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ABSTRACT Automatic image annotation is a key technology in image understanding and pattern

recognition, and is becoming increasingly important in order to annotate large-scale images. In the past

decade, the nearest neighbor model-based AIA methods have been proved to be the most successful in

all classical models. This model has four major challenges including semantic gap, label-imbalance, wider

range labels, and weak-labeling. In this paper, we propose a novel annotation model based on three-pass

KNN (k-Nearest Neighbor) to address the aforementioned challenges. The key idea is to identify appropriate

neighbors at each pass KNN. In the first pass KNN, we identify the several most relevant categories based

on label feature rather than visual feature as traditional models. In the second pass KNN, we determine

the relevant images based on multi-modal (visual and textual label) embedding features. As the test image

has not been annotated with any label, we propose a pre-annotation strategory before image annotation

to improve the semantic level. In the third pass KNN, we capture relevant labels from semantically and

visually similar images and propagate them to the given unlabeled image. In contrast with traditional nearest

neighbor based methods, our method can inherently alleviate the problems of semantic gap, label-imbalance,

and wider range labels. In addition, to alleviate the issue of weak-labeling, we propose label refinement for

training images. Extensive experiments on three classical benchmark datasets demonstrate that the proposed

method significantly outperforms the state-of-the-art in terms of per-label and per-image metrics.

INDEX TERMS Automatic image annotation, semantic gap, nearest neighbor, weak-labeling.

I. INTRODUCTION

W
ITH the prevalence of digital photography and social

networks in our daily lives, billions of images are

generated and shared on the Internet. Users have access to a

flood of images, making it a challenge to retrieve and manage

the ones they care about from this vast ocean of available

visual data [1]. Automatic image annotation (AIA) is the task

of automatically assigning several textual labels to a given

image based on its semantics. Recently, the AIA has been

an active research topic in the fields of computer vision and

machine learning due to its great potential applications in

image retrieval, image classification, image understanding,

and image management [2]–[4].

In the past 20 years, a considerable amount of research

effort has been made to devise automatic image annotation

models. Some representative AIA approaches have been

proposed and great achievements have been made, such as

MBRM [5], JEC [6], 2PKNN [2], and D2IA [7]. Recently,

significant advances have been achieved on large-scale im-

age recognition tasks [8], with deep learning models such

as Convolutional Neural Network (CNN) and Generative

Adversarial Network (GAN). In comparison with image

recognition, image annotation is a more challenging task,

since it is a multi-label multi-class classification problem [8],

instead of a single-label multi-class classification problem as

in image recognition. The four most difficult challenges of

AIA are semantic gap, label-imbalance, weak-labeling, and

wider range labels [2]. The semantic gap is the semantic

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3117349, IEEE Access

H.Li et al.: Automatic Image Annotation by Sequentially Learning from Multi-Level Semantic Neighborhoods

difference between image low-level features represented by

machines and high-level human perceptions used to perceive

the image. The label-imbalance problem means there exists

a high variance among the number of images corresponding

to different labels, and this problem is quite common when

the size of a dataset or label vocabulary is large. Today,

the label-imbalance is a pending issue. Weak-labeling means

that manual annotations are noisy, irrelevant, or incomplete.

Weak-labeling will also cause poor-labeling. The wider range

labels mean that labels in image annotation can refer to a

much wider and more diverse range of concepts or drastically

different levels of abstraction, such as concrete visual objects

(cat, train), scenes (beach, city), amorphous background el-

ements (sky, grass), or abstract concepts (scary, serene) [1],

[9]. The traditional CNNs, designed for single-label image

classification, are thus unsuitable for image annotation task

because they fail to provide rich representations at different

abstraction scales.

During the past decade, there have been several efforts

for addressing such issues as MBRM, JEC, CNN+WARP

[10], LTN [11], TagProp [12], 2PKNN, CCA-KNN, D2IA,

and CNN-RNN [13]. Benefitting from deep learning features

(such as CNN and GAN), most models based on deep learn-

ing can reduce the semantic gap, although the issue has not

been resolved thoroughly. In single-label image classifica-

tion, deep learning features are able to address the issue of the

semantic gap. CNN has shown great performance as general

feature representations for object recognition applications.

However, for multi-label images that contain multiple objects

from different categories, scale and location, global CNN

features are not optimal. Some models close to success

(TagProp, KCCA-2PKNN, SKL-CRM, SVM-DMBRM [14],

and 2PKNN) are able to address the semantic gap problem

with computationally expensive metric learning. Some mod-

els based on nearest neighbors, i.e. 2PKNN, can alleviate

the label-imbalance by paying more attention to rare labels,

which always improve the performance of the low frequency

words by sacrificing high frequency words. Some researches

attempt to provide multi-level deep features to provide high-

quality image features suitable for image annotation [9],

[15]. Nevertheless, the most important challenge, i.e. weak-

labeling problem, has never been tackled explicitly. In sum-

mary, the AIA is still a difficult and challenging task [2].

In this paper, we propose a novel image annotation method

based on nearest neighbors to address the problems above

mentioned. Different from the existing methods based on

nearest neighbors, our method sequently learns from multi-

level semantic neighborhoods rather than a single neighbor-

hood as the existing methods. First, we complete labels to the

training dataset by propagating from neighbors to overcome

the problem of the weak-labeling. Second, we divide the

training images which have similar textual label features into

a semantic neighbor group by N-cut algorithm. Each group

is considered as a category. Third, we pick up top N similar

images from the three most similar categories according

to their similarities in KCCA space, which is trained by

visual features and completed labels of the training image

dataset. The selected neighbors form a category-level similar

neighborhood. Fourth, pick up top M similar images from

category-level similar neighborhood according to visual sim-

ilarity, and propagate labels from category-level and object-

level similar neighbors by using their similarity as weight.

Our main contributions are as follows: (1) We proposed

a novel annotation method based on three-pass KNN, which

can accurately capture the relevant categories, relevant im-

ages, and appropriate labels for a given test image. (2) We

proposed multi-level semantic neighborhoods rich represen-

tations at different abstraction scales, suitable for image

annotation tasks. (3) We proposed a pre-annotation strategy

for the unlabeled test image to perform multi-modal image

retrieval so as to reduce the semantic gap. (4) We proposed

label refinement for training images based on their textual

label similarities to alleviate the issue of weak-labeling.

(5) Our proposed model can alleviate the problem of the

label-imbalance by enhancing rare labels without sacrificing

frequent labels. Extensive experiments are carried out on

three benchmark datasets: Corel5k, ESP Game, and IAPR

TC-12. The experimental results demonstrate that our model

outperforms the state-of-the-art alternatives.

II. RELATED WORKS

A large number of automatic image annotation models have

been developed. In this section, we briefly review the closely

related and representative works.

A. GENERATIVE MODELS

The generative model-based AIA methods are quite popular

in the early 21st century, and great achievements have been

made. In the model training stage, the generative model

aims at learning a joint distribution between visual and label

features so that the learned model can predict the conditional

probability of labels for features of a test image. The genera-

tive models focus on maximizing the generative likelihood

of image features and labels. The generative models used

for AIA mainly consist of relevance models, mixture models,

and topic models. The representative models include CMRM,

CRM, MBRM, and PLSA-WORDS. These models are usu-

ally expensive or require simplifying assumptions that can be

suboptimal for predictive performances [16].

