
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  Celik, T. and Tjahjadi, T.   

Article Title: Automatic Image Equalization and Contrast Enhancement 
Using Gaussian Mixture Modeling 
Year of publication: 2012 

Link to published article:  
http://dx.doi.org/10.1109/TIP.2011.2162419   
Publisher statement: “© 2012 IEEE. Personal use of this material is 
permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.” 
 
Citation: Celik, T and Tjahjadi, T. (2012). Automatic Image Equalization 
and Contrast Enhancement Using Gaussian Mixture Modeling. 
Transactions on Image Processing, IEEE, Vol. 21, No. 1, pp. 145-156  

 

http://go.warwick.ac.uk/wrap


1

Automatic Image Equalization and Contrast

Enhancement Using Gaussian Mixture Modelling

Turgay Celik and Tardi Tjahjadi Senior Member, IEEE

Abstract

In this paper, we propose an adaptive image equalization algorithm which automatically enhances the contrast in an input

image. The algorithm uses Gaussian mixture model (GMM) to model the image grey-level distribution, and the intersection points

of the Gaussian components in the model are used to partition the dynamic range of the image into input grey-level intervals.

The contrast equalized image is generated by transforming the pixels’ grey levels in each input interval to the appropriate output

grey-level interval according to the dominant Gaussian component and cumulative distribution function (CDF) of the input interval.

To take account of human perception the Gaussian components with small variances are weighted with smaller values than the

Gaussian components with larger variances, and the grey-level distribution is also used to weight the components in the mapping

of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable

enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter

setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.

Index Terms

Contrast enhancement, histogram equalization, normal distribution, Gaussian mixture modelling, histogram partition.

I. INTRODUCTION

The objective of an image enhancement technique is to bring out hidden image details, or to increase the contrast of an

image with low dynamic range [1]. Such a technique produces an output image that subjectively looks better than the original

image by increasing the grey level differences (i.e., the contrast) among objects and background. Numerous enhancement

techniques have been introduced and these can be divided into three groups: 1) techniques that decompose an image into

high and low frequency signals for manipulation [2], [3]; 2) transform-based techniques [4]; and 3) histogram modification

techniques [5]–[16].

Techniques in the first two groups often use multiscale analysis to decompose the image into different frequency bands and

enhance its desired global and local frequencies [2]–[4]. These techniques are computationally complex but enable global and

local contrast enhancement simultaneously by transforming the signals in the appropriate bands or scales. Furthermore they

require appropriate parameter settings which might otherwise result in image degradations. For example, the centre-surround

Retinex [2] algorithm was developed to attain lightness and colour constancy for machine vision applications. The constancy

refers to the resilience of perceived colour and lightness to spatial and spectral illumination variations. The benefits of the

Retinex algorithm include dynamic range compression and colour independence from the spatial distribution of the scene
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illumination. However, this algorithm can result in “halo” artefacts, especially in boundaries between large uniform regions.

Also, a “greying out” can occur, in which the scene tends to change to middle grey.

Among the three groups the third group received the most attention due to their straightforward and intuitive implementation

qualities. Linear contrast stretching (LCS) and global histogram equalization (GHE) are two widely utilized methods for global

image enhancement [1]. The former linearly adjusts the dynamic range of an image, and the latter uses an input-to-output

mapping obtained from the cumulative distribution function (CDF) which is the integral of the image histogram. Since the

contrast gain is proportional to the height of the histogram, grey levels with large pixel populations are expanded to a larger

range of grey levels while other grey-level ranges with fewer pixels are compressed to smaller ranges. Although GHE can

efficiently utilize display intensities, it tends to over-enhance the image contrast if there are high peaks in the histogram, often

resulting in a harsh and noisy appearance of the output image. LCS and GHE are simple transformations but they do not

always produce good results, especially for images with large spatial variation in contrast. In addition, GHE has the undesired

effect of over-emphasizing any noise in an image.

