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Abstract. Automatic image analysis of histopathology specimens would
help the early detection of blood cancer. The first step for automatic im-
age analysis is segmentation. However, touching cells bring the difficulty
for traditional segmentation algorithms. In this paper, we propose a novel
algorithm which can reliably handle touching cells segmentation. Robust
estimation and color active contour models are used to delineate the outer
boundary. Concave points on the boundary and inner edges are automat-
ically detected. A concave vertex graph is constructed from these points
and edges. By minimizing a cost function based on morphological charac-
teristics, we recursively calculate the optimal path in the graph to separate
the touching cells. The algorithm is computationally efficient and has been
tested on two large clinical dataset which contain 207 images and 3898 im-
ages respectively. Our algorithm provides better results than other studies
reported in the recent literature.

1 Introduction

As new therapies emerge for blood cancer screening, it becomes increasingly im-
portant to distinguish among subclasses of lymphocytes in advance. Processing
the specimen using a reliable, image-based analysis system could reduce the cost
and patient morbidity. In image-based analysis the first step is segmentation.
However, the traditional methods usually fail to accurately segment touching
cells in the digitized hematologic specimens. Touching cells are especially promi-
nent in malignant cases. In Figure 1, we show representative morphologies for
benign and five hematologic malignancies (hematoxylin-eosin staining): Chronic
Lymphocytic Leukemia (CLL) [1], Mantle Cell Lymphoma, (MCL) [2], Follicu-
lar Center Cell Lymphoma (FCC) [3], Acute Myelocytic Leukemia (AML) and
Acute Lymphocytic Leukemia (ALL) [2].

The watershed algorithm is the most commonly used method for performing
touching object segmentation. However, it suffers from several major drawbacks.

– Oversegmentation. The algorithm is sensitive to noise and often produces
many oversegmented small regions. Marker-based watershed [4] can partially
remedy this issue, but it requires manual selection or accurate estimation of
the markers.
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Fig. 1. Some representative morphologies of touching lymphocytes. In the first row,
from left to right: CLL, MCL and FCC. In the second row, from left to right: ALL,
AML and benign. The specimens were prepared at different hospitals and institutions
therefore there exists large variations in staining.

– Lack of shape prior. It is generally difficult to include shape priors in the wa-
tershed transform. Although there are some efforts [5,6] proposed for specific
cases, the general problem still exists.

In this paper, we propose a novel algorithm to separate touching cells. The
algorithm starts from a deformable model which extracts the boundary contour
of the touching cells. The concave vertex graph is constructed using the concave
vertices on the contour and the edges detected in the region of touching cells.
The segmentation is then treated as an optimal grouping of pixels, which can
be solved by recursively searching optimal shortest path in the concave vertex
graph.

2 Boundary Contour Extraction

The initial step of the algorithm is to extract the boundary contour of the touch-
ing cells. We first apply a L2E robust estimation [7] to provide a rough estimation
of the outer boundaries of the cells inside the region of interest (ROI). A robust
gradient vector flow (GVF) snake [8] using Luv [9, Sec. 8.4] color gradients is fur-
ther applied to extract the objects from the background. Since the deformable
models are initialized using the results of robust estimation, the convergence
speed is increased and the method can handle topological changes. In this pa-
per, we focus our attention on the touching cases shown in Figure 2b, where the
output contour represents the outer boundary of the touching cells.

3 Concave Points and Inner Edges Detection

In Figure 3, we show the construction of the concave vertex graph. The contour
found by boundary contour extraction algorithm is shown in Figure 3a. We detect
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(a) (b)

Fig. 2. The segmentation result of robust color GVF snake. (a) The ROI contains only
one cell. (b) The ROI contains the touching cells.

the high curvature points on the contour via [10](Figure 3b). At each point p on
the contour a set of triangles are constructed. The points which satisfy

dmin ≤ |a| ≤ dmax dmin ≤ |b| ≤ dmax α ≤ αmax (1)

where α = arccos |a|2+|b|2−|c|2

2|a||b| , dmin, dmax = 7, 9 pixels and αmax = 150◦ are

kept. The candidates are further processed to suppress the local nonmaxima
points. The final high curvature points correspond to both concave and convex
points. We keep only the concave points, shown as red rectangles in Figure 3c.
This can be calculated from the sign of the cross product a⊗ b, which has to be
negative for concave points.

Canny edge detector is applied inside the cell region and straight line fitting
is used to model the edges (Figure 3d). The separating curve combines a pair
of convex vertices on the boundary and is enforced to pass through the inner
edges.

