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Abstract. We aim to color greyscale images automatically, without any
manual intervention. The color proposition could then be interactively
corrected by user-provided color landmarks if necessary. Automatic col-
orization is nontrivial since there is usually no one-to-one correspondence
between color and local texture. The contribution of our framework is
that we deal directly with multimodality and estimate, for each pixel of
the image to be colored, the probability distribution of all possible colors,
instead of choosing the most probable color at the local level. We also
predict the expected variation of color at each pixel, thus defining a non-
uniform spatial coherency criterion. We then use graph cuts to maximize
the probability of the whole colored image at the global level. We work
in the L-a-b color space in order to approximate the human perception
of distances between colors, and we use machine learning tools to extract
as much information as possible from a dataset of colored examples. The
resulting algorithm is fast, designed to be more robust to texture noise,
and is above all able to deal with ambiguity, in contrary to previous
approaches.

1 Introduction

Automatic image colorization consists in adding colors to a new greyscale image
without any user intervention. The problem, stated like this, is ill-posed, in the
sense that one cannot guess the colors to assign to a greyscale image without
any prior knowledge. Indeed, many objects can have different colors: not only
artificial, plastic objects can have random colors, but natural objects like tree
leaves can have various nuances of green and turn brown during autumn, without
a significant change of shape.

The color prior most often considered in the literature is the user: many ap-
proaches consist in letting the user determine the color of some areas and then
in extending this information to the whole image, either by pre-computing a
segmentation of the image into (hopefully) homogeneous color regions, or by
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Fig. 1. Failure of standard colorization algorithms in presence of texture. Left: manual
initialization; right: result of Levin et al.’s approach. In spite of the general efficiency
of their simple method (based on the mean and standard deviation of local inten-
sity neighborhoods), texture remains difficult to deal with. Hence the need of texture
descriptors and of learning edges from color examples.

spreading color flows from the user-defined color points. This last method sup-
poses a definition of the difficulty of the color flow to go through each pixel,
usually estimated as a simple function of local greyscale intensity variations, as
in Levin et al.[1], in Yatziv and Sapiro [2], or in Horiuchi [3], or by predefined
thresholds to detect color edges [4]. However, we have noticed, for instance, that
the simple, efficient framework by Levin et al. cannot deal with texture examples
such as in figure 1, whereas simple oriented texture features such as Gabor filters
would have obviously solved the problem1. This is the reason why we need to
consider texture descriptors. More generally, each hand-made criterion for edge
estimation has its drawbacks, and therefore we will learn the probability of color
change at each pixel instead of setting a hand-made criterion.

User-based approaches present the advantage that the user can interact, add
more color points if needed, until a satisfying result is reached, or even place color
points strategically in order to give indirect information on the location of color
boundaries. Our method can easily be adapted to incorporate such user-provided
color information. The task of providing first a fully automatic colorization of
the image, before a possible user intervention if necessary, is however much
harder.

Some recent attempts of predicting the colors gave mixed results. For instance
the problem has been studied by Welsh et al.[5]; it is also one of the applications
presented by Hertzmann et al. in [6]. However the framework developed in both
cases is not mathematically expressed, in particular it is not clear whether an
energy is minimized, and the results shown seem to deal with only a few colors,
with many small artifacts probably due to the lack of a suitable spatial coherency
criterion. An other notable study is by Irony et al.[7]: it consists in finding a
few points in the image where a color prediction algorithm reaches the highest
confidence, and then in applying Levin’s approach as if these points were given
by the user. Their approach of color prediction is based on a learning set of
colored images, partially segmented by the user into regions. The new image
to be colored is then automatically segmented into locally homogeneous regions
whose texture is similar to one of the colored regions previously observed, and
the colors are transferred. Their method reduces the effort required of the user

1 Their code is available at http://www.cs.huji.ac.il/~weiss/Colorization/.
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but still requires a manual pre-processing step. To avoid this, they proposed to
segment the training images automatically into regions of homogeneous texture,
but fully automatic segmentation (based on texture or not) is known to be a very
hard problem. In our approach we will not rely on an automatic segmentation
of the training or test images but we will build on a more robust ground.