In order to overcome the aforementioned problems, local histogram equalization (LHE) based enhancement techniques have

been proposed, e.g., [5], [6]. The LHE method [6] uses a small window that slides through every image pixel sequentially and

only pixels within the current position of the window are histogram equalized, and the grey-level mapping for enhancement is

done only for the centre pixel of the window. Thus, it utilises local information. However, LHE sometimes causes over-

enhancement in some portion of the image and enhances any noise in the input image along with the image features.

Furthermore, LHE based methods produce undesirable checkerboard effects.

Histogram Specification (HS) [1] is a method that uses a desired histogram to modify the expected output image histogram.

However, specifying the output histogram is not a straightforward task as it varies from image to image. The Dynamic Histogram

Specification (DHS) [7] generates the specified histogram dynamically from the input image. In order to retain the original

histogram features, DHS extracts the differential information from the input histogram and incorporates extra parameters to

control the enhancement such as the image original and the resultant gain control values. However, the degree of enhancement

achievable is not significant.

Some researches have also focused on improving histogram equalization based contrast enhancement such as mean preserving

bi-histogram equalization (BBHE) [8], equal area dualistic sub-image histogram equalization (DSIHE) [9] and minimum mean

brightness error bi-histogram equalization (MMBEBHE) [10]. BBHE first divides the image histogram into two parts with the

average grey level of the input image pixels as the separation intensity. The two histograms are then independently equalized.

The method attempts to solve the brightness preservation problem. DSIHE uses entropy for histogram separation. MMBEBHE

is the extension of BBHE that provides maximal brightness preservation. Although these methods can achieve good contrast

enhancement, they also generate annoying side effects depending on the variation in the grey-level distribution [7]. Recursive

Mean-Separate Histogram Equalization (RMSHE) [11] is another improvement of BBHE. However, it is also not free from side

effects. Dynamic histogram equalization (DHE) [12] first smooths the input histogram by using a one dimensional smoothing

filter. The smoothed histogram is partitioned into sub-histograms based on the local minima. Prior to equalizing the sub-

histograms, each sub-histogram is mapped into a new dynamic range. The mapping is a function of the number of pixels in

each sub-histogram, thus a sub-histogram with a larger number of pixels will occupy a bigger portion of the dynamic range.

However, DHE does not place any constraint on maintaining the mean brightness of the image. Furthermore, several parameters

are used that require appropriate setting for different images.

Optimisation techniques have also been employed for contrast enhancement. The method brightness preserving histogram
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equalisation with maximum entropy (BPHEME) [13] defines the ideal histogram to have maximum entropy with brightness

preservation. The target histogram which has the maximum differential entropy under the mean brightness constraint is

obtained using variational approach [13]. BPHEME is designed to achieve maximum entropy. Although entropy maximisation

corresponds to contrast stretching to some extent, it is not a straightforward consequence and does not definitely lead to contrast

enhancement [14]. In flattest histogram specification with accurate brightness preservation (FHSABP) [14], convex optimisation

is used to transform the image histogram into the flattest histogram, subject to a mean brightness constraint. An exact histogram

specification method is used to preserve the image brightness. However, when the grey levels of the input image are equally

distributed, FHSABP behaves very similar to GHE. Furthermore, it is designed to preserve the average brightness which may

produce low contrast results when the average brightness is either too low or too high. In histogram modification framework

(HMF) which is based on histogram equalization, contrast enhancement is treated as an optimization problem that minimizes a

cost function [15]. Penalty terms are introduced in the optimisation in order to handle noise and black/white stretching. HMF

can achieve different levels of contrast enhancement, through the use of different adaptive parameters. These parameters have

to be manually tuned according to the image content to achieve high contrast. In order to design a parameter free contrast

enhancement method, genetic algorithm (GA) is employed to find a target histogram which maximizes a contrast measure

based on edge information [16]. We call this method contrast enhancement based on GA (CEBGA). CEBGA suffers from the

drawbacks of GA based methods, namely dependency on initialization and convergence to a local optimum. Furthermore, the

mapping to the target histogram is scored by only maximum contrast which is measured according to average edge strength

estimated from the gradient information. Thus, CEBGA may produce results which are not spatially smooth. Finally, the

convergence time is proportional to the number of distinct grey levels of the input image.