B. DISCRIMINATIVE MODELS

Discriminative models consider image annotation as a multi-

label multi-class classification problem. These models regard

each label as an independent class. A separate classifier is

trained for each label with visual features of training images,

and then the trained classifier can predict particular labels for

a given test image. Most of discriminative models are based

on support vector machine (SVM) or its variants [17]. The

other representative models include SML [18], DMBRM,

and SVM-DMBRM. The SML model learns class-specific

distributions for each label. The SML model treats the image

annotation as a multi-classification problem and learns a
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class-specific distribution for each label [18]. The SVM-

DMBRM model is a hybrid method that takes full advantages

of the merits of both generative and discriminative models

[14]. While SVM tries to solve the weak-labeling issue, DM-

BRM strives to solve the class-imbalance issue. However,

these multi-label classification approaches are unscale to a

large number of labels [17].

C. NEAREST NEIGHBOR BASED MODELS

The nearest neighbor based models have become a more and

more widely used method for AIA due to their effectiveness

and simplicity. These models explore the visual similarities

between a test image and training images, and finally assign

labels to the test image by sorting the scores of neighbors

of visually similar images [19]. The representative models

based on nearest neighbor include JEC [6], TagProp [12], and

2PKNN [2].

The Joint Equal Contribution (JEC) model is one of the

most classical nearest-neighbor models [6]. The JEC model

utilizes various low-level image features and a simple com-

bination of basic distance measures to find the nearest neigh-

bors of a given image. It creates a family of very simple

and intuitive baseline methods for image annotation [20].

Guillaumin et al. presented the TagProp [12] method, which

learns the weight of each feature group and uses the label

relevance prediction to annotate images [2]. The TagProp

promotes rare labels and penalizes frequent ones by training a

logistic model, which alleviates the class-imbalance problem.

Its great achievement largely benefits from metric learning.

The 2-pass k-nearest neighbor(2PKNN) model represents

a classical solution to solve problems related to the label-

imbalance and the weak-labeling [2]. It is a two-pass variant

of the traditional KNN. In the first pass, the image-label

similarity is used, while image-image similarity is used in

the second pass. It identifies the k most similar semantic

neighbor images for each label in the vocabulary. Due to

its successfully solving the label-imbalance problem, the

2PKNN makes great achievements and is still one of the most

influential image annotation approaches.

D. DEEP NEURAL NETWORK BASED MODELS

Recently, Convolutional Neural Networks (CNNs) have

shown great performance in many computer vision tasks

(i.e. image recognition) by extracting end2end feature vec-

tors from original images [10], [21]–[24]. Most of the deep

learning-based AIA approaches are based on convolution

neural network (CNN) [10], [11], [24], [25], and features

are always extracted from pre-trained AlexNet, VGGNet

network [11], [16], [24], [25], and ResNet.

The conventional deep networks can be subjected to the

decayed performance if we have insufficient training exam-

ples. Shu proposed weakly-shared Deep Transfer Networks

(DTNs) to mitigate the problem by bringing in rich labels

from the text domain [26]. The proposed model can translate

cross-domain information from text to image. Tang proposed

a novel generalized deep transfer networks (DTNs), capa-

ble of transferring label information across heterogeneous

domains, textual domain to visual domain. The proposed

framework has the ability to adequately mitigate the problem

of insufficient training images by bringing in rich labels from

the textual domain [27].

The CNN+WARP [10], proposed by Jia (the creator of

Caffe), is the first attempt to leverage CNN features to

solve the image annotation task. The CNN+WARP adopts a

weighted approximate ranking loss function for training to

promote image annotation performances. The VCCA [28],

an image annotation method based on a deep multi-view

learning model, extends linear CCA to nonlinear observation

models parameterized by deep neural networks.

Different from these classical end-to-end deep learning

features, Yu proposed to extract middle-level features from

a deep learning model to accurately depict semantic con-

cepts for image annotation [15]. This model can improve

annotation performance with expensive time and space cost.

Recently, the CNN-RNN (convolutional and recurrent neural

networks) encoder-decoder architectures are jointly adopted

to image understanding, where the CNN subnetwork encodes

the input pixels of images into visual features, and the RNN

subnetwork decodes the visual feature into a label prediction

path [29], [30]. The CNN-RNN model uses the output fusion

to merge CNN output features and RNN output [29]. The

D2IA, image annotation method based on generative adver-

sarial network (GAN) model, aims to create semantically

relevant, yet distinct and diverse labels [7].

MangoNet [31] is a novel deep learning based image

annotation model that combines co-attention mechanism

and graph convolutional network (GCN). It explores image

neighbors by measuring their metadata similarities and uti-

lizes a graph network to model the correlations between the

target image and its neighbors. To accurately capture the

visual clues from the neighborhood, a co-attention mecha-

nism is introduced to leverage the visual attention within the

neighborhood. However, the GCN model increases the space

and time complexities, which will be unfavorable to apply to

large-scale databases.

Despite their relative success, most of deep learning based

models suffer from the single abstraction level. As we knew,

the labels in AIA are always much wider and more diverse

range of visual objects or abstract concepts with different

abstraction levels, while the ones in image recognition (clas-

sification) are always concrete visual objects with the same

level. Most CNN models, designed originally for the image

classification task, are unsuitable for the image annotation

task because they fail to provide rich representations at

different abstraction scales. As a result, only CNN features

could alleviate the problem of the semantic gap in AIA rather

than solve the problem thoroughly.

III. OUR PROPOSED METHOD

A. OUR FRAMEWORK

To resolve problems of the weak-labeling, models close to

success focus on metric learning (such as TagProp and SVM-
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DMBRM), which always require computationally expensive

metric learning approaches. 2PKNN propose a novel two-

pass KNN solution to address the issue of the label-imbalance

by considering the image-label similarity and image-image

similarity in the two passes, respectively. Although 2PKNN

significantly improves the per-label performance, it always

sacrifices high frequent labels. In fact, 2PKNN could not

improve the annotation performance as shown by per-label

evaluation metrics.

Figure 1 shows our proposed framework for automatic

image annotation. The proposed framework is composed of

two main components, i.e. training and testing processes. The

training process includes label refinement, category genera-

tion, and KCCA model training and embedding features.

To resolve the problems of the weak-labeling and the label-

imbalance, we propose a novel image annotation method

based on nearest neighbors. In contrast with traditional NN

based models and classical 2PKNN which need computa-

tionally expensive metric learning, we propose a novel and

simple label refinement to address the weak-labeling. Rather

than in traditional visual feature space, our proposed method

refines labels for all training images in the label feature space,

which can inherently address the problem of the semantic

gap. Our proposed method divides the images which have

similar features in the label feature space into a semantic

neighbor group called a category. Our proposed method maps

visual feature vectors extracted by deep learning architecture

(pre-trained VGG-16), and refines label vectors to a common

feature space by the KCCA model. New visual features and

new label features are used in the test stage.

