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Captioning the images with proper descriptions automatically has become an interesting and challenging problem. In this paper, we
present one joint model AICRL, which is able to conduct the automatic image captioning based on ResNet50 and LSTM with soft
attention. AICRL consists of one encoder and one decoder. The encoder adopts ResNet50 based on the convolutional neural
network, which creates an extensive representation of the given image by embedding it into a fixed length vector. The decoder is
designed with LSTM, a recurrent neural network and a soft attention mechanism, to selectively focus the attention over certain
parts of an image to predict the next sentence. We have trained AICRL over a big dataset MS COCO 2014 to maximize the
likelihood of the target description sentence given the training images and evaluated it in various metrics like BLEU,
METEROR, and CIDEr. Our experimental results indicate that AICRL is effective in generating captions for the images.

1. Introduction

With the rapid development of digitalization, there are a
huge amount of images, accompanied with a lot of related
texts [1]. Automatic image captioning has recently attracted
much research interest. The objective of automatic image
captioning is to generate properly formed English sentences
to describe the content of an image automatically, which is
of great impact in various domains such as virtual assistants,
image indexing, recommendation in editing applications,
and the help of the disabled [2, 3]. Although it is an easy task
for a human to describe an image, it becomes very difficult
for a machine to perform such a task [4]. Image captioning
does not only need to detect the objects contained in an
image but also capture how these objects related to each other
and their attributes as well as the activities involved in.
Moreover, the semantic knowledge should be expressed in a
natural language, which requires a language model to be
developed based on the visual understanding.

Much research effort has been devoted to automatic
image captioning, and it can be categorized into template-

based image captioning, retrieval-based image captioning,
and novel image caption generation [5]. Template-based
image captioning first detects the objects/attributes/actions
and then fills the blanks slots in a fixed template [1].
Retrieval-based approaches first find the visually similar
images with their captions from the training dataset, and
then the image caption is selected from similar images with
captions [6]. These methods are able to generate syntactically
correct captions but are unable to generate image-specific
and semantically correct captions. Differently, the novel
image caption generation approaches are to analyze the
visual content of the image and then to generate image cap-
tions from the visual content using a language model [7].
Compared to the first two categories, novel caption genera-
tion can generate new captions for a given image that are
semantically more accurate than previous approaches. Most
of the works in this category rely on machine learning and
deep learning, which is also the approach adopted in this
paper. One common framework used in this category is the
encoder-decoder framework for image captioning [8]. This
framework was first introduced to describe a multimodal
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log-bilinear model for image captioning with a fixed context
window by Kiros et al. [9]. Recent research works have used
the deep convolutional neural network (CNN) as the encoder
and the deep recurrent neural network (RNN) as the decoder,
which is proven to be promising [8, 10, 11]. However, it still
remains challenging to identify the proper CNN and RNN
models for the image captioning.

In this paper, we investigate one single-joint mode,
AICRL, for automatic image generation using ResNet50 (a
convolutional neural network) and LSTM (long short-term
memory) with soft attention mechanism. AICRL consists of
an encoder and a decoder. We adopt ResNet50 as the encoder
to create an extensive representation of an input image by
embedding it into a vector. Meanwhile, we utilize the LSTM
with a soft attention as the decoder which selectively focuses
the attention over a certain part of an image to predict the
next sentences. Furthermore, we conduct extensive experi-
ment and empirically determine the structure of the model
and fine-tuned the model hyperparameters. Our experimen-
tal evaluation indicates that AICRL is effective to generate
proper captions for the images.

The rest of the paper is organized as follows. Section 2
introduces the related work. In Section 3, we present the
proposed AICRL model. Section 4 and Section 5 provide
the experimental evaluation and conclusion, respectively.

2. Related Work

Much research has been devoted on the automatic image
captioning recently. The research can be briefly categorized
into three different categories including the template-based
approaches, retrieval-based approaches, and novel image
caption generation approaches.

The template-based approach is aimed at generating cap-
tions by using fixed templates with a number of blank slots,
in which way different objects, attributes, and actions are
detected first and then the blank spaces in the templates are
filled. For example, Farhadi et al. [1] use a triplet of scene ele-
ments to fill the template slots for generating image captions.
Li et al. [12] extract the phrases related to detected objects,
attributes, and their relationships for this purpose. Kulkarni
et al. [13] adopt a conditional random field (CRF) method
to infer the objects, attributes, and prepositions before filling
in the gaps. Template-based methods can generate grammat-
ically correct captions. However, templates are predefined
and length of captions cannot be variable.