The aforementioned techniques may create problems when enhancing a sequence of images, or when the histogram has

spikes, or when a natural looking enhanced image is required. In this paper, we propose an adaptive image equalization

algorithm which is effective in terms of improving visual quality of different types of input images. Images with low-contrast

are automatically improved in terms of an increase in dynamic range. Images with sufficiently high contrast are also improved

but not as much. The algorithm further enhances the colour quality of the input images in terms of colour consistency, higher

contrast between foreground and background objects, larger dynamic range and more details in image contents. The proposed

algorithm is free from parameter setting. Instead the pixel values of an input image are modelled using Gaussian mixture model

(GMM). The intersection points of the Gaussians in the model are used in partitioning the dynamic range of the input image

into input grey-level intervals. The grey level of the pixels in each input interval are transformed according to the dominant

Gaussian component and the CDF of the interval to obtain the contrast equalized image.

The paper is organized as follows. Section II presents the proposed automatic image equalization algorithm and the necessary

background related to the GMM fit of the input image data. Section III presents the subjective and quantitative comparisons

of the proposed method with several state-of-the-art enhancement techniques. Section IV concludes the paper.

II. PROPOSED ALGORITHM

Let us consider an input image, X = {x (i, j) | 1 ≤ i ≤ H, 1 ≤ j ≤ W}, of size H × W pixels, where x (i, j) ∈ R. Let

us assume that X has a dynamic range of [xd, xu] where x (i, j) ∈ [xd, xu]. The main objective of the proposed algorithm is

to generate an enhanced image, Y = {y (i, j) | 1 ≤ i ≤ H, 1 ≤ j ≤ W}, which has a better visual quality with respect to

X. The dynamic range of Y can be stretched or tightened into the interval [yd, yu], where y (i, j) ∈ [yd, yu], yd < yu and

yd, yu ∈ R.
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A. Modelling

The Gaussian mixture model (GMM) can model any data distribution in terms of a linear mixture of different Gaussian

distributions with different parameters. Each of the Gaussian components has a different mean, standard deviation and proportion

(or weight) in the mixture model. A Gaussian component with a low standard deviation and a large weight represents compact

data with a dense distribution around the mean value of the component. When the standard deviation becomes larger, the data

is dispersed about its mean value. The human eye is not sensitive to small variations around dense data, but is more sensitive

to widely scattered fluctuations. Thus, in order to increase the contrast while retaining image details, dense data with low

standard deviation should be dispersed while scattered data with high standard deviation should be compacted. This operation

should be done so that the grey-level distribution is retained. In order to achieve this, we use GMM to partition the distribution

of the input image into a mixture of different Gaussian components.

The grey-level distribution p (x), where x ∈ X, of the input image X can be modelled as a density function composed of

a linear combination of N functions using the GMM [17], i.e.,

p (x) =

N
∑

n=1

P (wn) p (x|wn) , (1)

where p (x|wn) is the nth component density, and P (wn) is the prior probability of the data points generated from component

wn of the mixture. The component density functions are constrained to be Gaussian distribution functions, i.e.,

p (x|wn) =
1

√

2πσ2
wn

exp

(

− (x − µwn
)
2

2σ2
wn

)

, (2)

where µwn
and σ2

wn
are respectively the mean and the variance of the nth component. Each of the Gaussian distribution

functions satisfies the constraint
∫ ∞

−∞
p (x|wn) dx = 1, (3)

and the prior probabilities are chosen to satisfy the constraints

N
∑

n=1

P (wn) = 1 and 0 ≤ P (wn) ≤ 1. (4)

A GMM is completely specified by its parameters θ =
{

P (wn) , µwn
, σ2

wn

}N

n=1
. The estimation of the probability distribution

function (PDF) of an input image data x reduces to finding the appropriate values of θ. In order to estimate θ, maximum

likelihood estimation (MLE) techniques such as the expectation maximization (EM) algorithm [18] have been widely used.