Irony’s method also brings more spatial coherency than previous approaches,
but the way coherency is achieved is still very local since it can be seen as a one-
pixel-radius filter, and furthermore it relies partly on an automatic segmentation
of the new image.

But above all, the latter method, as well as all other former methods in the
history of colorization (to the knowledge of the authors), cannot deal with the
case where an ambiguity concerning the colors to assign can be resolved only at
the global level. The point is that local predictions based on texture are most
often very noisy and not reliable, so that information needs to be integrated over
large regions to become significant. Similarly, the performance of an algorithm
based on texture classification, such as Irony’s one, would drop dramatically with
the number of possible texture classes, so that there is a real need for robustness
against texture misclassification or noise. In contrast to previous approaches, we
will avoid to rely on very-local texture-based classification or segmentation and
we will focus on more global approaches.

The color assignment ambiguity also happens when the shape of objects is rel-
evant to determine the color of the whole object. More generally, it appears that
boundaries of objects contain much not-immediately-usable information, such
as the presence of edges in the color space, and also contain significant details
which can help the identification of the whole object, so that the colorization
problem cannot be solved at the local level of pixels. In this article we try to
make use of all the information available, without neglecting any low probability
at the local level which could make sense at the global level.

Another source for prior information is motion and time coherency in the
case of video sequences to be colored [1]. Though our framework can easily be
extended to the film case and also benefit from this information, we will deal
only with still images in this article.

First we present, in section 2, the model we chose for the color space, as well as
the model for local greyscale texture. Then, in section 3, we state the problem
of automatic image colorization in machine learning terms, explain why the
naive approach, which consists in trying to predict directly color from texture,
performs poorly, and we show how to solve the problem by learning multimodal
probability distributions of colors, which allows the consideration of different
possible colorizations at the local level. We also show how to take into account
user-provided color landmarks when necessary. We start section 4 with a way
to learn how likely color variations are at each pixel of the image to color. This
defines a spatial coherency criterion which we use to express the whole problem
mathematically. We solve a discrete version of it via graph cuts, whose result is
already very good, and refine it to solve the original continuous problem.
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2 Model for Colors and Greyscale Texture

We first model the basic quantities to be considered in the image colorization
problem.

Let I denote a greyscale image to be colored, p the location of one particular
pixel, and C a proposition of colorization, that is to say an image of same size
as I but whose pixel values C(p) are in the standard RGB color space. Since
the greyscale information is already given by I(p), we should add restrictions on
C(p) so that computing the greyscale intensity of C(p) should give I(p) back.
Thus the dimension of the color space to be explored is intrinsically 2 rather
than 3.

We present in this section the model chosen for the color space, our way
to discretize it for further purposes, and how to express continuous probability
distributions of colors out of such a discretization. We also present the feature
space used for the description of greyscale patches.

2.1 L-a-b Color Space

In order to quantify how similar or how different two colors are, we need a metric
in the space of colors. Such a metric is also required to associate to any color a
corresponding grey level, i.e. the closest unsaturated color. This is also at the core
of the color coherency problem: an object with a uniform reflectance will show
different colors in its illuminated and shadowed parts since they have different
grey levels, so that we need a way to define robustly colors against changes of
lightness, that is to consider how colors are expected to vary as a function of
the grey level, i.e. how to project a dark color onto the subset of all colors who
share a particular brighter grey level.

The psychophysical L-a-b color space was historically designed so that the
Euclidean distance between the coordinates of any colors in this space approx-
imates as well as possible the human perception of distances between colors.
The transformation from standard RGB colors to L-a-b consists in first apply-
ing gamma correction, followed by a linear function in order to obtain the XY Z

color space, and then by another highly non-linear application which is basically
a linear combination of the cubic roots of the coordinates in XY Z. We refer to
Lindbloom’s website2 for more details on color spaces or for the exact formulas.
The L-a-b space has three coordinates: L expresses the luminance, or lightness,
and is consequently the greyscale axis, whereas a and b stand for two orthogonal
color axes.

We choose the L-a-b space to represent colors since its underlying metric has
been designed to express color coherency. In the following, by grey level and 2D

color we will mean respectively L and (a, b).
With the previous notations, since we already know the grey level I(p) of

the color C(p) to predict at pixel p, we search only for the remaining 2D color,
denoted by ab(p).

