coronary artery labeling · Coronary artery 

dominance

Introduction

As a non-invasive imaging modality, coronary computed 

tomography angiography (CCTA) is widely used for the 

diagnosis of cardiovascular disease [1]. It provides detailed 

information about the anatomy of the coronary arteries 

and the characteristics of coronary atherosclerosis such as 

the extent of calcifications, the volumetric plaque burden, 

degree of stenosis and occlusions. In clinical practice, radi-

ologists and cardiologists usually report these pathological 

findings per artery or per segment according to the soci-

ety of cardiovascular computed tomography (SCCT) image 

guidelines [2] and CAD-RADS™ reporting system [3].

Previous studies have demonstrated the clinical sig-

nificance of stenosis localization. For example, a different 

weight factor is applied to each coronary segment in the 

SYNTAX score [4] which is designed to determine the 

extent and complexity of coronary artery disease (CAD). A 

worse prognosis for patients with acute myocardial infarc-

tion is caused by a proximal located lesion compared to 

more distal located lesions [5, 6]. Also, previous studies 

have shown that automatic quantification of CCTA images 

is feasible [7, 8]. Therefore, automated lesion reporting and 

risk stratification requires an automatic coronary artery 

extraction and identification algorithm.

Abstract An automatic coronary artery tree labeling 

algorithm is described to identify the anatomical seg-

ments of the extracted centerlines from coronary computed 

tomography angiography (CCTA) images. This method 

will facilitate the automatic lesion reporting and risk strati-

fication of cardiovascular disease. Three-dimensional (3D) 

models for both right dominant (RD) and left dominant 

(LD) coronary circulations were built. All labels in the 

model were matched with their possible candidates in the 

extracted tree to find the optimal labeling result. In total, 

83 CCTA datasets with 1149 segments were included in 

the testing of the algorithm. The results of the automatic 

labeling were compared with those by two experts. In all 

cases, the proximal parts of main branches including LM 

were labeled correctly. The automatic labeling algorithm 

was able to identify and assign labels to 89.2% RD and 

83.6% LD coronary tree segments in comparison with the 

agreements of the two experts (97.6% RD, 87.6% LD). The 

average precision of start and end points of segments was 

92.0% for RD and 90.7% for LD in comparison with the 

manual identification by two experts while average differ-

ences in experts is 1.0% in RD and 2.2% in LD cases. All 
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Identification of the coronary tree anatomy, i.e. auto-

matically assigning labels to the segments of coronary trees 

was limited to the right dominant (RD) coronary trees in 

most previous studies [9–12]. Although ~86% of patients 

have a RD [13] coronary system, a widely applicable sys-

tem should also be able to deal with left dominant (LD) 

coronary trees [14–16].

A number of previous methods have shown that the 

centerlines of coronary arteries in CCTA images can be 

extracted automatically [17–19]. This paper presents a 

labeling method to automatically identify and assign labels 

to the anatomical segments of the entire coronary tree. The 

assigned label and the location of the start and end points of 

the label are compared with the results from human observ-

ers. Furthermore, current clinical risk scores are computed 

to show the performance of the identification method in 

risk score assessment.

Materials and methods

Patients

The patient population consisted of 100 clinical datasets 

(62 RD cases and 38 LD cases), including: five RD cases 

to refine the RD model which was derived from Dodge 

et al. [20]; 11 LD cases to build and train the LD model; 

and the remaining 84 cases for testing and evaluation of the 

method. The 100 datasets did not include cases with severe 

lesions at the proximal parts of the main branches or coro-

nary anomalies. The institutional review board of the Lei-

den University Medical Center approved this retrospective 

evaluation of clinically collected data. The need for written 

informed patient consent was waived.

The labeling method was applied to the extracted cen-

terlines of the coronary trees. Cases with heavily calcified 

plaques or step/motion artifacts were handled similarly 

as long as the centerlines were successfully extracted or 

manually corrected by experts. The coronary centerlines for 

all the 100 datasets were extracted by a method presented 

by Yang et al. [18].