The retrieval-based approach tries to generate descrip-
tion for an image by selecting the most semantically similar
sentences from sentence pool or directly copying sentences
from other visually similar images. For example, Gong et al.
[6] utilize stacked auxiliary embedding method to generate
image descriptions from millions of weakly annotated
images. Ordonez et al. [14] find similar images in the Flickr
database and return the descriptions of these retrieved
images to query based on millions of images and their corre-
sponding descriptions. Sun et al. [15] use semantic similarity
and visual similarity scores to cluster similar terms and
images together first and then retrieve caption of target image
from captions of similar images in the same cluster. Hodosh

et al. [16] establish a ranking-based framework to treat
sentence-based image description as the task of ranking a
set of captions for each test image. These methods generate
general and syntactically correct captions. However, it is dif-
ficult for them to generate image-specific and semantically
correct captions.

Different from the mentioned two categories, novel cap-
tion generation approaches mainly use deep learning and
machine learning to generate the new captions. A general
implementation of this method is to analyze the visual con-
tent of the image first and then generate image captions from
the visual content using a language model. For instance,
Vinyals et al. use CNN as an encoder for image classification
and LSTM as a decoder to generate sentence for the descrip-
tion [8]. The main drawbacks of the work are the quick
model overfitting, so they use the heavy and expensive Goo-
gLeNet with 22 hidden layers and the absence of attention
layer that significantly improved the description accuracy.
Karpathy et al. investigate the possibility of generating an
image description in natural language [10]. Their approach
uses image datasets and their description in natural language
and seeks an intermodal correspondence between words
from the description and visual data. The first model aligns
the fragments of sentences to the visual areas, then forms a
single description by multimodal embedding. This descrip-
tion is treated as learning data for a second model of a recur-
rent neural network that learned to a generate caption. Xu
et al. use a convolutional neural network to extract feature
maps and LSTM to describe the input image, by processing
already extracted feature maps [11]. The limitation of this
work is the using of obsolete and expensive Oxford VGGnet,
where the quality of image classification is low in the modern
CNN [7]. Some researchers have put their attention on
classification as Yu et al. [17], who propose a SVM
classification-based two-side cross-domain algorithm by
inferring intrinsic user and item features (CTSIF-SVMs), a
two-side cross-domain algorithm with expanding user and
item features via the latent factor space of auxiliary domains
(TSEUIF) [18].

3. Model

In this section, we present our proposed model, AICRL, for
automatic image captioning based on ResNet50 and LSTM
with software attention. The ultimate purpose of AICRL is
to generate the proper description for the given images. To
do so, the AICRL model is designed with an encoder-
decoder architecture based on CNN and RNN. In particular,
to extract visual features, we use the ResNet50 network as the
encoder to generate a one-dimensional vector representation
of the input images. After that, to generate the description
sentences, we adopt the LSTM as the language model for
the decoder to decode the vector into a sentence. Meanwhile,
we utilize the soft attention in the decoder to enable the
model to selectively focus the attention over a certain part
of an image to predict the next sentence better. We conduct
extensive experiments, empirically determine the structure
of the model, and fine-tune the model hyperparameters.

2 Wireless Communications and Mobile Computing



The whole model is fully trainable by using a stochastic gra-
dient descent.

In the encoder-decoder method, the most likely descrip-
tion of the image is determined by maximizing the log-
likelihood function of the expression S, considering the
corresponding image I and the parameters of the model θ.

θ∗ = arg max
θ

〠 I, Sð Þ log p S I ; θjð Þ, ð1Þ

where θ is the parameter of our model, I is the input image,
and S is the correct description. Since S represents a sentence
of any length, therefore, a chain rule is usually used to model
the joint probability over S1,⋯, SN , where N is the length of
this particular example.

log p S Ijð Þ = 〠
N

t=0
logp St I, S0,⋯, St−1jð Þ, ð2Þ

where the dependence on θ is omitted for convenience. The
network training is represented by the pair of (S, I), and we
optimize the sum of the log likelihood functions, as described
in Equation (2), over the entire training set using stochastic
gradient descent.