2 http://brucelindbloom.com/
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2.2 Discretization of the Color Space

This subsection contains more technical details and can be skipped in the first
reading.

In section 3 we will temporarily need a discretization of the 2D color space.
Instead of setting a regular grid, we define a discretization adapted to the color
images given as examples so that each color bin will contain approximately the
same number of observed pixels with this color. Indeed, some entire zones of
the color space are useless and we prefer to allocate more color bins where the
density of observed colors is higher, so that we can have more nuances where
it makes statistical sense. Figure 2 shows the densities of colors corresponding
to some images, as well as the discretizations in 73 bins resulting from these
densities. We colored each color bin by the average color of the points in the bin.
To obtain these discretizations, we used a polar coordinate system in ab and
cut recursively color bins with highest numbers of points at their average color
into 4 parts. Discussing the precise discretization algorithm is not relevant here
provided it makes sense statistically; we could have used K-means for instance.

Fig. 2. Examples of color spectra and associated discretizations. For each line, from
left to right: color image; corresponding 2D colors; location of the observed 2D colors
in the ab-plane (a red dot for each pixel) and the computed discretization in color bins;
color bins filled with their average color; continuous extrapolation: influence zones of
each color bin in the ab-plane (each bin is replaced by a Gaussian, whose center is a
black dot; red circles indicate the standard deviation of colors within the color bin,
blue ones are three times bigger).

Further, in section 4, we will need to express densities of points over the
whole plane ab, based on the densities computed in each color bin. In order
to interpolate continuously the information given by each color bin i, we place
Gaussian functions on the average color µi of each bin, with a standard deviation
proportional to the statistically observed standard deviation σi of points of each
color bin (see last column of figure 2). Then we interpolate the original density
d(i) to any point x in the ab plane by:
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dG(x) =
∑

i

1

π(ασi)2
e
−

(x−µi)2

2(ασi)
2 d(i)

We found experimentally that considering a factor α ≈ 2 improved significantly
the distribution aspect. Cross-validation could be used to determine the optimal
α for a given learning set.

2.3 Greyscale Patches and Features

The grey level of one pixel is clearly not informative enough to decide which
2D color we should assign to it. The hope is that texture and local context will
give more clues for such a task (see section 3). In order to extract as much in-
formation as possible to describe local neighborhoods of pixels in the greyscale
image, we compute SURF descriptors [8] at three different scales for each pixel.
This leads to a vector of 192 features per pixel. In order to reduce the number
of features and to condense the relevant information, we apply Principal Com-
ponent Analysis (PCA) and keep the first 27 eigenvectors, to which we add, as
supplemental components, the pixel grey level as well as two biologically inspired
features: a weighted standard deviation of the intensity in a 5× 5 neighborhood
(whose meaning is close to the norm of the gradient), and a smooth version of its
Laplacian. We will refer to this 30-dimensioned vector, computed at each pixel,
as local description in the following, and denote it by v or w.

3 Color Prediction

Now that we have modelled colors as well as local descriptions of greyscale
images, we can start stating the image colorization problem. Given a set of
examples of color images, and a new greyscale image I to be colored, we would
like to extract knowledge from the learning set to predict colors C(p) for the
new image.

3.1 Need for Multimodality

One could state this problem in simple machine learning terms: learn the function
which associates to any local description of greyscale patches the right color to
assign to the center pixel of the patch. This could be achieved by kernel regression
tools such as Support Vector Regression (SVR) or Gaussian Processes [9].

There is an intuitive reason why this would perform poorly. Many objects can
have different colors, for instance balloons at a fair could be green, red, blue,
etc., so that even if the task of recognizing a balloon was easy and that we knew
that we should use colors from balloons to color the new one, a regression would
recommend the use of the average value of the observed balloons, i.e. grey. The
problem is however not specific to objects of the same class. Local descriptions
of greyscale patches of skin or sky are very similar, so that learning from images
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including both would recommend to color skin and sky with purple, without
considering the fact that this average value is never probable.

We therefore need a way to deal with multi-modality, i.e. to predict different
colors if needed, or more exactly, to predict at each pixel the probability of every

possible color. This is in fact the conditional probability of colors knowing the
local description of the greyscale patch around the pixel considered. We will also
be interested in the confidence in these predictions in order to know whether
some predictions are more or less reliable than others.