CTA acquisition

Data acquisitions were performed with a 64-detector row 

CT scanner (Aquilion 64, Toshiba Medical Systems, 

Tokyo, Japan) or 320-detector row CT scanner (Aquilion 

One, Toshiba Medical Systems, Tokyo, Japan) according 

to a previous described protocol [21]. In short, if the heart 

rate was higher than 65 beats per minute, oral or intrave-

nous β blockers were administered, if not contra-indicated. 

In total, 60–110 mL non-ionic contrast material (Iomeron 

400, Bracco, Milan, Italy or Ultravist 370, Bayer Schering 

Pharma AG Berlin, Germany) was administered followed 

by a saline flush with a flow rate of 5 mL/second. Thereaf-

ter, images were reconstructed at the best phase of the R–R 

interval. The average image size and voxel size of the data-

sets were 512 × 512 × 512 and 0.307 × 0.307 × 0.25  mm, 

respectively.

Automatic tree labeling method

Figure 1 displays different steps in the identification of all 

the segments in the coronary artery tree. A three-dimen-

sional (3D) coronary tree model provides anatomical a 

priori knowledge of coronary arteries. With the 3D model, 

a three-step labeling method is used to perform the identifi-

cation: (1) Align the model with the patient coronary tree to 

identify the main branches, and separate the coronary tree 

into sub-trees according to the main branches; (2) Evaluate 

the matching costs for the segments in each sub-tree to find 

optimal correspondence between model and patient tree; 

and (3) Apply logical rules which were translated from the 

clinical experience to adjust and refine the labels on all seg-

ments to obtain the final labeling.

Fig. 1  Different steps in the identification of all the segments in the coronary artery tree
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Coronary artery tree model

Both RD and LD models are composed of three main 

branches: right coronary artery (RCA), left anterior 

descending (LAD), left circumflex (LCX), and their 

derived side-branches. The labels in the models are based 

on the 15-segments model defined by the American Heart 

Association (AHA) [22], which is widely adopted in the 

clinical practice. Additionally, ramus intermedius (RI) 

arteries which originate near the LAD-LCX bifurcation 

are added to the models. Furthermore, the obtuse marginal 

(OM) branches are distinguished as the first obtuse mar-

ginal (OM1) and the second marginal (OM2) according to 

the SCCT guidelines [2]. All the labels used in this paper 

are summarized in Table 1.

Right dominant model: The initial 3D RD model was 

created using the 2D angiography statistical information 

from Dodge et  al. [20]. Then five randomly selected RD 

cases were used to refine and obtain the final RD model. 

The initial results of this RD model were presented by 

Yang et  al. [12]. The balanced type cases were treated as 

RD in this paper.

Left dominant model: Coronary artery dominance is 

defined in terms of which artery supplies the posterior 

descending artery (PDA) [23]. Because of the difference in 

PDA and LD cases were not included in Dodge et al. [20], 

a separate LD model was created. The LD model was built 

from 11 randomly selected training-datasets using a leave-

one-in cross validation scheme as follows. Each time, one 

of the 11 cases was chosen as the initial LD model, after 

which the lengths of the branches of the model were nor-

malized to the average lengths of the 11 training datasets. 

The remaining ten training cases were used to validate the 

model. Finally, the model with the best validation results 

was defined to be the final LD model. Additionally, the 

LPDA was defined as the end of the LCX. The distal part 

(dRCA) of the RCA was excluded from the LD model, 

since the dRCA was not present in the selected training 

datasets. From a clinical point of view, the discrimination 

of proximal (p-), mid (m-) or distal (d-) RCA segment is 

not important in LD cases.

Main branch identification

The patient coronary tree has a different location, orienta-

tion and size compared to the model, so a point-set regis-

tration method [24] is introduced to align the 3D model 

with it. Before the alignment, centerlines of the patient 

coronary tree and the model are normalized and re-sampled 

to remove scale variance; all side-branches from the 3D 

model are removed to reduce their influence on the regis-

tration. Weight factors, defined as the number of all child 

arteries originating from the current segment, are assigned 

to the points in the patient coronary tree to ensure that their 

main branches attract the main branches in the model.