The likelihood log pðStjI, S0,⋯, St−1Þ is modelled by a
recurrent neural network, where there is a variable number
of words that we define up to t − 1. The hidden state of
RNN (latent memory) ht is updated after the new input xt
with the nonlinear function f .

ht+1 = f ht , xtð Þ: ð3Þ

3.1. Image Feature Extraction. To represent the image, we
adopt the convolutional neural network (CNN), ResNet50,
which is a very deep network that has 50 layers. The depth
of the network is crucial for neural networks, but deeper net-
works are more difficult to train. The structure of ResNet50
facilitates the training of networks and allows them to be
much deeper, which leads to increased performance in differ-
ent tasks. ResNet50 is much deeper than their “simple” coun-
terparts, but moreover, the number of parameters (weights)
of such networks is much smaller. For example, Table 1
indicates the number of parameter comparison between
ResNet50 and VGG16. Deep convolutional neural networks
have led to a series of breakthroughs for image classification.
Recent evidence reveals that network depth is of crucial
importance. Many other nontrivial visual recognition tasks
have also greatly benefited from the deep models.

With the network depth increasing, the accuracy of net-
works increases rapidly, which is not surprising and then
rapidly degrades (saturated). This degradation is not caused
by overfitting, and the addition of even more layers leads to
a higher learning error. In a sense, this is strange, since a dee-
per network has a strictly large representational power. It is
possible for ResNet50 to get a deeper model trivially, which
is not worse than the less deep network. It can be done by
adding several identity layers, that is, levels that simply skip
the signal further without changes. ResNet50’s deeper levels
have to predict the difference between the output of the pre-

vious layers and the objective function. They could always
drive the weights to 0 and simply skip the signal. Hence, deep
residual learning is a good method that makes the network
learn to predict deviations from past layers.

The model takes an image and produces a caption,
encoded as a sequence of 1 − K coded words.

y = y1, y2,⋯, ycf g, yi ∈ RK , ð4Þ

where K is the size of the dictionary and c is the caption
length. We use CNN in particular, ResNet50, to obtain set
annotation vectors like the feature vectors. The extractor pro-
duces L-vectors, all of which is a D-dimensional representa-
tion of the corresponding part of an image.

3.2. The Language Model. The choice of f in Equation (3) is
determined by its ability to cope with vanishing problems
and exploding gradients, which are the most common prob-
lems in the design and training of RNN. LSTM networks are
successfully used to accomplish the tasks of machine transla-
tion and sequence generation. In our design, we adopt LSTM
as our language model to generate proper caption based on
the input vector from the ResNet50 output.

f t = σ Wf ⋅ ht−1, xt½ � + bf
� �

, ð5Þ

where the output vector of the previous cell ht−1 with the new
element of the sequence xt is concatenated and passed as one
vector through the layer with the sigmoid activation function.

Ct = f t ∗ Ct−1 + it ∗fCt : ð6Þ

Two created vectors are used to update the state from
Ct−1 to Ct . To do this, we multiply the past state by f t to “for-
get” the data recognized as unnecessary in the previous step,
then add it ∗fCt .

it = σ Wi ⋅ ht−1, xt½ � + bið Þ,
~Ct = tanh Wc ⋅ ht−1, xt½ � + bcð Þ:

ð7Þ

The input gate must determine what values will be
updated, and the tanh layer creates a vector of new candi-
dates for ~Ct , and values can be added to the cell state.

ht = ot ∗ tanh Ctð Þ: ð8Þ

Table 1: Comparison of total number of VGG16 and ResNet50
parameters.

CNN Number of parameters

VGG16 138,357,544

ResNet50 23,587,712
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The obtained values of Ct and ht are transmitted to the
neural network input at time t + 1.

ot = σ Wo ⋅ ht−1, xt½ � + boð Þ,
pt = soft max htð Þ:

ð9Þ

The multiplicative filters allow to effectively train LSTM,
as they are good to prevent the exploding and vanishing gra-
dients. Nonlinearity is provided by the sigmoid σð·Þ and the
hyperbolic tangent hð Þ. In the last equation, ht is fed to the
softmax function to calculate the probability distribution pt
over all words. This function is calculated and optimized on
the entire training dataset. The word with maximum proba-
bility is selected at each time step and fed into next time step
input to generate a full sentence.

3.3. Attention Mechanism. To better isolate the image con-
tent, we adopt the soft attention mechanism, which has been
widely used to solve the problem of image classification, as
there is no need to process all pixels of an image. For exam-
ple, in the classification problem, the background usually
plays an insignificant role. Nevertheless, convolutional neu-
ral networks, which are the most popular method for solving
such a problem, spend the same amount of computational
resources on all parts of the image.

Soft attention is implemented by adding an additional
input of attention gate into LSTM that helps to concentrate
selective attention. The main drawback of the model without
attention is that it tries to decode the full image from the last
hidden layer of h0 in Figure 1. It is like an analogy with
machine translation in the whole process. To do a translation
of the whole text is just from the “last word.” So it will lose a
lot of useful information from the beginning of the text.