3.2 Probability Distributions as Density Estimations

The conditional probability of the color ci at pixel p knowing the local descrip-
tion v of its greyscale neighborhood can be expressed as the fraction, amongst
colored examples ej = (wj , c(j)) whose local description wj is similar to v, of
those whose observed color c(j) is in the same color bin Bi. We thus have to
estimate densities of points in the feature space of grey patches. This can be
accomplished with a Gaussian Parzen window estimator:

p(ci|v) =
(

∑

{j : c(j)∈Bi}

k(wj ,v)
)/

∑

j

k(wj ,v)

where k(wj ,v) = e−(wj−v)2/2σ2

is the Gaussian kernel. The best value for the
standard deviation σ can be estimated by cross-validation on the densities. With
this framework we can express how reliable the probability estimation is: its con-
fidence depends directly on the density of examples around v, since an estimation
far from the clouds of observed points loses signification. Thus, the confidence
in a probability prediction is the density in the feature space itself:

p(v) ∝
∑

j

k(wj ,v)

In practice, for each pixel p, we compute the local description v(p), but we do
not need to compute the similarities k(v,wj) to all examples in the learning set:
in order to save computational time, we only search for the K-nearest neighbors
of v in the learning set, with K sufficiently large (as a function of the σ chosen),
and estimate the Parzen densities based on these K points. In practice we choose
K = 500, and thanks to fast nearest neighbor search techniques such as kD-tree3,
the time needed to compute all predictions for all pixels of a 50 × 50 image is
only 10 seconds (for a learning set of hundreds of thousands of patches) and this
scales linearly with the number of test pixels. Note that we could also have used
sparse kernel techniques such as SVR to estimate, for each color bin, a regression
between the local descriptions and the probability of falling into the color bin.
We refer more generally to [9] for details and discussions about kernel methods.

3 We use, without particular optimization, the TSTOOL package available at
http://www.physik3.gwdg.de/tstool/.
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3.3 User-Provided Color Landmarks

We can easily consider user-provided information such as the color c at pixel
p in order to modify a colorization obtained automatically. We set p(c|p) = 1
and set the confidence p(p) to a very large value. Consequently our optimization
framework is still usable for further interactive colorization. A re-colorization
with new user-provided color landmarks does not require the re-estimation of
color probabilities, and therefore lasts only a fraction of second (see next part).

4 Spatial Coherency

For each pixel of a new greyscale image, we are now able to estimate the prob-
ability distribution of all possible colors (within a big finite set of colors since
we discretized the color space into bins). The interest in such computation is
that, if we add a spatial coherency criterion, a pixel will be influenced by its
neighbors, and the choice of the best color to assign will be done accordingly
to the probability distributions in the neighborhood. Since all pixels are linked
by neighborhoods, even if not directly, they all interact with each other, so that
the solution has to be computed globally. Indeed it may happen that, in some
regions that are supposed to be homogeneous, a few different colors may seem
to be the most probable ones at a local level, but that the winning color at the
scale of the region is different, because in spite of its only second rank probability
at the local level, it ensures a good probability everywhere in the whole region.
The opposite may also happen: to flip a whole such region to a color, it may be
sufficient that this color is considered as extremely probable at a few points with
high confidence. The problem is consequently not trivial, and the issue is to find
a global solution. In this section we first learn a spatial coherency criterion, then
find a good solution to the whole problem with the help of graph cuts.

4.1 Local Color Variation Prediction

Instead of picking randomly a prior for spatial coherence, based either on detec-
tion of edges, or on the Laplacian of the intensity, or on a pre-estimated complete
segmentation, we learn directly how likely it is to observe a color variation at
a pixel knowing the local description of its greyscale neighborhood, based on a
learning set of real color images. The technique is similar to the one detailed
in the previous section. For each example wj of colored patch, we compute the
norm gj of the gradient of the 2D color (in the L-a-b space) at the center of the
patch. The expected color variation g(v) at the center of a new greyscale patch
v is then:

g(v) =

∑

j k(wj ,v) gj
∑

j k(wj ,v)
.