RCA, LAD, or LCX is identified as the centerline in the 

patient coronary tree with the minimal distance to the cor-

responding main branch in the aligned model. The over-

lapping part of the identified LAD and LCX is marked as 

LM. Branches derived from the LAD–LCX bifurcation are 

labeled as RI arteries. This step provides an initial identi-

fication of the main branches in the patient coronary tree, 

because the distal parts of the main branches have a lower 

weight factor as their side-branches. In the next section, an 

iterative algorithm is described to find the optimal corre-

spondence of each label in the 3D model.

Segment labeling

Before labeling all the segments, short side-branches (less 

than 1 cm) and side-branches that have obtuse angles (more 

than 120° away from the main branches) at the bifurca-

tions are removed. The rigid transformation obtained in 

the previous step is used to deform the 3D model with all 

side-branches.

By minimizing a cost function, an iterative algorithm is 

applied to find the optimal labeling result from all possible 

labeling results [12]. According to the identified three main 

Table 1  Labels used in the 

coronary artery tree labeling

LM left main artery, RCA right coronary artery, LAD left anterior descending, LCX left circumflex, LD left 

dominant, RD right dominant, p proximal, m mid, d distal

Main branch Labels of main branch Labels of side-branches

LM /

Sub-trees RCA pRCA, mRCA, dRCA Right posterior lateral (RPLB) branch

RD type: right posterior descending (RPDA) artery

LAD pLAD, mLAD, dLAD Two diagonal arteries (D1, D2)

LCX pLCx, LCx Two obtuse marginal (OM1, OM2) arteries, left 

posterior lateral (LPLB) branch

Anterolateral (AL) artery or ramus intermedius 

(RI) arteries

LD type: left posterior descending (LPDA) artery
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branches, the extracted coronary tree can be separated into 

three sub-trees with each sub-tree containing one identified 

main branch and several side-branches. Figure 2 illustrates 

the iterative process of labeling one of the sub-trees. Three 

sub-trees are subsequently matched with the corresponding 

sub-trees in the model to get all the segments labeled.

Labeling results refinement

In clinical practice, the proximal, mid and distal parts of 

LAD and LCX are separated at the bifurcations of the spe-

cific side-branches according to AHA coronary artery clas-

sification [22]. The labeling result obtained from the pre-

vious two steps as shown in Fig.  2 may not satisfy these 

requirements. Some criteria were defined in Yang et  al. 

[12] to adjust the obtained labeling result.

Additionally, by transforming clinical experience into 

logic rules, RI branches are discriminated into RI and ante-

rolateral (AL) branches based on the distance of their ori-

gin from the LAD–LCX bifurcation. The distance thresh-

old for RI branches is defined as 0.5 cm according to the 

clinical experience of cardiologists. If the side-branches 

originate from the LCX and the distance from its opening 

to the LAD–LCX bifurcation is less than 2 cm, these side-

branches are labeled as AL branches. Branches bifurcating 

after more than 2 cm from the LCX ostium are treated as 

OM branches.

If these cases mentioned above are not present in 

the labeling result, the initial labeling result will not be 

changed.

Evaluation measures

For each label, the presence and the accuracy of the start 

and end points are evaluated. In order to validate the 

clinical performance of the identification method on each 

patient or each coronary tree in the aspect of risk score 

assessment, the accuracy for clinical risk scores is also cal-

culated. Automatic labeling results were compared with 

the manual labeling from two experts. Two experts with at 

least 4 years of experience in cardiac CT imaging indepen-

dently assigned labels to the coronary tree segments, and 

subsequently verified the results for each other to correct 

any mistakes. As differences between the experts remained 

after their verification, inter-observer variability of the 

manual labeling is also analyzed.

Presence

In this step, evaluate the labels in Table 1 present or not. 

As the automatic method may omit or wrongly assign the 

label on some segments and different opinions also exist 

between the two experts, three situations are considered. 

For each label: (1) If both experts agreed with the result 

of the automatic method, the automatic assigned label is 

treated as definitely correct; (2) If both experts disagreed 

with the results of automatic method, automatic assigned 

label is treated as definitely wrong; (3) If expert1 disagreed 

with expert2, this means either of them would agree with 

the automatic method. In this situation, the presence of the 

label is ambiguous, automatic assigned label is treated as a 

semi-correct.