Similar to 2PKNN, our proposed method is a three-pass

variant of the traditional KNN. Given a test image, in the

first KNN, our method aims to find the K1 most relevant

categories based on label features. In the second KNN, we

select the K2 most similar images from each relevant cate-

gory and combine them into a single neighborhood including

relevant images. These relevant images are similar to the test

image in both embedding visual feature and embedding label

feature. In the third KNN, based on two steps, we find the K3
most visually similar images and propagate a fixed number

of labels to the test image according to their original visual

feature similarities.

B. LABEL REFINEMENT

To alleviate the shortcoming of the weak-labeling, most

methods devise sophisticated models with expensive time

and space cost in annotation process.Tang proposed a novel

tri-clustered tensor completion framework to collaboratively

explore these three kinds of information to improve the

performance of social image tag refinement [32].Tang pro-

posed a novel Social anchor-Unit GrAph Regularized Tensor

Completion (SUGAR-TC) method to efficiently refine the

tags of social images, which is insensitive to the scale of data

[33].

Our method compensates some appropriate labels for each

training image based on its neighbors’ labels. To start with,

our method directly completes labels for each training image

in the label feature space. More specifically, if the associated

textual labels associated with an image (Ii) can be considered

as another modal feature for the image, the textual feature

vector of the image can be represented as follows:

ti = [P (w1 | Ii), ..., P (wk | Ii), ..., P (wM | Ii)] (1)

where M is the volume of labels (e.g. 260 for Corel5k),

P (wk|Ii) = φ(wk ∈ Wi) denotes the presence/absence

of label wk in the label set Wi of image Ii, with P (wk|Ii)
being 1 if the image Ii has been manually annotated with the

corresponding k-th label and 0 otherwise.

For each training image, if the number of its initial labels

is smaller than the target number (M ), we can compensate

several labels to the image by propagating labels from the

neighbourhood in the label feature space. The similarity

measure between the image Ii and the image Ij is based on

L2 distance, as follows:

simtext(Ii, Ij) = exp(−DistL2(ti, tj)) (2)

We choose K neighbor training images in the textual label

feature space for each current image Ii and rank the labels

for image Ii according to their probability scores of:

P (Ii | wk) =
K
∑

j=1

simtext(Ii, Ij)× σ(wk ∈ Wi) (3)

where simtext(Ii, Ij) is the textual similarity between Ii and

Ij (as shown in Equation 2). Based on probability theory, the

probability of assigning a label wk to Ii can be defined the

posterior probability as follows:

P (wk | Ii) =
P (Ii | wk)P (wk)

P (Ii)
(4)

where P (wk) is the probability of the label wk. The best label

for the test image Ii will be given by the following:

y∗ = argmax
k

P (wk | Ii) (5)

We consider the top M − |Ii| labels as refined labels for

the current image Ii, |Ii| is the number of original manual

labels associated with the image Ii. In addition, the posterior

probability of specific label wi, computed by Equation 4,

is considered as its confidence in the image’s label vector.

After label refinement, several zero elements of the textual

label feature vector of the image (as shown in Equation 1)

are replaced by non-zero probability scores of corresponding

labels. As a result, the refined label vector is real-valued

rather than discrete (or binary) as the original label feature.

In the training stage, the proposed method divides the

images which have similar refined label features into the

same category by using k-means algorithm. The center of

a category (k) is defined as the mean of all images’ label

features in this category, denoted as:

Ck =
1

Nk

Nk
∑

i=1

ti (6)
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FIGURE 1. The proposed annotation framework.

C. FEATURE EXTRACTION AND REPRESENTATION

The feature vectors in our method are different at different

stages. The original visual feature is extracted by pre-trained

architecture (VGG-16). We also consider the label informa-

tion associated with the image as its another modal feature.

To promote the semantic level of the image feature vector,

our model utilizes semantic embedding to properly map

refined labels and visual features to a meaningful seman-

tic space by using kernelized canonical correlation analysis

(KCCA). In the training stage, the KCCA model can be

learned from the original visual feature and the refined label

feature. Then, the learned KCCA model can map the original

visual feature and the textual label feature to a common

meaningful semantic space, where the (embedding ) new

visual feature and the (embedding) new label feature can be

generated.

Given the two views (visual modality and textual label

modality) of the images, a common representation can be

constructed by KCCA model. KCCA seeks to utilize images

consisting of paired views to simultaneously find projections

from each feature space so that the correlation between the

projected representations is maximized. For given N training

pairs of visual and refined label features {(v1, t1), ..., (vi, ti),

... ,(vN , tN )}, the idea is to simultaneously find directions wv

and wt that maximize the correlation of the projections of φv

onto wv and φt onto wt [16], [24]. The φv and φt mapping is

achieved using kernel function Kv(vi, vj) = φv(vi)⊤φv(vj)
and Kt(ti, tj) = φt(ti)⊤φt(tj), Thus, KCCA is to search for

solutions of wv and wt as a linear combination of the training

data:

wv =
N
∑

i=1

αiφv(vi) (7)

wt =
N
∑

i=1

βiφt(ti) (8)

The objective of KCCA is thus to identify the weights

α, β ∈ RN that maximize the objective function [24]:

α∗, β∗ = argmax
α,β

α⊤KvKtβ
√

α⊤K2
vαβ

⊤K2
t β

(9)

where Kv and Kt denote the N × N visual and textual

kernel matrices over a sample of N pairs, respectively. The

solution yields top M eigenvectors Ax = [α1...αM ] and

By = [β1...βM ] which form the projection matrix. Given

any image, we can project its visual feature v onto Ax, and its

textual label feature t onto By . The new embedding feature

can be defined as follows:

vKCCA = (v − µv)Ax (10)

tKCCA = (t− µt)By (11)

VOLUME 4, 2016 5
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Input: 1) Q: the binary image-label matrix, Q ∈ BN×M ,

N is the number of the training image dataset, M is the

number of labels in the image dataset. 2) trainingImgSet:

the training image dataset.

1: assign Q to NQ, NQ ∈ RN×M , NQ is a real-valued

image-label matrix

2: for Ii in trainingImgSet do

3: set simVector = φ

4: set neighborhood = φ

5: for Ij in trainingImgSet do

6: compute sim = simtext(Ii, J) with Equation (2)

7: set simVector(j) = sim

8: end for

9: sort simVector in descending order

10: assign top K elements of simVector to simKNN , and

their corresponding images to the neighborhood

11: for k in [1, M ] do

12: compute P (wk | I) with Equation (4)

13: end for

14: sort P (wk | I) in descending order

15: assign the largest (5-|Ii|) probability scores of P (wm |
Ii) to NQ(i).

16: end for=0

Output: NQN×M : the refined image-label matrix.

