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Abstract 

Background: We aimed to construct an artificial intelligence (AI) guided identification of suspicious bone metastatic 

lesions from the whole-body bone scintigraphy (WBS) images by convolutional neural networks (CNNs).

Methods: We retrospectively collected the 99mTc-MDP WBS images with confirmed bone lesions from 3352 patients 

with malignancy. 14,972 bone lesions were delineated manually by physicians and annotated as benign and malig-

nant. The lesion-based differentiating performance of the proposed network was evaluated by fivefold cross valida-

tion, and compared with the other three popular CNN architectures for medical imaging. The average sensitivity, 

specificity, accuracy and the area under receiver operating characteristic curve (AUC) were calculated. To delve the 

outcomes of this study, we conducted subgroup analyses, including lesion burden number and tumor type for the 

classifying ability of the CNN.

Results: In the fivefold cross validation, our proposed network reached the best average accuracy (81.23%) in iden-

tifying suspicious bone lesions compared with InceptionV3 (80.61%), VGG16 (81.13%) and DenseNet169 (76.71%). 

Additionally, the CNN model’s lesion-based average sensitivity and specificity were 81.30% and 81.14%, respectively. 

Based on the lesion burden numbers of each image, the area under the receiver operating characteristic curve (AUC) 

was 0.847 in the few group (lesion number n ≤ 3), 0.838 in the medium group (n = 4–6), and 0.862 in the extensive 

group (n > 6). For the three major primary tumor types, the CNN-based lesion identifying AUC value was 0.870 for lung 

cancer, 0.900 for prostate cancer, and 0.899 for breast cancer.

Conclusion: The CNN model suggests potential in identifying suspicious benign and malignant bone lesions from 

whole-body bone scintigraphic images.

Keywords: Bone scintigraphy, Bone metastasis, Artificial intelligence, Convolutional neural network

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Bone metastasis commonly appears in the advanced 

stages of cancers [1–4]. It seriously affects the survival 

quality of patients due to the occurrence of adverse skel-

etal-related events [2, 5, 6]. �e early diagnosis of bone 

metastasis is beneficial to make appropriate and timely 

treatment of metastatic bone disease, which can improve 

the quality of survival [7–10]. Even after the advent of 

single-photon emission computed tomography combined 
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with computed tomography (SPECT/CT), whole-body 

bone scintigraphy (WBS) is a standard method to survey 

the existence and extent of bone metastasis [11]. How-

ever, the image resolution and the specificity of WBS are 

lacking [12]. And the interpretation of WBS is an expe-

rience-dependent work and the diagnostic agreement of 

inter-observer is not satisfactory [13].

Previously, we had proposed an automated diagnos-

tic system of bone metastasis based on multi-view bone 

scans using an attention-augmented deep neural network 

[14, 15]. While it achieved considerable accuracy in the 

patient-based diagnosis from WBS images, a definitive 

diagnosis for suspicious bone metastatic lesions is still 

crucial for pragmatic decisions, such as precise bone 

biopsy, bone surgery and external beam radiotherapy 

[16]. �us, a new artificial intelligence (AI) model with 

lesion-based diagnosis from the WBS image is more 

valuable for the clinic. �erefore, we fed a fully anno-

tated WBS images dataset to construct a new AI model 

and evaluated its lesion-based performance in automatic 

diagnosing suspicious bone metastatic lesions.

Methods
�is retrospective single-center study was approved by 

the Institutional Ethics Committee of West China Hos-

pital of Sichuan University. �e written informed consent 

was waived from the Institutional Ethics Committee of 

West China Hospital of Sichuan University.

Data resource

�e WBS images of patients who were identified lung 

cancer, prostate cancer and breast cancer were retrieved 

from our hospital database within the period from Feb. 