Fig. 2  The iterative algorithm for labeling all segments. Abbreviations can be found in Table 1
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Overlap

After the evaluation of the presence of labels, the start 

and end points of a labeled segment are compared with 

the results of the two experts. An overlap measurement is 

defined in Fig. 3 to quantify the labeling accuracy for each 

presented label. Along the extracted centerline, the points 

with the same label in both automatic and experts labeling 

results are marked as true positive (TP), otherwise (i.e. 

longer or shorter part of the segments), marked as false 

positive (FP). The overlap measure for the label A between 

automatic and experts labeling results is defined as.

Accuracy for clinical risk scores

The labeling accuracy for current clinical risk scoring mod-

els is evaluated for all patients. In current literature, several 

risk scores of the coronary plaques in the coronary tree are 

OV
A
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‖
‖TP

A
‖
‖

‖
‖TP
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‖
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‖
‖FP
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‖

available to provide an estimate of prognosis of cardiovas-

cular diseases [25, 26].

In order to fit the clinical meaning, assume that all the 

segments have plaques in this method, four scores are cal-

culated. (1) The ability to identify all segments of the three 

main branches (i.e. RCA, LAD, LCX). (2) The ability to 

label the proximal segments of these three main branches 

including LM. (3) The segment involvement score (SIS) 

[27] per patient is calculated. SIS is defined as the total 

number of correctly labeled segments with regard to the 

segments labeled by experts. (4) The Leaman score [25], 

as also applied in the SYNTAX-Score [4], is computed by 

assigning a weight factor ranging from 6 (LM in LD) to 0 

(p-, m-, d-RCA in LD) to each coronary segment. For each 

patient, the Leaman scores are calculated as the summation 

of the weight factors of all the correctly labeled segments. 

The labeling of OM in the Leaman score is correct if one 

of the OM1 or OM2 is labeled correctly. Both SIS and the 

Leaman score are shown as the proportion compared to the 

results of experts.

Statistical analysis

The presence of each label is reported as an absolute num-

ber. Agreements or disagreements of the presence are 

expressed as percentages. The accuracy for overlap and 

clinical risk scores are illustrated as absolute numbers or 

percentages ± standard deviation (SD) where appropriate.

Results

The automatic labeling of one coronary tree took less than 

3 s on a PC with a Quad Core 2.4Ghz processor and 8 GB 

RAM. One dataset was excluded from the RD evaluation 

datasets because of an extraction problem of LAD. In total, 

83 (56 RD and 27 LD) cases were used in the evaluation. 

Baseline characteristics of the 83 patients are depicted in 

Table 2. 61 patients were male and the mean age was 59.9. 

A total number of 1149 (795 for the RD cases and 354 for 

the LD) segments were included on which the automatic 

method or experts assigned any labels. Figure 4 shows the 

results of applying the automatic labeling approach on a 

RD and a LD case.

Figures 5 and 6 show an overview of agreements and 

disagreements on the presence of labels among the auto-

matic method, expert1 and expert2 for RD and LD cor-

onary trees, respectively. For each label, numbers show 

the amount of agreed or disagreed segments, and by add-

ing all the numbers in a, b and c, one can get the total 

numbers of the segments involved. For instance, in the 

RD datasets (Fig.  5) the total number of segments with 

label OM2 can be computed as follows. Starting with 11 

Fig. 3  Definition of the overlap measure used in the evaluation. TP 

true positive, FP false positive

Table 2  Patient characteristics

Data are represented as mean ± SD or as number and percentages of 

patients

CAD coronary artery disease

*Defined as the presence of coronary artery disease in first-degree 

family members at age <55 years in men and <65 years in women
a Defined as systolic blood pressure ≥140  mm Hg and/or diastolic 

blood pressure ≥90 mmHg or the use of antihypertensive medication
b Defined as serum total cholesterol ≥230 mg/dL or serum triglycer-

ides ≥200 mg/dL or treatment with lipid lowering medication

Total (83)

Age (years) 59.9 ± 11.4

Gender (% male) 61 (73%)

Diabetes 20 (24%)

Hypertensiona 34 (41%)

Hypercholesterolemiab 37 (45%)

Family history of CAD* 26 (31%)

Smoking 15 (18%)

Obesity 22 (27%)
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segments in which all agree from Fig.  5a plus 9 where 

the experts disagree with the automatic from Fig.  5b, 

and plus 3 where both experts disagree from Fig.  5c 

makes a total of 23 segments. The percentages of these 

agreements and disagreements with respect to the total 

segments involved are illustrated in different colors, and 

green color shows a 100.0% agreement (Fig. 5a) or 0.0% 

disagreement (Fig. 5b, c).