D. LABEL PROPAGATION BASED ON MULTI-LEVEL

SEMANTIC NEIGHBORHOODS

The image annotations (labels) always cover drastically dif-

ferent levels of abstraction semantic concepts including im-

age categories, scenes, abstract concepts, and concrete visual

objects [9]. Currently, most methods based on the nearest

neighbor model measure the similarities between the test im-

age and training images only based on single-level visual or

semantic features, which fail to provide rich representations

at different abstraction scales and could not depict multi-level

semantic concepts. Consequently, many noisy images, their

content irrelevant to the test image, are considered as neigh-

bors and involved to labels propagation based on neighbors.

Since noisy images may worsen the annotation performance,

it is necessary to get rid of them. In contrast with traditional

annotation models based on single neighborhood directly

selected from the whole training image dataset, we propose

a novel annotation method based on multi-level semantic

neighbors.

Given an unlabeled test image, we proposed a pre-

annotation strategy before image annotation. The pre-

annotation strategy assumes several labels by propagating

visual neighbors’ labels to the test image by weighted KNN,

whose weights are visual similarities between the image and

neighbors. Similar to the label refinement method (Equation

2-5), we can assign 5 labels to the test image. The only dif-

ference between the pre-annotation and the label refinement

is that the pre-annotation step determines neighbors based

on original visual features instead of textual label features.

We use the pre-annotation labels as the test image’s labels

in the following process until the final annotation labels are

predicted.

Our proposed method includes three KNN steps. First,

our proposed model computes image-category similarities

to determine certain categories semantically relevant to the

test image. The image-category similarity is the similarities

of label vectors between the test image and all categories’

centre. If the image-category similarity is larger than the

specified threshold, the category is considered as relevant

one. Second, compute multi-modal (including new visual

feature and new label feature) image-image similarity to

capture visually and semantically similar neighbors in each

relevant category. Third, combine KNN images of all relevant

categories into a single neighbourhood set including relevant

images. Finally, assign the N most relevant labels to the test

image based on visual similarities between the test image and

relevant images.

In the first KNN, given a test image, our goal is to select

the K1 most relevant categories. We can define the similarity

between a test image (I) and a category (m) as follows:

simtext(I, Cm) = exp(−DistL2(ti, Cm)) (12)

where Cm is the center of the category m. We consider the

K1 most similar categories as relevant categories. In the

second KNN, our goal is to pick the K2 most similar images

from each relevant category to combine relevant images,

which are visually and semantically similar to the test image.

We define the multi-modal similarity between the test image

(I) and training image (J) as follows:

simmulti−modal(I, J) = θ × cos(vKCCA
i , vKCCA

j )

+(1− θ)× cos(tKCCA
i , tKCCA

j )
(13)

where vKCCA
i and vKCCA

j are embedding visual features of

image I and image J , respectively, tKCCA
i and tKCCA

j are

their embedding textual label features. Finally, we can obtain

KNN images from each category and regard them as relevant

images.

In the third KNN, our goal is to find the K3 most visual

similar images and assign their labels to the test image. To

focus on depicting local visual features, we measure image

similarity based on the original visual feature rather than

embedding one, whose metric function is cosine similarity.

We choose K3 neighbor training images in original visual

feature space for each current image Ii and rank the labels

for Ii according to their probability scores of:

P (Ii | w) =
K3
∑

j=1

simvis(Ii, Ij)× P (w | Ij) (14)

where simvis(Ii, Ij) = cos(vi, vj), vi and vj are original

feature vectors, while P (w | Ij) is a refined label feature. All

labels’ probability scores for the image Ii,(P (w | Ii)),can be

predicted with Equation 4. After a group of images are auto-

matically annotated, we regularize these probability scores.
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First, the probability score for each image Ii is regularized

using row-normalization as follows:

P (wk | Ii) =
P (wk | Ii)

maxk P (wk | Ij)
(15)

Then, probability scores of for the group images are regu-

larized using column-normalization as follows:

P (wk | Ii) =
P (wk | Ii)

maxj P (wk | Ij)
(16)

At last, the final annotations can be selected with Equation

(5).

IV. EXPERIMENT

A. DATASETS

We conducted our experiments on three benchmark datasets

including Corel5k, ESP Game, and IAPR TC-12. The images

in these datasets are of various categories such as natural

scene, game, sketches, personal photos and so on, which

makes the annotation a challenging task.

Corel5K is the first and also the most widely used dataset

for evaluating image annotation. It was first used by Duygulu

et al. in 2002, and since then it has become a de facto evalua-

tion benchmark for comparing the annotation performance

[2], [34]. It consists of 4500 training images and 499 test

images. Each image is either 192×128 or 128×192 pixels.

Each image is annotated with up to 5 words (labels), with 3.5

labels on average from a dictionary of 260 labels.

ESP Game dataset was published by von Ahn and Dabbish

in 2004. The dataset consists of 18689 training images and

2081 test images. Each image is manually annotated with up

to 15 labels, with 4.7 labels on average from a dictionary of

268 labels. The dataset images are annotated by game player

using an online game. The two mutually unknown players

are required to predict the same keyword(s) to score points

for a randomly given image, which makes this dataset quite

challenging and diverse.

IAPR TC-12 dataset was introduced by Grubinger for

cross-lingual information retrieval in 2007. Each image is ini-

tially associated with a long description. The English nouns

extracted from the descriptions by Makadia [4], [12] are

treated as annotations. The dataset consists of 17665 training

images and 1962 test images. Each images is 480×360 or

360×480 pixels. Each image is manually annotated up to 23

labels, with 5.7 labels on average from a dictionary of 291

labels. The dataset has been widely used for evaluating image

annotation models.

The famous large-scale datases include NUS-WIDE [35]

and Microsoft COCO(MS-COCO). There are many works on

NUS-WIDE [29], [31], and all of them remove some noisy

tags and images to obtain clean image dataset. However, the

refined image datasets are different. Therefore, we conduct

experiments only on large-scale dataset MS-COCO. The MS-

COCO dataset is used for image recognition, segmentation,

and captioning. It contains 123 thousand images of 170,339

user provided noisy tags and 80 expert-provided ground truth

labels. Following previous works [12], [36], we only keep

1,000 frequent tags and remove the images without any

expert label, which leaves us with 123,286 images including

82,782 training images and 40,504 test images; each image

being annotated with 2.9 labels on average. The refined MS-

COCO dataset is the same as some research works [12], [36].

B. EVALUATION METRICS

The per-label evaluation metrics have been widely used

to evaluate image annotation approaches in the past two

decades. Today, the per-label evaluation metrics have been

considered as standard evaluation metrics. The per-label eval-

uation metrics include precision, recall, and F1-measure. For

each label, per-label precision is defined as the number of

images correctly predicted over the total number of images

predicted with this label, and per-label recall is defined as the

number of images correctly predicted over the total number

of images having this label in its ground-truth or manual

annotations. These values are averaged over all the labels in

the vocabulary to get average (percentage) per-label precision

(PL) and average per-label recall (RL) respectively. From

these scores, we compute the average per-label F1-measure

(F1L), which is the harmonic mean of PL and RL. The per-

label precision is defined as,

PL =
TP

TP + FP
(17)

where TP is the number of images that contain the label in

manual annotations and are correctly predicted the label by

annotation model. FP is the number of the images that do

not contain the label and are incorrectly predicted the label.