2012 to Apr. 2019. �e WBS was performed using two 

gamma cameras (GE Discovery NM/CT 670 and Philips 

Precedence 16 SPECT/CT). �e patient received 555 

to 740  MBq of technetium-99  m methylene diphospho-

nate (99mTc-MDP; purchased from Syncor Pharmaceuti-

cal Co., Ltd, Chengdu, China) by intravenous injection, 

and the anterior and posterior views WBS images were 

obtained approximately 3  h post-injection. �e gamma 

cameras were equipped with low-energy, high-resolution, 

parallel-hole collimators. �e scan speed was 16–20 cm/

min, and the matrix size was 512 × 1024. Energy peak 

was centered at 140 keV with 15% to 20% windows.

�e visible bone lesion in WBS images was manually 

delineated by human experts and annotated into malig-

nant and benign according to the following criteria [17, 

18]:

Malignant: bone lesion with increased 99mTc-MDP 

were identified as malignant (1) when computed tomog-

raphy (CT), magnetic resonance imaging (MRI), positron 

emission tomography-computed tomography (PET/CT), 

etc. presented bone destruction; (2) when it appeared 

newly but couldn’t be ruled out as malignant in follow-up 

bone scan; (3) when it presented flare phenomenon; (4) 

when it enlarged and thickened significantly after at least 

3 months follow-up.

Benign: bone lesion with increased 99mTc-MDP were 

identified as benign (1) when CT, MRI and PET/CT, etc. 

demonstrated fracture, bone cyst, osteogeny, osteophyte, 

bone bridge, degenerative osteoarthrosis; (2) when it 

appeared around the bone joint; (3) when it confirmed as 

trauma.

�e diagram of manual delineation and annotation 

was shown in Fig.  1. Additionally, the patient-based 

WBS image was assigned to malignant once a lesion was 

identified as malignant. Finally, from the 3352 patients, 

14,972 visible bone lesions were identified as benign or 

malignant. According to the total number of lesions per 

WBS image [19], we divided all cases into three groups: 

few lesions group: 1–3 lesions; medium lesions group: 

4–6 lesions; extensive lesions group: > 6 lesions.

Model architecture

We implemented 2D CNN to automatically identification 

of bone metastatic lesions. Our network is based on the 

architecture of ResNet50 [20]. �e CNN model was pre-

trained on ImageNet, and fine-tuned on our own dataset. 

Before training the network, a pre-processing step was 

performed for data curation. �e WBS and correspond-

ing lesion mask were resized to 512 × 256. Considering 

the diagnosis of bone lesions was tremendously corre-

lated to the location and burden extent, we stacked the 

full-sized images and the corresponding lesion mask on 

channel, instead of only inputting ROI of lesions. �e data 

consisted of the original WBS image, the corresponding 

lesion mask and the qualitative of the lesion was used 

for CNN training. �e fivefold cross validation was per-

formed for evaluating the ability of the trained network 

model to achieve the qualitative task of bone scan lesions. 

Additionally, three state-of-the-art CNNs that included 

Inception V3 [21], VGG16 [22] and DenseNet169 [23] 

were compared with the proposed network.

�e developed network was implemented using 

PyTorch [24], and trained using Adam [25] as the opti-

mizer with a learning rate of 0.001 for 300 epochs. �e 

mini-batch size was fixed 8. During the training process, 

random horizontal flipping with a probability of 0.5 was 

applied to the input to increase the diversity of the data. 

�e detailed network architecture is shown in Fig. 2.

Statistical analysis

�e performance of AI was evaluated using diagnostic 

sensitivity, specificity, accuracy, positive predictive value 

(PPV), negative predictive value (NPV) and the area 
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under the receiver operating characteristic curve (AUC). 

�e Chi-square test was performed to compare differ-

ences in the AI performance between different number of 

lesions and different primary tumor types. �e confusion 

matrix showed the numbers of true positive, true nega-

tive, false positive and false negative. All analyses were 

Fig. 1 The diagram of manual annotation in WBS image. All visible bone lesions were delineated and annotated as benign and malignant. Red 

areas represent malignant lesions, while green areas represent benign lesions

Fig. 2 Architecture of convolutional neural network for AI model
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conducted using statistical software SPSS22.0 (SPSS Inc, 

Chicago, Illinois, USA). P values less than 0.05 were con-

sidered statistically significant.