Fig. 4  Coronary artery tree 

labeling result with their labels 

surrounded by a RD coronary 

tree, b LD coronary tree. All 

segments including proximal, 

mid and distal parts as well 

as side-branches were labeled 

correctly

Fig. 5  Agreements and disagreements among expert1, expert2 and 

the automatic method for RD cases. a Agreements among expert1, 

expert2 and automatic method, b disagreements between experts and 

automatic method, c disagreements between expert1 and expert2. 

For each label, numbers show the amount of agreed or disagreed 

segments, and by adding all the numbers in (a), (b) and (c) can get 

the total numbers of the segments involved. The percentages of 

agreement and disagreement in comparison with the total segments 

involved are illustrated in different colors, and green color shows a 

100.0% agreement (a) or 0.0% disagreement (b) and (c). For instance, 

0 (100.0%) out of total three LPLB segments get agreements among 

both experts and automatic method in (a) while in 2 (66.6%) LPLB 

segments, both experts disagreed with automatic method in (b) and 

in 1 (33.3%) LPLB segment that expert1 didn’t agree with expert2 in 

(c). Abbreviations can be found in Table 1
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Presence

The agreement on the labeling of the two experts is 776 

(97.6%) RD segments and 310 (87.6%) LD segments by 

adding the numbers in Figs. 5a, b and 6 a, b, respectively. 

Seen from Figs. 5a and 6a, the presence of the labels on 709 

(89.2%) RD and 296 (83.6%) LD segments were definitely 

correct, on which both experts and the automatic approach 

assigned the same labels. For all the cases, the labels of the 

proximal segments (pRCA, pLAD and pLCx) including 

LM were always present and got a 100.0% agreement.

Figures  5b and 6b show the segments with definitely 

wrong labels where both experts disagreed with automatic 

method. However, only 67 (8.4%) RD and 14 (4.0%) LD 

segments had definitely wrong labels and most of the dif-

ferences (RD 55.2%; LD 78.6%) were on diagonal and OM 

branches.

Figures  5c and 6c show the segments (91.6% in RD, 

and 96.0% in LD) with semi-correct labels where expert1 

disagreed with expert2 but either of them agreed with auto-

matically assigned labels. Expert1 disagreed with expert2 

about the presence of the labels on 19 (2.4%) RD segments 

and 44 (12.4%) LD segments. Specifically, for segments 

with OM2 labels in the LD cases, expert1 disagreed with 

expert2 on 12 (75.0%) out of 16 segments.

In RD cases, 0 out of 3 segments with LPLB labels were 

definitely correct, while the disagreements between expert1 

and expert2 were also 33.3%. In LD cases, no OM2 seg-

ments got definitely correct labels, and 4 (25.0%) got defi-

nitely wrong labels, while on the remaining 12 (75.0%) 

OM2 segments, either expert1 or expert2 agreed with the 

automatic method.

Overlap

The average overlap accuracy of the definitely correct 

labeled segments (as shown in Figs. 5a, 6a) is depicted in 

Fig.  7. All labels got at least 70.0% overlap and the LM 

Fig. 6  Agreements and disagreements among expert1, expert2 

and automatic method for LD cases. a agreements among expert1, 

expert2 and automatic method, b disagreements between experts and 

automatic method, c disagreements between expert1 and expert2. 