Thus we now have priors both on the colors and on the color variations.
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4.2 Global Coherency Via Graph Cuts

The graph cut, or max flow, algorithm is a minimization technique widely used
in computer vision [10,11] because of its suitability for many image processing
problems, because of its guarantee to find a good local minimum, and because
of its speed. In the multi-label case with α-expansion [12], it can be applied to
all energies of the form

∑

i Vi(xi) +
∑

i,j Di∼j(xi, xj) where xi are the unknown
variables, with possible values in a finite set L of labels, where the Vi are any
functions, and where Di,j are any pair-wise interaction terms with the restriction
that each Di,j(·, ·) should be a metric on L.

The reason why we temporarily discretized the color space in section 2 was
to be able to use this technique. We formulate the image colorization problem
as an optimization problem on the following energy:

∑

p

Vp(c(p)) + λ
∑

p∼q

|c(p) − c(q)|Lab

gp,q
(1)

where Vp(c(p)) = − log
(

p
(

v(p)
)

p
(

c(p)|v(p)
) )

is the cost of choosing color
c(p) for pixel p (whose neighboring texture is described by v(p))) and where

gp,q = 2
(

g(v(p))−1 + g(v(q))−1
)−1

is the harmonic mean of the estimated color
variation at pixels p and q. An 8-neighborhood is considered for the interaction
term, and p ∼ q means that p and q are neighbors.

The term Vp penalizes colors which are not probable at the local level ac-
cording to the probability distributions obtained in section 3, with the strength
depending on the confidence in the predictions. The interaction term between
pixels penalizes color variation where it is not expected, according to the varia-
tions predicted in the previous paragraph.

We use the graph cut package4 provided by [13]. The solution for a 50 × 50
image and 73 possible colors is obtained by graph cuts in a fraction of second and
is generally already very satisfying. The computation time scales approximately
quadratically with the size of the image, which is still fast, and the algorithm
performs well even on massively down-scale versions of the image, so that a good
initial clue can still be given quickly for very big images too. The computational
costs compete with those of the fastest colorization techniques [14] while bringing
much more spatial coherency.

4.3 Refinement in the Continuous Color Space

We can now go back to the initial problem in the continuous space of colors.
We interpolate probability distributions p(ci|v(p)) estimated at each pixel p for
each color bin i, to the whole space of colors with the technique described in
section 2, so that Vp(c) is now defined for any color c and not only for color
bins. The energy (1) can consequently be minimized in the continuous space of
colors. We start from the solution obtained by graph cuts and refine it with a
gradient descent. This refinement step will generally not introduce huge changes
like flipping of whole regions, but will bring more nuances.

4 Available at http://vision.middlebury.edu/MRF/code/
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5 Experiments

We now show results of automatic colorization. In figure 3 we colored a famous
painting by Leonardo Da Vinci with another painting of his. The paintings are
significantly different and textures are relatively dissimilar. The prediction of
color variation performs well and helps much to determine the boundaries of
homogeneous color regions. The multimodality framework proves extremely use-
ful in areas such as Mona Lisa’s forehead or neck where the texture of skin
can be easily mistaken with the texture of sky at the local level. Without our
global optimization framework, several entire skin regions would be colored in
blue, disregarding the fact that skin color is a second probable possibility of
colorization for these areas, which makes sense at the global level since they are
surrounded by skin-colored areas, with low probability of edges. We insist on the
fact that the input of previous texture-based approaches is very similar to the
“most probable color” prediction (second line, middle image), whereas we con-
sider the probabilities of all possible colors at all pixels. This means that, given
a certain quality of texture descriptors, we handle much more information.

In figure 4 we perform similar experiments with photographs of landscapes.
The effect of the refinement step can be observed in the sky, where nuances of
blue vary more smoothly.

Fig. 3. Da Vinci case: Mona Lisa colored with Madonna. The border is not colored
because of the window size needed for SURF descriptors. Second line: color variation
predicted (white stands for homogeneity and black for color edge); most probable color
at the local level; 2D color chosen by graph cuts. Note that previous algorithms could
not deal with regions such as the neck or the forehead, where blue is the most probable
color at the local level because greyscale skin looks like sky. Surroundings of these
regions and lower-probability colors are decisive for the final color choice.
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Fig. 4. Landscape example. Same display as in figure 3, plus last image: colors obtained
after refinement step. Note that the sky is more homogeneous, the color gradients in
the sky are smoother than when obtained directly by graph cuts (previous image).