Results
Baseline characteristics of patients

3352 cancer patients (Age: 61.61 ± 12.69y; Gender: 1758 

males and 1594 females) were retrospectively included 

in the study and 43.85% of all patients presented bone 

metastasis. A total of 14,972 visible bone lesions were 

recognized in all WBS images and 51.23% of them were 

identified metastasis. �e lesion-based metastasis rate 

was 50.13% in lung cancer, 57.39% in prostate cancer, and 

44.61% in breast cancer, respectively. �e detailed infor-

mation was listed in Table 1.

The performance of the proposed network

After fivefold cross validation, the CNN model dem-

onstrated an average sensitivity, specificity, accuracy, 

PPV and NPV for all visible bone lesions were 81.30%, 

81.14%, 81.23%, 81.89% and 80.61%, respectively. When 

compared with the other three start-of-art CNNs, our 

proposed network achieved the best accuracy in identifi-

cation the bone lesions at bone scintigraphy (Tables 2, 3).

Subgroup analysis of proposed network

Based on the number of lesions per image, we found that 

the AI model reached the highest sensitivity (89.56%, 

P < 0.001), accuracy (82.79%, P = 0.018) and PPV (87.37%, 

P < 0.001) in the extensive lesions group as shown 

in Table  4. Whereas, the highest specificity (89.41%, 

P < 0.001) and NPV (86.76%, P < 0.001) of the AI model 

were captured in few lesions group. We also calculated 

the AUC to evaluate the diagnostic performance of the 

AI model, which was 0.847 in the few lesions group, 0.838 

in the medium lesions group, and 0.862 in the extensive 

lesions group. And the confusion matrix directly demon-

strated the true labels and predicted labels in the three 

groups (Fig. 3).

�e detailed results based on the primary tumor types 

were shown in Table  5, the results demonstrated the 

highest diagnostic sensitivity (84.66%, P = 0.002) in the 

prostate cancer group. Albeit slightly higher accuracy 

(82.30%) in the prostate cancer group, there was no sta-

tistical significance (P = 0.209) comparing with the lung 

cancer group (79.40%) and breast cancer group (81.82%). 

�e specificity in lung cancer (82.52%), prostate can-

cer (79.07%) and breast cancer (81.78%) group also did 

not indicate statistical significance between each other 

(P = 0.354). Furthermore, the AUC was 0.870 for lung 

Table 1 The summary of patient-based and lesion-based 

analysis in all WBS images

Lung cancer Prostate 
cancer

Breast cancer Total

Patient-based

Total 1253 1017 1082 3352

Malignant 567 466 437 1470

Benign 686 551 645 1882

Metastasis 
rate

45.25% 45.82% 40.39% 43.85%

Lesion-based

Total 4937 5623 4412 14,972

Malignant 2475 3227 1968 7670

Benign 2462 2396 2444 6812

Metastasis 
rate

50.13% 57.39% 44.61% 51.23%

Table 2 The fivefold cross validation results of the proposed network

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Number of patients 
(benign/malignant)

669 (376/293) 669 (376/293) 671 (376/295) 669 (376/293) 674 (378/296)

Number of lesions 
(benign/malignant)

2986 (1505/1481) 2952 (1389/1563) 3084 (1468/1616) 2897 (1475/1422) 3053 (1465/1588)

Sensitivity 83.19 83.11 79.89 76.79 83.5

Specificity 78.07 82.58 82.7 82.78 79.59

Accuracy 80.61 82.86 81.23 79.84 81.62

PPV 78.87 84.3 83.56 81.13 81.6

NPV 82.51 81.29 78.88 78.72 81.65

Table 3 The comparison of the proposed network and other 

three networks

Sensitivity Speci�city Accuracy PPV NPV

Our model 81.30 81.14 81.23 81.89 80.61

InceptionV3 77.29 84.02 80.61 83.53 78.00

VGG16 78.73 83.51 81.13 83.39 79.14

DenseNet169 67.90 85.73 76.71 83.17 72.16
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cancer, 0.900 for prostate cancer, 0.899 for breast can-

cer. �e confusion matrix directly demonstrated the true 

labels and predicted labels in the three groups (Fig. 4).