Assuming the data points X = {x1, x2, . . . , xH×W } are independent, the likelihood of the data X is computed by

L (X ; θ) =

H×W
∏

k=1

p (xk; θ) (5)

given the distribution or, more specifically, given the distribution parameters θ. The goal of the estimation is to find θ̂ that

maximizes the likelihood, i.e.,

θ̂ = argmax
θ

L (X ; θ) . (6)

Instead of maximizing this function directly, the log-likelihood L (X ; θ) = lnL (X ; θ) ≡∑H×W

k=1 p (xk; θ) is used because it

is analytically easier to handle.

The EM algorithm starts from an initial guess θ
0 for the distribution parameters and the log-likelihood is guaranteed to

increase on each iteration until it converges. The convergence leads to a local or global maximum, but it can also lead to singular
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Fig. 1. (a) A grey-level image; and (b) its histogram and GMM fit.

estimates, which is true particularly for Gaussian mixture distributions with arbitrary covariance matrices. The initialization is

one of the problems of the EM algorithm. The selection of θ
0 (partly) determines where the algorithm converges or hits the

boundary of the parameter space to produce singular, meaningless results. Furthermore, the EM algorithm requires the user to

set the number of components, and the number is fixed during the estimation process.

The Figueiredo-Jain (FJ) algorithm [19] which is an improved variant of the EM algorithm overcomes major weaknesses of

the basic EM algorithm. The FJ algorithm adjusts the number of components during estimation by annihilating components

that are not supported by the data. It avoids the boundary when it annihilates components that are becoming singular. It is also

allowed to start with an arbitrarily large number of components, which addresses the initialization of the EM algorithm. The

initial guesses for component means can be distributed into the whole space occupied by the training samples, even setting one

component for every single training sample. Due to its advantages over EM algorithm, in this work we adopt the FJ algorithm

for parameter estimation.

Fig. 1(a) and (b) respectively illustrate an input image and its histogram together with its GMM fit. The histogram is modelled

using four Gaussian components, i.e., N = 4. The close match between the histogram (shown as rectangular vertical bars)

and GMM fit (shown as solid black line) is obtained using FJ algorithm. There are three main grey tones in the input image

corresponding to the tank, its shadow and the image background. The other grey-level tones are distributed around the three

main tones. However, FJ algorithm results in four Gaussian components (N = 4) for the mixture model. This is because the

grey tone with the highest average grey value corresponding to the image background has a deviation too large for a single

Gaussian component to represent it. Thus it is represented by two Gaussian components, i.e., w3 and w4 as shown in Fig. 1(b).

All intersection points between Gaussian components that fall within the dynamic range of the input image are denoted by

yellow circles, and significant intersection points that are used in dynamic range representation are denoted by black circles.

There is only one dominant Gaussian component between two intersection points, which adequately represents the data within

this grey-level interval. For instance, the range of the input data within the interval of [35, 90] is represented by Gaussian
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TABLE I

THE NUMERICAL VALUES OF INTERSECTION POINTS DENOTED BY YELLOW CIRCLES IN FIG. 1(B) BETWEEN COMPONENTS OF GMM FIT TO THE

GREY-LEVEL IMAGE SHOWN IN FIG. 1(A).

GMM Components

w1 w2 w3 w4

w1 - -718.88, 90.05 115.18, 225.52 129.46, 193.08

w2 -718.88, 90.05 - 129.75, 172.39 141.31, 168.18

w3 115.18, 225.52 129.75, 172.39 - 149.82, 163.54

w4 129.46, 193.08 141.31, 168.18 149.82, 163.54 -

component w1 (shown as solid blue line). Thus the data within each interval is represented by a single Gaussian component

which is dominant with respect to the other components. The dynamic range of the input image is represented by the union

of all intervals.