Fig. 5. Comparable results with Irony et al. on their own example[7]. First line: our
result. Second line, left: our predicted 2D colors; right: Irony et al.’s result with the
assumption that it is a binary classification problem. Note that this example they chose
could be solved easily without texture consideration since there is a simple correspon-
dence between grey level intensity and color. Concerning our result, the color variations
in the grass around the zebra are probably due to the influence of the grass color for
similar patches in the learning image, and this problem should disappear with a larger
training set. Note however, if you zoom in, that the contour of the zebra matches ex-
actly boundaries of 2D color regions (purple and pink), whereas in Irony et al.’s result,
a several pixel wide band of grass around the zebra’s legs and abdomen are colored as if
they were part of the zebra. The moral is that we should not try to learn colors from a
single overfitted, carefully-chosen training image but rather check how the colorization
scales with the number of training images and with their non-perfect suitability.
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Fig. 6. Charlie Chaplin frame colored by three different images. Second line: prediction
of color variations, most probable color at the local level, and final result. This example
is particularly difficult because many different textures and colors are involved and
because there does not exist color images very similar to Charlie Chaplin’s one. We
have chosen three different images, each of which shares a partial similarity with the
target image. In spite of the complexity, the prediction of color edges or of homogeneous
regions remains significant. The brick wall, the door, the head and the hands are
globally well colored. The large trousers are not in the learning set; the mistakes in
the colors of Charlie Chaplin’s dog are probably due to the blue reflections on the dog
in the learning image and to the light brown of its head. Both would probably benefit
from larger training sets.

We compare our method with the one by Irony et al., on their own example

[7] in figure 5; the task is easier and results are similar. The boundaries of our
color regions even fit better to the zebra contour. Grass areas near the zebra are
colored according to the grass observed at similar locations around the zebra in
the learning image. This bias should disappear with bigger training sets since
the color of the background would become independent of zebra’s presence. We
would have liked to compare results on a wider scale, in particular on our difficult
examples, but we face the problems of source code availability and objective
comparison criteria.

In figure 6 we consider a very difficult task: the one of coloring an image from
a Charlie Chaplin movie, with many different objects and textures, such as a
brick wall, a door, a dog, a head, hands, a loose suit... Because of the number of
objects, and because of their particular arrangement, it is unlikely to find a single
color image with a similar scene that we would use as a learning image. Thus
we consider a small set of three different images, each of which shares a partial
similarity with Charlie Chaplin’s image. The underlying difficulty is that each
learning image also contains parts which should not be re-used in this target
image. The result is however promising, considering the learning set. Dealing
with bigger learning datasets should slow the process only logarithmically, during
the kD-tree search.



138 G. Charpiat, M. Hofmann, and B. Schölkopf

6 Discussion

Our contribution is both theoretical and practical.
We proposed a new approach for automatic image colorization, which does

not require any intervention by the user, except from the choice of relatively
similar color images. We stated the problem mathematically as an optimization
problem with an explicit energy to minimize. Since it deals with multimodal
probability distributions until the final step, this approach makes better use of
the information that can be extracted from images by machine learning tools.
The fact that we solve directly the problem at the global level, with the help
of graph cuts, makes the framework more robust to noise and local prediction
errors. It also makes it possible to resolve large scale ambiguities which previous
approaches could not. This multi-modality framework is not specific to image
colorization and could be re-used in any prediction task on images.

We also proposed a way to learn and predict where color variations are proba-
ble and how important they are, instead of choosing a spatial coherency criterion
by hand, and this performs quite well (see figures 3 and 6 again). It relies on
many features and adapts itself to the current training set.

Our colorization approach outperforms [5] and [6], whose examples contain
only few colors and lack spatial coherency. Our process requires less or similar
intervention than [7] but can handle more ambiguous cases and more texture
noise. The computational time needed is also very low, enabling real-time user
interaction since a re-colorization with new color landmarks lasts a fraction of
second.

The automatic colorization results should not be compared to those obtained
by user-helped approaches since we do not benefit from such decisive information.
Nevertheless, even with such an handicap, our results clearly compete with the
state of the art of colorization with few user scribbles.
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