For each label, numbers show the amount of agreed or disagreed 

segments, and by adding all the numbers in (a), (b) and (c) can get 

the total numbers of the segments involved. The percentages of 

agreement and disagreement in comparison with the total segments 

involved are illustrated in different colors, and green color shows a 

100.0% agreement in (a) or 0.0% disagreement in (b) and (c). Abbre-

viations can be found in Table 1
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even has a 100.0% overlap. 18 labeled RD segments and 7 

LD segments have no overlapping regions which appeared 

more often in certain segments, such as D2 (3 in RD, 2 in 

LD), LCx (4 in RD), and the posterior branch (4 RPLB and 

2 LPLB).

There are also inter-observer differences in the overlap 

on some labels as shown in Fig.  7, which is 1.0% in RD 

cases and 2.2% in LD cases in average. In both RD and LD 

cases, there was a larger inter-observer variability on the 

labels of LCX sub-tree segments, especially on LPDA seg-

ments of LD cases that there was an average 10.0% overlap 

difference.

By averaging the overlap differences between the 

experts, the average overlap accuracy on RD labeling is 

92.0% (±6.7%), and on LD is 90.7% (±9.5%).

Accuracy for clinical risk scores

Clinical risk scores of RD and LD cases are shown in 

Table 3 with the differences in experts averaged. The tree 

labeling method was able to accurately identify all the 

proximal segments and LM segments for all patients and at 

least one main branch was labeled correctly. From all clini-

cal risk scores listed in Table 3, RD and LD coronary trees 

got similar labeling results.

All segments of the three main branches were identi-

fied in more than 70.5% of the RD cases and 96.3% of the 

LD cases and the wrongly labeled segments all occurred 

in the distal part (dLAD or dLCx). The SIS percent-

ages are 92.6% (±7.3%, RD) and 93.3% (±8.1%, LD) in 

comparison with manual labeling results. Specifically, in 

only 1.8% of the RD patients and 9.3% of the LD patients, 

the SIS score is less than 80.0% compared to the experts. 

For the segments which have a weight >0 in the Leaman 

score system, the automatic method got at least 96.0% 

similar Leaman scores compared to the manual labeling 

results. In only 4.5% of the RD patients and 3.7% of the 

LD patients, the automatic method is less than 90.0% 

similar to the Leaman scores from the experts.

Discussion

In this paper, an automatic coronary artery tree labeling 

algorithm for centerlines extracted from CCTA images 

is presented. The labeling algorithm can automatically 

identify coronary tree segments and assign labels to the 

identified segments for both RD and LD circulations. 

This can be used to facilitate automatic lesion reporting 

and risk stratification in a large cohort of patients [8] and 

Fig. 7  Overall overlap results of the methods. a and b show the 

overlap of each segment with two experts for RD tree and LD tree, 

respectively. RD right dominant, LD left dominant; The other abbre-

viations used here are the same as in Table 1

Table 3  Clinical risk scores of RD and LD cases

Data are represented as percentages or mean ± SD. N represent the 

numbers of branches. The SIS and Leaman scores are shown as the 

percentages of automatic method results in comparison with the aver-

aged results of experts. For example, there were 37.5% RD and 46.3% 

LD patients got the same SIS score as the experts

RD right dominant, LD left dominant, LM left main branch, SIS seg-

ment involvement score, SD standard deviation

RD LD

Patients (n = 56) 

auto/expert (%)

Patients (n = 27) 

auto/expert (%)

Identify three main branches

 N = 1 100.0% 100.0%

 N = 2 98.2% 98.1%

 N = 3 70.5% 96.3%

Proximal segments and LM 100.0% 100.0%

SIS

 Mean(±SD) 92.6% (±7.3%) 93.3% (±8.1%)

 =100.0% 37.5% 46.3%

 ≥90.0% 68.8% 70.4%

 ≥80.0% 98.2% 90.7%

 <80.0% 1.8% 9.3%

Leaman score

 Mean(±SD) 96.0% (±3.8%) 96.7% (±4.1%)

 =100.0% 37.5% 50%

 ≥95.0% 67.9% 70.4%

 ≥90.0% 95.5% 96.3%

 <90.0% 4.5% 3.7%
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allow automatic follow-up comparison of quantitative 

parameters on certain segments.