B. Partitioning

The significant intersection points are selected from all the possible intersections between the Gaussian components. The

intersection points between two Gaussian components wm and wn are found by solving

P (wm) p (x|wm) = P (wn) p (x|wn) , (7)

or equivalently

− (x − µwm
)
2

2σ2
wm

+
(x − µwn

)
2

2σ2
wn

= ln

(

P (wn)

P (wm)

σwm

σwn

)

, (8)

which results in

ax2 + bx + c = 0, (9)

where

a =
(

σ2
wm

− σ2
wn

)

, b = 2
(

µwm
σ2

wn
− µwn

σ2
wm

)

,

c =
(

µ2
wn

σ2
wm

− µ2
wm

σ2
wn

)

− 2σ2
wm

σ2
wn

ln

(

P (wn)

P (wm)

σwm

σwn

)

.

The second order parametric equation Eq. (9) has two roots, i.e.,

x(1)
m,n =

−b +
√

b2 − 4ac

2a
, x(2)

m,n =
−b −

√
b2 − 4ac

2a
. (10)

In Fig. 1(b) all intersection points between GMM components are denoted by yellow circles. The numerical values of the

intersection points determined using Eq. (10) are shown in Table I. Table I is symmetric, i.e., the intersection points between

the components w1 and w2 are the same as the intersection points between components w2 and w1. The intersection points of

two components are independent of the order of the components. All possible intersection points that are within the dynamic

range of the image are detected. The leftmost intersection point between components w1 and w2 is at −718.88 which is not

within the dynamic range of the input image, thus it could not be considered. In order to allow combination of intersection

points to cover only the entire dynamic range of the input image a further process is needed.
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The total number of intersection points calculated is N (N − 1). The significant intersection points x
(d)
s , where d ∈

{1, . . . , D}, D ≤ N (N − 1), are selected among all intersection points. For a given intersection point x
(k)
m,n, where k = {1, 2},

between Gaussian components wm and wn it is selected as a significant intersection point if and only if it is a real number in

the dynamic range of the input image, i.e., x
(k)
m,n ∈ X, and the Gaussian components wm and wn contain the maximum value

in the mixture for the point x
(k)
m,n, i.e.,

P (wm) p
(

x(k)
m,n|wm

)

= P (wn) p
(

x(k)
m,n|wn

)

, (11)

P (wm) p
(

x(k)
m,n|wm

)

> P (wk) p
(

x(k)
m,n|wk

)

, (12)

where ∀wk 6= {wm, wn}.

The significant intersection points are sorted in ascending order of their value and are partitioned into grey-level intervals

to cover the entire dynamic range of X, i.e., x ∈ xs =
[

x
(l)
s , x

(1)
s

]

∪
[

x
(1)
s , x

(2)
s

]

· · · ∪ · · ·
[

x
(D)
s , x

(r)
s

]

. The leftmost significant

intersection point x
(l)
s is selected as the value of x for which

x(l)
s = x, F (x) ≥ Th

HW
, F (x − ∆) <

Th

HW
, (13)

where the minimum distance between two consecutive numbers is ∆, e.g., ∆ = 1 in the case of 8-bit input image X considered

in this work, F (x) is the CDF of x, and Th is the minimum number of pixels which will be excluded from the tails of the grey-

level distribution of x. To consider all pixel grey values of X we set Th = 1. Similarly, the rightmost significant intersection

point x
(r)
s is selected by considering the tail of the grey-level distribution of x for which

x(r)
s = x, (1 − F (x)) ≥ Th

HW
, (1 − F (x + ∆)) <

Th

HW
. (14)

The significant intersection points that fall outside of the interval
[

x
(l)
s , x

(r)
s

]

are ignored since they are the intersection points

between two Gaussian components that fall outside the dynamic range of X, and xs is updated as xs =
[

x
(1)
s , x

(2)
s , . . . , x

(K)
s

]

with x
(1)
s < x

(2)
s < . . . < x

(K)
s , where K is the maximum number of significant intersection points. In Fig. 1 the six significant

intersection points are denoted by black circles, and the range of xs covers the entire dynamic range of X.