The attention gate can be represented as an addition
input for LSTM in Figure 2. The soft attention depends on
the previous output of LSTM pt and extracted features of
input image yi. Soft attention is differentiable and can be
trained by the standard method of the backpropagation algo-
rithm. In the case of model with soft attention, we append an
additional at in Equation (10).

at = 〠
n

1
SjY j, ð10Þ

where at is an attention vector, sj is a nonlinear function
with softmax output, and yj is the extracted features of the
input image.

4. Experiments and Analysis

We perform an extensive set of experiments to evaluate the
effectiveness of the proposed model. We have adopted two
different datasets in our experiments including the MS
COCO 2014 dataset and Flickr8K dataset, which contain
the images with their descriptions in English. The MS COCO
2014 dataset contains 102,739 images with their descriptions,
five descriptions for each image, and 20,548 testing examples.
The Flickr8K dataset is another set of images with their
descriptions with 7,000 training examples and 1,000 testing
examples. Similar to MS COCO 2014, it also contains five
descriptions for each image, but with a much smaller volume.
Consider the Flickr8K data has less data than MS COCO
2014. In the training, we first use the Flickr8K dataset to train
the model and then use the fine-tuned hyperparameters on
MS COCO 2014. All experiments are conducted on NVIDIA
GPU GTX-1070.

We evaluate the model using several popular metrics
such as BLEU [19], METEOR [20], and CIDEr [21]. BLEU
(Bilingual Evaluation Understudy) is an algorithm that mea-
sures the precision of an n-gram between the generated and
reference captions. BLEU-N (N = 1, 2, 3, 4) scores can be cal-
culated based on the length of the reference sentence, the
generated sentence, the uniform weights, and the modified
n-gram precisions.

METEOR (Metric for Evaluation of Translation with
Explicit Ordering) is an evaluation metric which was initially
used in machine translation. Besides measuring precision,

Features

CNN

p1

h0 h1 h2

x0 x1

p2

Figure 1: Model without attention.

Features Attention

CNN h1 h2

x0 x1

p1 p2

Figure 2: Model with attention.

Table 2: Comparison for AICRL with and without attention.

Model BLEU-4 METEOR CIDEr

With attention 0.326 0.261 0.872

Without attention 0.262 0.209 0.803

Table 3: Comparison for AICRL with and without attention.

Model Right choosing of generated description

With attention 71%

Without attention 54%
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METEOR places emphasis on the recall between the gener-
ated and ground truth captions.

CIDEr (Consensus-based Image Description Evaluation)
measures the similarity of generated captions to their ground
truth sentences for evaluating image captioning. This
measurement takes into account the grammaticality and
correctness.

4.1. Training. The first step in the process of generating com-
ments to the image is to create a fixed-length vector that effec-
tively summarizes the content of an image. We use CNN, in
particular the ResNet50 architecture. This network is prelimi-
narily trained for 1.2 million images of the ImageNet dataset.
Therefore, ResNet50 has a reliable initialization for object rec-
ognition and allows reducing training time. For any image
from the training set, we get the output vector representation
from the last convolution layer. This vector is fed to the LSTM
input. Since the training set is a large dataset and each image is
represented as a 2048-dimensional vector, the learning will be
expensive. Therefore, the principal component method is used
to reduce the dimension of the image vector from 2048 to 256.
Since the length of the description may differ, the model
should know where to start and stop. To do this, we add two
tokens < START > and < END >, which are the beginning
and end of each sign.

The network for generating the captions will have to
capture the words between these tokens. In this paper, words
are represented as the frequency of occurrence of each word
in the dictionary (1-of-N , where N is the power of the
dictionary). The LSTMmodel learns to predict the next word
St in the commentary based on the vector of visual features

and the previous t − 1 words. pðStjI, S1, S2,⋯, Sðt−1ÞÞ is calcu-
lated and optimized on the whole training dataset by using
stochastic gradient descent. At each time step, the context
vector Zt and the hðt−1Þ state of the previous step are fed to
the LSTM together. After that, LSTM provides the next state
vector ht and next word. The context vector zt is a concatena-
tion of the feature vector and one hot vector of word
representation.