TP +FP equals to the total number of images predicted the

label by model. The per-label recall is defined as,

RL =
TP

TP + FN
(18)

where FN is the number of the images that contain the label

in manual annotations and are not predicted the label by the

model. TP + FN equals to the total number of the images

containing the label in the manual annotations. F1-measure

combines P with R, indicating the integrated result.

F1-measure is used for comprehensive performance eval-

uation by combing precision and recall. The per-label F1-

measure is defined as,

F1L =
2× PL ×RL

PL +RL

(19)

We also consider the N+ metric, which counts how many

labels in the vocabulary are correctly predicted for at least

one on test images.

Besides per-label metrics, more and more researchers

adopt per-image metrics (also including precision, recall,

and F1-measure) to evaluate annotation performance [9]–

[11], [20], [30], [37], the per-label metrics are biased toward

infrequent labels because making them correct could have a

very significant impact on final accuracy [10]. These values

are averaged over all the images in the test dataset to get
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average (percentage) per-image precision (PI ) and average

per-image recall (RI ), respectively. The per-image precision

is defined as,

PI =
TP

TP + FP
(20)

where TP is the number of the labels that are contained in

the image and are correctly predicted the label by annotation

model. FP is the number of the labels that are not contained

in the image and are incorrectly predicted the label. TP+FP

equals to the total number of labels that are predicted by the

model.The per-image recall is defined as,

RI =
TP

TP + FN
(21)

where FN is the number of the labels that are contained in

the image and are not predicted the label by the model. TP +
FN equals to the total number of the labels that is contained

in the image. F1-measure combines PI with RI , indicating

the integrated result. The per-image F1-measure (F1I ), the

harmonic mean of PI and RI . The per-image F1-measure is

defined as,

F1I =
2× PI ×RI

PI +RI

(22)

The mean average precision (MAP) is a widely used

metric in the field of image retrieval [11], [12], [38]. The

MAP includes per-label MAP (MAPL) and per-image MAP

(MAPI ), which take into account all labels for every im-

age, and evaluate the full ranking. MAPL measures image-

ranking quality corresponding to labels, whiles MAPI mea-

sures label-ranking quality corresponding to images. MAP

measures the full ranking of images instead of only the top

labels for each image as traditional evaluation metrics [11].

Therefore, MAPL is less noisy and preferable to other per-

label metrics. Recently, more and more works use MAP as

image annotation evaluation metrics [12], [39]–[41]. To more

comprehensively evaluate annotation performance, we also

use MAPL and MAPI as supplementary evaluation metrics

for image annotation.

C. IMPLEMENTATION DETAILS

For a fair comparison, visual features of all methods ex-

cept MBRM are extracted from the same deep learning

network architecture (VGG-16), while MBRM is performed

using a handcraft feature due to the model itself. For the

PLSA method, we first extract convolutional features from

Conv5_2 of VGG-16, and generate a 1000-dimension visual

feature vector for each image by the k-means algorithm. For

other methods, we use FC7 of VGG-16 to extract 4096-

dimensional vector as a visual feature vector. The VGG-

16 network used in this paper is pre-trained on the Ima-

geNet2012 dataset [22] without retraining or fine-tuning on

target datasets to demonstrate our model generality.

For nearest-neighbor based models, the number of nearest

neighbors K is set to the optimum value for each model, such

as JEC, TagProp, and ours setting as 15, while 2PKNN as 3.

K of Equation 3 is set to 100. θ of Equation 13 is set to 0.8.

The neighbor number K of our three-pass KNN is set to 3,

30, and 30, respectively.

D. RESULTS AND COMPARISON

For a fair comparison, we carry out our experiments on

the same three benchmark datasets (Corel5k, ESP Game

and IAPR TC-12) and predict a fixed length of annotations

(five labels) for each test image. We compare our method

and some representative methods using per-label metrics

(precision, recall, F1-measure), per-image metrics, and MAP.

Furthermore, we use the hybrid F1-measure (called H-F1)

combining per-label F1-measure and per-image F1-measure

with the harmonic mean [9]. We compare our method

with state-of-the-art models, including classical probabilistic

model MBRM, classical topic model PLSA-WORDS, clas-

sical CCA model CCA-KNN, two nearest-neighbor mod-

els JEC and TagProp, classical discriminative model SVM-

DMBRM [14], and the state-of-the-art nearest neighbour

based model 2PKNN. We also compare with GAN based

D2IA annotation method. Only part of metrics of CCA-KNN,

SVM-DMBRM and D2IA are compared in the following,

whose performances are quoted from [7], [14], [24].

The experiment results on Corel5k, ESP Game, and IAPR

TC-12 are summarized in Tables 1, 2, and 3, respectively.

From Tables 1-3, we can see that our proposed method sig-

nificantly outperforms all methods but D2IA on three bench-

mark datasets in terms of almost all metrics. Our performance

improvement largely benefits from label refinement, multi-

level semantic neighborhood.

To further evaluate the annotation performance, we varied

the number of annotation labels from 2 to 20 and compared

our method with competitive methods. Both per-label and

per-image precision-recall curves of MBRM, JEC, TagProp,

PLSA-WORDS, 2PKNN, and our method are visualized in

Figure 2 based on three benchmark datasets. Both per-image

and per-label precision/recall values are the mean values

calculated over all the test images and all the labels, respec-

tively. As can be seen from Figure 2, our model remarkably

outperforms the others for almost any number of annotation

labels. These again confirm the effectiveness of our method.

To compare with deep learning based image annotation

models on large-scale datasets, we also carry out our experi-

ments on MS-COCO dataset and predict a fixed length of an-

notations (three labels) for each test image. We compare our

method with state-of-the-art models, including CNN+WARP,

CNN-RNN, and MangoNet. We annotate images based on

multi-modal (deep visual features and textual tag features)

embedding features mapped by KCCA. The experiment re-

sults on MS-COCO is summarized in Tables 4. As can be

seen from Table 4, our method significantly outperforms

the other methods (non-deep as well as deep learning based

methods) on large-scale datasets in terms of most evaluation

metrics, which mainly benefits from high-level semantic

features and accurate neighbors. MangoNet outperforms our

method in terms of percision or recall metrics, which might

largely benefit from the co-attention and GCN model, as it
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TABLE 1. Performance evaluation on Corel5k dataset

Model Visual PL RL F1L N+ PI RI F1I H-F1 MAPL MAPI

MBRM [5] HC 24 25 24.90 122 32 45 37.10 29.50 26.31 44.23
JEC [6] CNN 30 33 31.38 137 41 58 48.12 38.07 35.32 53.69
TagProp [12] CNN 31 40 34.97 149 44 61 50.96 41.48 38.01 59.67
PLSA-WORDS [16] CNN 20 30 23.87 129 35 50 41.07 30.20 27.43 46.03
2PKNN [2] CNN 38 46 41.67 179 38 54 44.85 43.20 46.73 48.95
CCA-KNN [24] CNN 39 51 44.20 192 - - - - - -