4 Touching Cells Segmentation

The outer boundary of the touching cells is defined as C, and the region enclosed
by C is R(C). The concave points are the set V , e.g. v1 − v5 which are shown
in Figure 3e. The inner edges are the set E, e.g. shown as white solid lines in
Figure 3e and also illustrated by ei in Figure 3f.

4.1 Concave Vertex Graph

In Figure 3f we construct the concave vertex graph G. Let W be the vertex set
consisting of the end points of inner edges E, e.g. wi and wj in Figure 3f. The
vertices of graph G are then equal to V ∪ W .

The graph has two sets of edges E and F . The set E contains the inner edges
found by the edge detection algorithm. The set F is constructed with filling

edges by connecting the vertices in G which are not connected by inner edges,
e.g. fk in Figure 3f. The lengths of the inner edges are set to ǫ (10−16), while the
lengths of the filling edges in set F are given by the Euclidean distance between
the two vertices of the edges.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Construction of the concave vertex graph. (a) The original image with the yellow
boundary contour. (b) High curvature points detection. (c) Concave points detection.
(d) Inner edges detection. (e) The outer boundary C, concave vertices V and inner edges
E, superimposed on the original image. (f) The constructed concave vertex graph G.
The filling edges are shown with dotted lines.

The Dijkstra algorithm is used to find the shortest path pij between vi and
vj . The length of the pij , ‖pij‖, is given by the total length of the filling edges

fk in pij because the length of real inner edges is set to be ǫ

‖pij‖ =
∑

fk∈pij

length (fk) . (2)

In Figure 3f, as an example, we can see ‖p12‖ > ‖p13‖ because p12 traverse
longer filling edges than p13. The defined path lengths enforce the segmentation
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Input: Given the region of interest (ROI) containing touching cells.

– Extract the boundary contour C, detect the concave points V , the inner edges
E in R(C), construct the concave vertex graph G.

– for each vertex v(i) ∈ V

• Find the path pij and calculate the length ‖pij‖ using (2).
– Initialize mincost = +∞ and Q = ∅.
– while (V is not empty)

• for each vertex v(i) ∈ V

∗ for each vertex v(j �= i) ∈ V

· Apply the path pij to separate the graph G in to L and R.
· Calculate the cost c using (6) and save in Q.

• Sort Q and pick up the path pij with the lowest cost c.
• if (c < 1.5 ∗ mincost)

∗ Record path pij and the region R(C, pij) with cost c in the result.
∗ The edges and zero degree vertices in the R(C, pij) are removed from G.
∗ Set mincost = c and Q = ∅.

• else return result.

Alg. 1. The algorithm to separate touching cells using concave vertex graph

to follow inner edges since the trivial solution to directly connect two concave
vertices using only filling edges in graph G would provide a longer path.

After the Dijkstra algorithm is applied, we find all the shortest pathes among
concave vertices, pij , which are valid candidates to separate touching cells. The
key idea of our algorithm is to treat the touching cells segmentation as recursively
searching for the best path pij in G, which minimizes a cost function specifically
designed to prefer cell-like object-cut.

4.2 Cost Function

We are looking for perceptually ”good” segmentation of touching cells. For this
purpose, we design the cost function to represent the clues that surgical pathol-
ogists use for judgement.

– The cells should be objects which are perceptually salient, since humans
intend to separate such objects in an image. A good definition of saliency is
proposed in [11] based on the Gestalt laws [12]. We apply the minimum of
two saliency costs

cs = min

(

‖pij‖
√

areaL (C, pij)
,

‖pij‖
√

areaR (C, pij)

)

(3)

where ‖pij‖ is the length defined in (2), each path pij in G divides R(C) into
two regions L and R, and the min function in (3) selects the region with the
smallest cost. The area(C, pij) denotes the area enclosed by C and path pij .

– The cells are objects which are close to elliptical shape and can be modeled
by ellipse fitting using points on C and pij . The ratio between the long and
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Fig. 4. The segmentation results using the concave vertex graph

short axes is recorded as tg. The segmented objects are expected to provide
a ratio tg in the range [tg1, tg2], in which case the dist (tg, [tg1, tg2]) = 0.
Otherwise, we define dist (tg, [tg1, tg2]) = min (|tg − tg2| , |tg − tg1|).

cg = min

(

1

1 + exp (−dist (tgL, [tg1, tg2]))
,

1

1 + exp (−dist (tgR, [tg1, tg2]))

)

(4)
where the L and R have the same definition as (3). The tg1 and tg2 represent
the lower bound and upper bound of the long axes to short axes ratio.

– The cells are objects which have biologically reasonable areas. Following the
definition above, we use ta1 and ta2 to represent the lower bound and upper
bound of the cell area.

ca =min

(

1

1 + exp (−dist (taL, [ta1, ta2]))
,

1

1 + exp (−dist (taR, [ta1, ta2]))

)

.