Additionally, we also evaluated the lesion-based diag-

nostic performance of the AI model according to the dif-

ferent number of lesions per image (few, medium and 

extensive lesions group) in lung cancer, prostate cancer 

and breast cancer, respectively. �e results were sup-

ported as Additional file 1: Table 1 and Additional file 2: 

Figs. 1, 2, and 3.

Discussion
�e definitive identification of abnormal bone lesions 

is beneficial to proper personalized treatment and sub-

serves the patients who were suffering from advanced 

malignant cancers [26]. However, the precise differen-

tiation of suspicious bone lesions is still tricky based on 

Table 4 The lesion-based diagnostic performance of AI model 

in testing cohort and the comparison of the AI performance 

among few, medium and extensive lesion groups

Chi-square test was performed to compare the performance of AI model among 

di�erent groups of the number of lesions. Few lesions group: 1–3 lesions 

per image; Medium lesions group: 4–6 lesions per image; Extensive lesions 

group: > 6 lesions per image

Group for number of lesions χ2
P value

Few Medium Extensive

Sensitivity 58.63 64.34 89.56 163.41  < 0.001

Specificity 89.41 85.24 62.85 108.69  < 0.001

Accuracy 81.78 78.03 82.79 8.06 0.018

PPV 64.89 69.67 87.37 83.70  < 0.001

NPV 86.76 82.04 67.93 49.24  < 0.001

Fig. 3 The confusion matrix of few lesions group (A), medium lesions group (B), extensive lesions group (C). The ROC of the three groups in the 

lesion-based diagnosis (D)
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the WBS images only [27]. In light of the superiority of 

artificial intelligence in image feature extraction and big 

data analysis, we developed a new AI model using the 2D 

CNN to explore the potential for automatically definitive 

identification of suspicious bone metastatic lesions from 

WBS images.

In general, our AI model achieved moderate per-

formance in the identification of suspicious bone 

lesions with a sensitivity of 81.30% and specificity 

of 81.14%. We found that AI indicated significantly 

higher accuracy in the extensive-lesions group (n > 6, 

accuracy = 82.79%) than that in the few-lesions group 

(n ≤ 3, accuracy = 81.78%, p < 0.05) and medium-lesions 

group (n = 4–6, accuracy = 78.03%, p < 0.05), this might 

Table 5 The lesion-based diagnostic performance of AI model 

in the testing cohort and the comparison of the AI performance 

among lung, prostate and breast cancers

Chi-square test was performed to compare the performance of AI model among 

di�erent tumor types

Group for primary tumor types χ2
P value

Lung cancer Prostate 
cancer

Breast 
cancer

Sensitivity 76.16 84.66 81.65 12.88 0.002

Specificity 82.52 79.07 81.78 2.08 0.354

Accuracy 79.40 82.30 81.82 3.13 0.209

PPV 81.12 84.43 78.33 6.52 0.038

NPV 77.70 79.52 85.05 8.85 0.012

Fig. 4 The confusion matrix of lung cancer group (A), prostate cancer group (B), breast cancer group (C). The ROC of the three groups in the 

lesion-based diagnosis (D)
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be beneficial from the deep neural network which imi-

tating human thinking model. Originally, classification 

of every single lesion is judged independently, regard-

less of the other lesions that appeared in the same 

image. However, nuclear medicine physicians usually 

take other lesions and additional cues into account 

when determining one single lesion itself. For example, 

an isolated lesion without other nearby lesions would 

be more difficult to assert benign or malignant, while 

multiple lesions that occur within a narrow region 

would be more likely malignant. We input correspond-

ing lesion masks to the CNN and take the whole WBS 

image into account, and this might be a possible rea-

son for the improved accuracy of the extensive-lesions 

group.