SVM-DMBRM [14] CNN 42 45 43.45 186 - - - - - -

Ours CNN 44 55 49.18 198 47 67 55.21 52.02 50.02 64.95

TABLE 2. Performance evaluation on ESP Game dataset

Model Visual PL RL F1L N+ PI RI F1I H-F1 MAPL MAPI

MBRM [5] HC 18 19 18.80 209 25 28 26.83 21.89 20.34 28.11
JEC [6] CNN 32 23 26.95 228 35 39 36.87 31.14 21.05 39.99
TagProp [12] CNN 36 28 31.61 234 38 42 39.87 35.26 25.82 40.73
PLSA-WORDS [16] CNN 20 24 21.78 201 25 27 25.94 22.68 19.00 27.93
2PKNN [2] CNN 33 34 33.45 255 35 39 37.03 35.15 30.70 40.99

D2IA [7] GAN 31 49 38.10 - - - - - - -

CCA-KNN [24] CNN 44 32 37.05 254 - - - - - -

SVM-DMBRM [14] CNN 51 26 35.44 251 - - - - - -

Ours CNN 49 35 40.89 259 45 50 47.32 43.87 37.92 53.35

TABLE 3. Performance evaluation on IAPR TC-12 dataset

Model Visual PL RL F1L N+ PI RI F1I H-F1 MAPL MAPI

MBRM [5] HC 24 23 23.54 223 29 27 28.06 25.53 25.27 28.35
JEC [6] CNN 34 22 26.30 218 43 41 41.88 32.31 26.26 46.75
TagProp [12] CNN 43 35 38.83 257 48 46 47.05 42.55 39.76 53.40
PLSA-WORDS [16] CNN 23 25 23.72 207 33 32 32.19 27.31 21.99 33.47
2PKNN [2] CNN 49 32 38.74 274 42 41 41.92 40.26 39.09 47.78

D2IA [7] GAN 33 45 37.73 - - - - - - -

CCA-KNN [24] CNN 41 34 37.17 273 - - - - - -

SVM-DMBRM [14] CNN 58 27 36.84 268 - - - - - -

Ours CNN 51 37 42.79 278 52 50 50.78 46.44 41.88 58.20

TABLE 4. Performance evaluation on MS-COCO dataset

Model Visual PL RL F1L PI RI F1I H-F1 MAPL MAPI

JEC [6] CNN 49.12 41.35 44.90 49.39 61.10 54.63 49.29 41.63 67.34
TagProp [12] CNN 56.43 56.15 56.29 56.78 69.59 62.54 59.25 63.14 77.67
2PKNN [2] CNN 62.21 45.81 52.76 51.27 61.88 56.08 54.37 55.66 69.20
CNN+WARP [10] CNN 57.09 55.31 56.19 57.54 70.03 63.18 59.48 58.11 78.93
CNN-RNN [29] CNN 66.00 55.60 60.40 69.20 66.40 67.80 63.89 - -
MangoNet [31] GCN+Co-attention 87.10 57.90 67.60 89.50 61.90 73.20 70.29 77.50 84.30

Ours CNN 76.11 70.41 73.15 68.35 82.01 74.56 71.81 73.37 86.54

can capture high-quality visual features and accurately model

the correlations between each target image and its neighbors

by metadata neighborhood graph. As far as the most impor-

tant metric per-label F1 and comprehensive metric H-F1 are

concerned, our method generally outperforms MangoNet.

The main reason of our proposed model performance

improvement can be summarized as follows 1) We propose

label refinement to alleviate the weak-labeling. 2) We address

the issues of semantic gap and different levels of abstrac-

tion by our proposed multi-level semantic neighborhoods.

3) Our method outperforms most methods in terms of per-

label metrics by a large margin, which mainly contributes

to our addressing the issue of label-imbalance. In contrast

to the traditional NN models that pay more attention to

frequent labels, our method pays more attention to the same

category and relevant images rather than rare labels, which

gives equal importance to all labels of the relevant images.

As a consequence, our method can improve the annotation

performance of infrequent labels without sacrificing frequent

labels, thus improving performance in both per-label and per-
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TABLE 5. Example images and annotation predicted by various methods

Test Image Manual Label JEC 2PKNN Ours

tree, flowers, garden,
tulip

flowers, house, garden,
window, tree

blooms, flowers, garden,
house, window

flowers, tulip, garden,
tree, landscape

water, hills, coast,
lighthouse

water, sky, coast,
island, mountain

lighthouse, coast, island,
water, rocks

coast, lighthouse, waves,
hills, water

forest, cat, tiger,
bengal

cat, tiger, forest,
bengal, water

tiger, cat, forest,
bengal, rocks

cat, forest, tiger,
bengal, head

couple, man, people,
red, shirt, woman

white, blue, woman,
sky, yellow

beard, group, glasses,
arrow, man

man, people, shirt,
smile, woman

brown, horse, man
man, horse, black,
woman, white

horse, grass, hat,
man, animal

horse, grass, man,
brown, tail

man, show, tie, tv
man, picture, tie,
tv, hair

tie , tv, man,
picture, show

tie, tv, show,
man, suit

fruit, man, table
tree, people, house,
table, lawn

table, couch, restaurant,
house, cup

cloth, table, chair,
fruit, man

dog, grass, horse,
landscape, mountain, people

man, front, wall,
woman, clothes

house, dog, tourist,
front, man

cape, horse, meadow,
people, dog

bottle, hand, man
man, table, glass,
bottle, woman

glass, hand, man,
bottle, tee-shirt

couple, bottle, man,
glass, hand

city, cloud, green, sky,
tree

white, green, sky, tree,
cloud

cloud, sky, green, tree,
white

sky, cloud, mountain,
hill, lake

floor, front, jersey, team,
wall

front, wall, jersey, floor,
team

jersey, team, floor,
front, wall

floor, team, jersey,
front, skirt
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FIGURE 2. Precision-Recall curves on three datasets

image metrics.

E. QUALITATIVE ANALYSIS

Table 5 shows several examples of annotations produced by

JEC, 2PKNN and our method on the three datasets. The

example images in the first three rows are from Corel5k, the

second three rows from ESP Game, the third three rows from

IAPR TC-12, and the last two images are from ESP Game

and IAPR TC-12. As for most images,we can see that our

method can correctly predicate the ground-truth annotations,

although there are some extra labels. By checking the extra

labels (with blue font), we find that most of them are all

consistent with the content of the images but not included in

ground-truth labels. Our method can consider category-level,

semantic information, and visual information in different

steps so as to find visually and semantically similar images

and predicate the correct annotation labels.

As for the tenth image, any method has not correctly pred-

icated the ground-truth annotations. Both JEC and 2PKNN

improperly predict “white”, while our proposed method im-

properly predict “mountain”, ”hill” and ”lake”. As for JEC

and 2PKNN, the relevance between the test image and train-

ing images completely depend on their visual similarities.