(5)
– The final cost c is the weighted sum

c = λ1cs + λ2cg + λ3ca

3
∑

i=1

λi = 1. (6)

The optimal values of coefficients are selected as λ1 = 0.5, λ2 = 0.3 and
λ3 = 0.2, which are learned in an offline process using a training set and
held constant throughout the experiments.

4.3 Algorithm

Using the concave vertex graph G and the cost function c, the method is de-
scribed in Algorithm 1. It is recursively applied to separate touching cells until
all the region R(C) are allocated to the segmented cells. The algorithm only
separates the cytoplasm of the touching cells. Since the colors of nuclei and cy-
toplasm are distinct, they can be easily separated. In order to provide smooth
boundaries, we apply the quadratic splines to postprocess the boundaries of each
segmented cell.
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Table 1. Segmentation accuracy(%) using the concave vertex graph. The accuracyc

and accuracyn represent the segmentation accuracy for cytoplasm and nuclei respec-
tively.

Benign CLL MCL FCC AML ALL

accuracyc (%) of touching cells 90.1 90.8 86.4 86.9 86.3 85.2

accuracyn (%) of touching cells 92.3 91.2 88.1 88.7 87.5 87.9

accuracyc (%) of all cells 92.5 91.7 87.2 89.1 88.5 87.6

accuracyn (%) of all cells 95.8 92.8 90.1 91.0 88.9 89.2

Table 2. The segmentation accuracy(%) using the watershed algorithm and the con-
cave vertex graph

Mean Variance Median Min Max 80%

Watershed 74.3 9.8 75.1 65.4 82.7 72.9

Concave Vertex Graph 88.9 5.1 90.2 75.2 95.5 87.1

5 Experiments

The cell database consists of a mixed set of 86 hematopathology cases: 18 Mantle
Cell Lymphoma (MCL), 20 Chronic Lymphocytic Leukemia (CLL), 9 Follicular
Center Cell Lymphoma (FCC), 18 Acute Lymphocytic Leukemia (ALL), 19
Acute Myelocytic Leukemia (AML), and 19 benign cases. For each case, there
are varying number of cell images from 10 to 90. In total there exists 3898 cell
images in our complete database. All the cases were generated from the archives
of City of Hope Hospital in California, University of Pennsylvania of School
of Medicine, Spectrum Health System, Grand Rapids, MI and Robert Wood
Johnson Medical School, University of Medicine & Density of New Jersey.

The imaging platform for the experiments consisted of an Intel-based work-
station interfaced with a high-resolution Olympus DP70 camera equipped with
12-bit color depth on each color channel and 1.45 million pixel effective resolu-
tion. The system also includes a single 2/3 inch CCD digital camera, an Olympus
AX70 microscope equipped with a Prior 6-way robotic stage, motorized objective
turret and a magnification changer.

We compare the segmentation results with manually segmentation. Two sets
of experiments are performed.

– The 207 touching cases of the histopathology cell image dataset.
– The complete database which contains 3898 histopathology cell images.

Figure 4 shows some segmentation results. In Table 1 we present the segmenta-
tion accuracies for the six different classes of lymphocytes in two set of exper-
iments. We obtained an average accuracy 88.9% on the touching cells dataset
and 90.1% on the complete database.

Only a limited number of recent literature addresses the issue of touching
cells segmentation in histopathology images using hematoxylin staining in high
resolution (60× in our case). The watershed algorithm [4] is widely accepted for
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touching object segmentation and successfully used in segmenting histopathology
images [13]. We compared our method with watershed using the 207 touching cell
image dataset and listed the results in Table 2. The 80% column in Table 2 rep-
resents the sorted 80% highest accuracy of all the results, and is commonly used
by doctors to evaluate the usability of the system. The experiments demonstrate
the superior performance of the presented approach.

6 Conclusion

In this paper, a novel segmentation algorithm has been proposed to address the
challenges of touching cell segmentation in hematologic specimens. The results
are validated using real clinical data containing six classes of hematologic blood
cell images. We compare our algorithm with watershed and experimentally show
the superior performance of the proposed algorithm.

For general pixel grouping problem using a normal graph, the optimization
problem is NP -hard. Only certain cost function can be approximately solved
using algorithm like normalized cut [14] in polynomial time. In our algorithm, the
cost function is designed to meet the domain specific requirements. The concave
vertex graph, which utilize the concave points of the outer contour, reduce the
search space to the shortest pathes in the constructed graph G. Based on a
MATLAB implementation, the algorithm can finish in less than 2 seconds for
an 128×128 image.
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