4.2. Experimental Results. To speed up the learning process,
we have adopted the method of Adam optimization with a
gradual decreasing of learning rate which convergences more
quickly. We use Adam optimization with regularization
methods such as L2 and dropout together. Applying the
dropout technique in convolutional layers with a value of
0.5 and 0.3 in the LSTM layers helps to avoid overfitting that
quickly happens with a small training set like the Flickr8K
dataset. A variant with two LSTM layers is selected because
we do not find that additional layers improve the quality.
Each of the LSTM contains 512 hidden elements in a cell.
Batch size equal to 32 and the beam size 3 are empirically
found out that values are optimal. The deep models, such
as ResNet50, for generating comments to the image increase
in efficiency of the whole model. This is especially noticeable
in the BLEU metric. Using a large set of MS COCO 2014
dataset avoids the model overfitting, while the overfitting
on Flickr8K is achieved very quickly with a large batch size.

First, we study the impact of the soft attention mecha-
nism in AICRL. As Table 2 indicates, the integrating the soft
attention mechanism improves the model performances sig-
nificantly. The soft attention mechanism increases the

Table 4: The performance comparison in the Flick8K dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Mao et al. [22] 0.58 0.28 0.23 — — —

Google NIC [28] 0.63 0.41 0.27 — — —

Chen and Zitnick [23] — — — 0.141 — —

Log bilinear [25] 0.656 0.424 0.277 0.177 0.173 —

DVS [26] 0.579 0.383 0.245 0.16 — —

AICRL-ResNet50 0.619 0.452 0.368 0.262 0.209 0.803

AICRL-VGA16 0.672 0.436 0.338 0.225 0.186 0.743

Table 5: The performance comparison in the MS COCO 2014 dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Nearest neighbor [27] 0.48 0.281 0.166 0.1 0.157 0.383

Google NIC [28] 0.666 0.461 0.329 0.246 — —

LRCN [24] 0.628 0.442 0.304 — — —

MS research [29] — — — 0.211 0.207 —

Chen and Zitnick [23] — — — 0.19 0.204 0.141

Log bilinear [25] 0.708 0.489 0.344 0.243 0.2 —

DVS [26] 0.625 0.45 0.321 0.23 0.195 0.66

AICRL-ResNet50 0.731 0.562 0.41 0.326 0.261 0.872

AICRL-VGA16 0.702 0.536 0.398 0.295 0.236 0.857
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performance in all metrics like BLEU-4, METEOR, and
CIDEr. In addition, after training of the generator model,
there are two questions. The first one is whether the model
really generates new descriptions, and the second one is that
whether they are diverse, qualitative, and understandable for
humans. We have also conducted another set of experiments
to involve human into the performance evaluation.

A questionnaire is designed with 20 images and the gen-
erated descriptions from the two different models. The par-
ticipants are asked to evaluate whether the generated
caption can well describe the images. Table 3 presents the
results based on the generated description from the MS
COCO 2014 dataset. From the results, we can see that 71%
of the captions are well generated for the model with soft
attention, while 54% are well generated for the one without
soft attention. Based on this, we will use AICRL with the soft
attention in the following experiments.

Next, we study the performance comparison between
AICRL and other existing image captioning algorithms
[22–29]. To make the evaluation complete, we also imple-
mented another algorithm, AICRL-VGA16, by using another
CNN network, namely, VGA16, in AICRL. Tables 4 and 5
show the results based on the Flick8K dataset and MS COCO
2014 dataset under six different metrics including BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METOER, and CIDEr. From
both of the results, we can see that AICRL outperforms other
systems in those metrics. The proposed model is able to gen-
erate efficient captions and fluent language. Meanwhile,
ResNet50 also outperforms the VGA16 network which indi-
cates that ResNet50 is able to capture the image features well.
From these experiments, we observe that AICRL achieves
good performance by integrating ResNet50, LSTM, and soft
attention into a joint model.

Furthermore, we study how the total loss changes during
the training. Figure 3 shows that the total loss of the model
varies while the training iteration increases. From the results,
we can see that the total loss quickly decreases at the beginning
of training, but later, the speed of loss changing slows down.

5. Conclusions

In this paper, we have presented one single joint model
for automatic image captioning based on ResNet50 and

LSTM with software attention. The proposed model was
designed with one encoder-decoder architecture. We adopted
ResNet50, a convolutional neural network, as the encoder to
encode an image into a compact representation as the graph-
ical features. After that, a language model LSTM was selected
as the decoder to generate the description sentence. Mean-
while, we integrated the soft attention model with LSTM such
that the learning can be focused on a particular part of the
image to improve the performance. The whole model is fully
trainable by using the stochastic gradient descent that makes
the training process easier. The experimental evaluations indi-
cate that the proposed model is able to generate good captions
for images automatically.
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