Hence, they can predict “white” according to the visual

feature of the sky. As for our proposed method, it first identify

the image as scene category, and predict “mountain”, “hill”,

and “lake”. As for the eleventh image, only our method

improperly predict “skirt” rather than “wall”, while the others

correctly predicated the ground-truth annotations. This is

possibly because our method tends to the foreground object

rather than the background.

F. EFFICIENCY ANALYSIS

To verify the efficiency of the proposed model, as shown in

Table 6, we compare the time costs among MBRM, JEC,

TagProp, 2PKNN, PLSA, and our model. The experiments

are mainly performed using Matlab on a computer of Intel

Corei7-9750H CPU with 2.6GHz and 16 GB RAM, running

Windows 10 OS, but some components of Tagprop is based

on C language. As shown in Table 6, the time costs of two

models (TagProp and PLSA) can be separated the training

stage and the testing stage, while those of JEC, LL-PLSA,

and 2PKNN can not be separated.

As shown in Table 6, our proposed model can dramatically

reduce time cost in contrast to any other model. The time

costs of annotating all test images on Corel5k by our model

is 0.57 seconds. The time costs of annotating all test images

on Corel5k by MBRM, JEC, and 2PKNN are 34.28, 5.09 and

9.57 seconds, respectively. The time costs of training model

from training images on Corel5k for TagProp and PLSA

are 43.74 and 17.61 seconds, respectively, while the time

costs of annotating all test images are 0.49 and 4.34 seconds,

respectively. The experiments on ESP Game and IAPR TC-

12 show similar results.

In contrast to all nearest-neighbor models, the time over-

head of our model is proportional to the number and the size

of categories rather than the size of the entire training image

database. Mostly, the number of categories is small and

constant; therefore, our time cost is much smaller than others.

All in all, compared with other nearest-neighbor models,

our proposed model is more fit to real-world online image

repository or large-scale social image database.
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TABLE 6. Time costs of various models (in seconds)

Model Corel5k ESP Game IAPR TC-12

MBRM [5] 34.28 512.21 678.72
JEC [6] 5.09 9.97 9.56

TagProp [12] 43.74+0.49 161.41+2.01 164.63+2.13
2PKNN [2] 9.57 113.81 111.01
PLSA [16] 17.61+4.34 66.73+26.62 205.92+23.59

Ours 0.57 4.89 4.41

V. CONCLUSION AND FUTURE WORK

We present a novel image annotation based on multi-level

semantic neighborhood. Our proposed method has several

advantages. 1) To our knowledge, this is the first published

work that proposes a pre-annotation strategy to determine

the test image’s category for promoting semantic level. 2)

Our proposed method refines labels before image annotation

for alleviating the issue of weak-labeling. 3) Our proposed

method is based on multi-level semantic neighborhoods,

which can provide rich representations at different abstrac-

tion scales. As a consequence, this model is suitable for

image annotation task because it can address the issue of

wider range labels. 4) Our proposed method is a three-

pass variant of the traditional KNN, with each pass using a

different feature vector. Our method can find visually and

semantically similar neighbor images, which can reduce the

semantic gap and improve the performance. 5) In contrast to

the traditional NN models paying more attention to frequent

labels and classical 2PKNN paying more attention to rare

labels, our method can improve performance in both per-

label and per-image metrics.

Extensive experiments demonstrate that our method can

achieve significantly outperforms competitive methods in

terms of almost all evaluation metrics. Even though near-

est neighbors based annotation models are concept-clear,

structure-intuitive, and effective, there are several shortcom-

ings. First, these methods will be time-consuming and space-

consuming if the number of the training image dataset is

huge. Second, the performance of nearest neighbor model-

based AIA methods may be influenced by the size of training

datasets.

In the future, we will explore a new modeling strategy

based on the existing model combining the merits of discrim-

inative and generative models so as to further reduce model-

ing complexity. In addition, we are interested in exploring the

new technology in attention models into feature extraction

and Graph Neural Network into representation learning of

multi-modal information.

REFERENCES

[1] J. Wang, A. Gilbert, B. Thomee, and M. Villegas, “Automatic image an-

notation at imageclef,” in Information Retrieval Evaluation in a Changing

World. Springer, 2019, pp. 251–273.

[2] Y. Verma and C. Jawahar, “Image annotation by propagating labels from

semantic neighbourhoods,” International Journal of Computer Vision, vol.

121, no. 1, pp. 126–148, 2017.

[3] P. Bhagat and P. Choudhary, “Image annotation: Then and now,” Image

and Vision Computing, vol. 80, pp. 1–23, 2018.

[4] Y. Ma, Y. Liu, Q. Xie, and L. Li, “Cnn-feature based automatic image

annotation method,” Multimedia Tools and Applications, vol. 78, no. 3,

pp. 3767–3780, 2019.

[5] S. Feng, R. Manmatha, and V. Lavrenko, “Multiple bernoulli relevance

models for image and video annotation,” in Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2004. CVPR 2004., vol. 2. IEEE, 2004, pp. II–II.

[6] A. Makadia, V. Pavlovic, and S. Kumar, “Baselines for image annotation,”

International Journal of Computer Vision, vol. 90, no. 1, pp. 88–105, 2010.

[7] B. Wu, W. Chen, P. Sun, W. Liu, B. Ghanem, and S. Lyu, “Tagging like

humans: Diverse and distinct image annotation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.

7967–7975.

[8] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for

multi-label classification,” Machine learning, vol. 85, no. 3, p. 333, 2011.

[9] Y. Niu, Z. Lu, J.-R. Wen, T. Xiang, and S.-F. Chang, “Multi-modal multi-

scale deep learning for large-scale image annotation,” IEEE Transactions

on Image Processing, vol. 28, no. 4, pp. 1720–1731, 2018.

[10] Y. Gong, Y. Jia, T. Leung, A. Toshev, and S. Ioffe, “Deep convolutional

ranking for multilabel image annotation,” arXiv preprint arXiv:1312.4894,

2013.

[11] J. Johnson, L. Ballan, and L. Fei-Fei, “Love thy neighbors: Image an-

notation by exploiting image metadata,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 4624–4632.

[12] A. Dutta, Y. Verma, and C. Jawahar, “Automatic image annotation: the

quirks and what works,” Multimedia Tools and Applications, vol. 77,

no. 24, pp. 31 991–32 011, 2018.

[13] T. Tesan, P. Coscia, and L. Ballan, “A cnn-rnn framework for image

annotation from visual cues and social network metadata,” arXiv preprint

arXiv:1910.05770, 2019.

[14] V. N. Murthy, E. F. Can, and R. Manmatha, “A hybrid model for auto-

matic image annotation,” in Proceedings of International Conference on

Multimedia Retrieval, 2014, pp. 369–376.

[15] Y. Ning, S. Hai-yu, S. Dong-yang, W. Peng-jie, and Y. Jin-xin, “Image

annotation based on middle-layer convolution features of deep learning,”

Journal of Graphics, vol. 40, no. 5, p. 872, 2019.

[16] T. Uricchio, L. Ballan, L. Seidenari, and A. Del Bimbo, “Automatic image

annotation via label transfer in the semantic space,” Pattern Recognition,

vol. 71, pp. 144–157, 2017.