Evaluation of the algorithm

Presence

The accuracy for the presence of D1, D2, OM1 and OM2 

labels are lower compared to other segments, because 

labels of the D1 or D2 and OM1 or OM2 were often 

switched, especially when one of the diagonal branches 

or marginal branches did not exist or were absent from 

the extraction. More disagreements in experts on these 

segments show that it is also difficult for human experts 

to discriminate the D1 or D2 and also OM1 or OM2 seg-

ments. However, with regard to risk assessment, whether it 

is the D1 or D2 is not important as long as they are iden-

tified as diagonal branches. The same applies to the mar-

ginal branches.

Overlap

On LPDA segments of LD cases, there is a large overlap 

inter-observer variability (10.0%) which is caused by the 

different start point definition of LPDA. In this method, the 

start point of LPDA is defined at the position where LCx 

starts to go to the ventricle groove which is consistent with 

expert1, while expert2 used the bifurcation point of LCx 

and LPLB as a start point.

In general, the middle segment of a branch usually has a 

lower overlap score compared to the proximal segment of 

the same branch. Due to the definition of pLAD, a miss-

ing label of the D1 or the lack of extraction of the D1 will 

create an incorrect end point for the pLAD. Similarly, if 

the D2 and OM1 are not extracted, it will influence the 

accuracy of the mLAD and pLCx. Furthermore, if one of 

the segments was assigned the wrong label or wrong start 

and end points, the following segment will inherit or even 

enlarge this error.

Accuracy for clinical risk scores

The presented labeling method is capable to accurately 

identify all the proximal segments of main branches and 

can get similar results as the experts with respect to SIS 

and Leaman scores. Although, only 70.5% RD cases were 

labeled correctly in all three main branches compared to 

experts, the errors all occurred in distal parts of the main 

branches. It should be taken into account that the lesions 

in the distal parts have less clinical relevance than in the 

proximal parts [5, 6].

Comparison to other labeling methods

Several approaches [9, 28] focused on the coronary tree 

labeling in 2D X-ray angiography. Since 2D X-ray angi-

ography is a different imaging modality with CCTA, 

assigning the anatomical labels to coronary arteries in 

CCTA images has different challenges. To the best of 

our knowledge, the literature on automatic coronary tree 

labeling in CCTA images is very limited.

Akinyemi et  al. [10] presented an automatic labe-

ling method which used geometric features of coronary 

arteries to train a multivariate Gaussian classifier. In 

this method, the large anatomical variation of the train-

ing datasets such as the size of the heart might decrease 

the accuracy of the labeling results, while our method is 

robust to the scale of the coronary trees. The proximal, 

mid and distal parts of the main coronary arteries were 

not identified, which is widely adopted in clinical prac-

tice for CCTA image reporting and evaluating.

Recently, Mehmet et  al. [11] proposed a coronary 

labeling method through calculating the geodesic paths 

between coronary tree of a standard model and the 

patient. In the method, labeling a whole coronary tree 

took 3  min by parallelized implementation, while we 

only need less than 3 s without parallelization. Anatomi-

cal prior location, such as the position of four chambers, 

was used to set the coordinates of the coronary tree, 

while only coronary centerline points were needed in our 

automatic method. Furthermore, their approach was not 

used on LD cases or on cases with a RI. A similar over-

lap measurement was used to evaluate the labeling accu-

racy. Compared to their labeling results (87.0% for left 

coronary tree and 86.0% for right coronary) on automatic 

detected centerlines, our method got a slightly higher 

labeling score (92.0%, RD). Since the datasets, the cen-

terline detection methods and coronary segments model 

are different, it’s hard to put these results side-by-side.

Limitations

The following limitations of the present study should be 

considered. First, two models for RD and LD cases are 

needed, thus the dominance type of the coronary tree 

should be known before labeling. Automatic detection 

of the dominancy to choose the correct model or build-

ing a generic model for all the three main dominant types 

will be investigated in future work. Second, the quality 

of the tree labeling is highly dependent on the automatic 

extraction results. In follow up work, we will study if 

the method could determine whether there are missing, 

shortened or wrongly extracted arteries. In this way, the 

labeling of the coronary arteries will allow to improve 
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the tree extraction results by automatically extending 

short branches and remove veins from an extracted tree.

Conclusion

The presented labeling algorithm can successfully identify 

the coronary tree anatomy in CCTA automatically for both 

RD and LD cases in a fully automatic manner.
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