Previous studies also reported AI for bone lesion 

identification from WBS images. �e authors used a 

ladder network to pre-train a nerual network with an 

unlabeled dataset [28]. On the metastasis classification 

task, It reached a sensitivity of 0.657 and a specificity 

of 0.857. Another similar study also build a model to 

detect and identify bone metastasis from bone scintig-

raphy images through negative mining, pre-training, 

the convolutional neural network, and deep learning 

[29]. �e mean lesion-based sensitivity and precision 

rates for bone metastasis classification were 0.72 and 

0.90, respectively. In our study, the lesion-based sen-

sitivity, specificity and precision values for metastasis 

classification were 0.813, 0.811 and 0.819, respectively. 

It is difficult to compare the difference of algorithms, all 

studies have used in-house datasets of a gold standard 

and these datasets were not open. We were not able to 

try other datasets using our algorithm. �erefore, the 

performances reported by other researchers can only 

be used as references, rather than for objective com-

parison. It is worth mentioning that the aforemen-

tioned AI was focused on the chest image instead of the 

whole body. �is strategy excluded the influence from 

keen osteoarthritis, degenerative changes of lumbar/

cervical vertebrae, but it was limited to analyzing the 

metastases in other regions such as the pelvis, sacrum, 

iliac joints and other distant lesions. Addittionaly, we 

stacked the WBS and the corresponding lesion mask in 

channel and input it into the network. �us, this CNN 

approach could select any suspicious bone lesion that 

needs to be input manually and obviate missed lesion 

detection and wrong lesion detection.

�ree common kinds of primary cancers were investi-

gated in this study. �e different sensitivity among pri-

mary cancer types seemed to be affiliated to osteoblastic 

and osteolytic activity. �e highest sensitivity appeared 

in the prostate cancer group and it is consistent with 

other former studies [17]. �e probable reason is due to 

the typical osteoblastic metastasis principally in prostate 

cancer, though it is also associated with the osteoclastic 

process and bone resorption [30]. On the other hand, 

lung cancer and breast cancer group showed more signif-

icant osteolytic changes and corresponding mild radioac-

tivity in lesions [31, 32].

Generally, our AI model achieved a moderate accuracy, 

sensitivity and specificity in the lesion-based diagno-

sis of WBS images, the false-positive lesions and false-

negative lesions still could not be avoided. It is limited to 

the substantive character and specificity of 99mTc-MDP 

imaging technology. Most pathological bone conditions, 

whether of infectious, traumatic, neoplastic or other ori-

gin could demonstrate as an increased radioactive signal 

in WBS images [33]. �ere are still several limitations in 

the current study. Firstly, since it is impossible to obtain 

the pathological result of each lesion, we made the “gold 

labels” based on the patients’ medical records, the follow-

up bone scans, CT, MRI, PET/CT images, etc., which 

may not be totally correct for every lesion. Secondly, the 

labeled lesions on WBS images were all visible, which 

means only the “hotspots” were included, whereas some 

“cold lesions” were missed. �en, at present, this AI 

model was constructed by those non-quantitative images, 

the indraught of anatomical localization parameter and 

quantitative index might further improve the property, all 

of which would be paid attention in our future studies. 

Even though the AI model is not always correct, it still 

can be used by nuclear medicine physicians for assisting 

the bone lesions analysis and the final interpretation of 

an examination, especially for the patients who could not 

be performed SPECT/CT timely due to the poverty of 

resource devices.

Conclusions
�e AI model based on CNN reached a moderate lesion-

based performance in the diagnosis of suspicious bone 

metastatic lesions from WBS images. Even though the 

AI model is not always correct, it could serve as an effec-

tive auxiliary tool for diagnosis and guidance in patients 

with suspicious bone metastatic lesions in daily clinical 

practice.
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