[17] Q. Cheng, Q. Zhang, P. Fu, C. Tu, and S. Li, “A survey and analysis on

automatic image annotation,” Pattern Recognition, vol. 79, pp. 242–259,

2018.

[18] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Supervised

learning of semantic classes for image annotation and retrieval,” IEEE

transactions on pattern analysis and machine intelligence, vol. 29, no. 3,

pp. 394–410, 2007.

[19] C. Xu, Y. Dai, R. Lin, and S. Wang, “Social image refinement and

annotation via weakly-supervised variational auto-encoder,” Knowledge-

Based Systems, vol. 192, p. 105259, 2020.

[20] H. Song, P. Wang, J. Yun, W. Li, B. Xue, and G. Wu, “A weighted topic

model learned from local semantic space for automatic image annotation,”

IEEE Access, vol. 8, pp. 76 411–76 422, 2020.

[21] M. Koskela and J. Laaksonen, “Convolutional network features for scene

recognition,” in Proceedings of the 22nd ACM international conference on

Multimedia, 2014, pp. 1169–1172.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[23] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and

T. Darrell, “Decaf: A deep convolutional activation feature for generic

visual recognition,” in International conference on machine learning.

PMLR, 2014, pp. 647–655.

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3117349, IEEE Access

H.Li et al.: Automatic Image Annotation by Sequentially Learning from Multi-Level Semantic Neighborhoods

[24] V. N. Murthy, S. Maji, and R. Manmatha, “Automatic image annotation

using deep learning representations,” in Proceedings of the 5th ACM on

International Conference on Multimedia Retrieval, 2015, pp. 603–606.

[25] M. Zang, D. Wen, K. Wang, T. Liu, and W. Song, “A novel topic feature

for image scene classification,” Neurocomputing, vol. 148, pp. 467–476,

2015.

[26] X. Shu, G.-J. Qi, J. Tang, and J. Wang, “Weakly-shared deep transfer net-

works for heterogeneous-domain knowledge propagation,” in Proceedings

of the 23rd ACM international conference on Multimedia, 2015, pp. 35–44.

[27] J. Tang, X. Shu, Z. Li, G.-J. Qi, and J. Wang, “Generalized deep transfer

networks for knowledge propagation in heterogeneous domains,” 2016.

[28] W. Wang, X. Yan, H. Lee, and K. Livescu, “Deep variational canonical

correlation analysis,” arXiv preprint arXiv:1610.03454, 2016.

[29] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-rnn: A

unified framework for multi-label image classification,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016,

pp. 2285–2294.

[30] F. Liu, T. Xiang, T. M. Hospedales, W. Yang, and C. Sun, “Semantic

regularisation for recurrent image annotation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 2872–

2880.

[31] J. Zhang, Q. Wu, J. Zhang, C. Shen, and J. Lu, “Mind your neighbours:

Image annotation with metadata neighbourhood graph co-attention net-

works,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2019, pp. 2956–2964.

[32] J. Tang, X. Shu, G.-J. Qi, Z. Li, M. Wang, S. Yan, and R. Jain, “Tri-

clustered tensor completion for social-aware image tag refinement,” IEEE

transactions on pattern analysis and machine intelligence, vol. 39, no. 8,

pp. 1662–1674, 2016.

[33] J. Tang, X. Shu, Z. Li, Y.-G. Jiang, and Q. Tian, “Social anchor-unit

graph regularized tensor completion for large-scale image retagging,”

IEEE transactions on pattern analysis and machine intelligence, vol. 41,

no. 8, pp. 2027–2034, 2019.

[34] P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth, “Object

recognition as machine translation: Learning a lexicon for a fixed image

vocabulary,” in European conference on computer vision. Springer, 2002,

pp. 97–112.

[35] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide:

a real-world web image database from national university of singapore,”

in Proceedings of the ACM international conference on image and video

retrieval, 2009, pp. 1–9.

[36] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: Lessons

learned from the 2015 mscoco image captioning challenge,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 39, no. 4, pp.

652–663, 2016.

[37] D. Putthividhy, H. T. Attias, and S. S. Nagarajan, “Topic regression multi-

modal latent dirichlet allocation for image annotation,” in 2010 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition.

IEEE, 2010, pp. 3408–3415.

[38] X. Li, T. Uricchio, L. Ballan, M. Bertini, C. G. Snoek, and A. D.

Bimbo, “Socializing the semantic gap: A comparative survey on image tag

assignment, refinement, and retrieval,” ACM Computing Surveys (CSUR),

vol. 49, no. 1, pp. 1–39, 2016.

[39] Z. Li, J. Tang, and T. Mei, “Deep collaborative embedding for social

image understanding,” IEEE transactions on pattern analysis and machine

intelligence, vol. 41, no. 9, pp. 2070–2083, 2018.

[40] N. A. Tu, K. U. Khan, and Y.-K. Lee, “Featured correspondence topic

model for semantic search on social image collections,” Expert Systems

With Applications, vol. 77, pp. 20–33, 2017.

[41] H. Song, J. Yun, H. Li, M. Zheng, J. Yao, H. Lv, and A. Fang, “An efficient

and effective model based on mean positive examples for social image

annotation,” IEEE Access, vol. 8, pp. 210 695–210 708, 2020.

HOUJIE LI Received the B.S. and M.S. degrees in

communication and information system from Jilin

University, in 2001, 2004, and the Ph.D. degree

in signal and information processing from Dalian

University of Technology, in 2019. He is currently

an associate professor with the School of Infor-

mation and Communication Engineering, Dalian

Minzu University, China. His current research in-

terests include Image Processing, computer vision,

and machine learning.

WEI LI Received the B.S. and M.S. degrees in

computer software and theory from Jilin Univer-

sity, in 2002, 2005, and the Ph.D. degree in traffic

information engineering and control from Jilin

University, in 2021. She is currently a lecturer with

the School of Computer Science and Engineer-

ing, Dalian Minzu University, China. Her current

research interests include image understanding,

computer vision, and machine learning.

HONGDA ZHANG is currently pursuing the M.S.

degree with the School of Information and Com-

munication Engineering, Dalian Minzu Univer-

sity, China. His current research interests include

computer vision, image processing, and machine

learning.

XIN HE is currently pursuing the M.S. degree with

the School of Information and Communication

Engineering, Dalian Minzu University, China. Her

current research interests include computer vision,

image processing, and machine learning.

MINGXIAO ZHENG is currently pursuing the

B.S. degree with the School of Computer Science

and Engineering, Dalian Minzu University, China.

His current research interests include computer

vision, image processing, and deep learning.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3117349, IEEE Access

H.Li et al.: Automatic Image Annotation by Sequentially Learning from Multi-Level Semantic Neighborhoods

HAIYU SONG Received the B.S.,M.S.,and Ph.D.

degrees in computer software and theory from Jilin

University, in 1996, 2003, and 2012, respectively.

He is currently a professor with the School of

Computer Science and Engineering, Dalian Minzu

University, China. His current research interests

include image understanding, computer vision,

and machine learning.

14 VOLUME 4, 2016