The CDF of x is

F (x) =

∫ x

−∞
p (x) dx =

∫ x

−∞

N
∑

n=1

P (wn) p (x|wn) dx

=
N
∑

n=1

P (wn)

∫ x

−∞

1
√

2πσ2
wn

exp− (x − µwn
)2

2σ2
wn

dx

=

N
∑

n=1

P (wn)

∫

(x−µwn)
√

2σwn

−∞

1√
π

exp
(

−t2
)

dt. (15)

It can be calculated using the closed form expression

F (x) =

N
∑

n=1

P (wn) Fwn
(x) , (16)

where Fwn
(x) is the CDF of Gaussian component wn, and using the definition of the error function (erf (x)) (also called the

Gauss error function) [20] it is computed as Fwn
(x) = β

(

x−µwn√
2σwn

)

, where β (x) is computed in terms of error function [20]

as follows:

β (x) =



















(1 + erf (x)) /2 , iff x ≥ 0

(1 − erf (|x|)) /2 , otherwise,

(17)
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where the numerical values of erf (x) are tabulated in [20]. The function β (x) is invertible, i.e., for a given β (x) = a,

x = β−1 (a) exists.

The consecutive pairs of significant intersection points are used to partition the dynamic range of X into subintervals, i.e.,

[xd, xu] =
[

x
(1)
s , x

(2)
s

]

∪
[

x
(2)
s , x

(3)
s

]

∪· · ·∪
[

x
(K−2)
s , x

(K−1)
s

]

∪
[

x
(K−1)
s , x

(K)
s

]

. The subinterval
[

x
(k)
s , x

(k+1)
s

]

is represented by

a Gaussian component wk which is dominant with respect to the other Gaussian components in the subinterval. The dominant

Gaussian component is found by considering the a posteriori probability of each component in the interval
[

x
(k)
s , x

(k+1)
s

]

which is equivalent to the area under the Gaussian component, i.e.,

wk = argmax
∀wi

[

Fwi

(

x(k+1)
s

)

− Fwi

(

x(k)
s

)]

. (18)

C. Mapping

The interval
[

x
(k)
s , x

(k+1)
s

]

, where k = 1, 2, . . . , K − 1, in xs is mapped onto the dynamic range of the output image

Y. In the mapping, each interval covers a certain range which is proportional to a weight αk, where αk ∈ [0, 1], which is

calculated by considering two figure of merits simultaneously: 1) the rate of the total number of pixels that fall into the interval
[

x
(k)
s , x

(k+1)
s

]

; and 2) the standard deviation of the dominant Gaussian component wk, i.e.,

αk =
(σwk

)
γ

∑N

i=1 (σwi
)γ

[

F
(

x
(k+1)
s

)

− F
(

x
(k)
s

)]

∑K−1
i=1

[

F
(

x
(i+1)
s

)

− F
(

x
(i)
s

)] . (19)

The first term adjusts the brightness of the equalized image, and γ ∈ [0, 1] is brightness constant (in this paper γ = 0.5 is

used). The lower the value of γ, the brighter is the output image. The second term in Eq. (19) is related to the grey-level

distribution and is used to retain the overall content of the data in the interval. Eq. (19) maintains a balance between the data

distribution and variance of the data in a certain interval. Since the human eye is more sensitive to sudden changes in widely

scattered data and less sensitive to smooth changes in densely scattered data, Eq. (19) gives larger weights to widely scattered

data (larger variance), and vice versa.

Using αk, the input interval
[

x
(k)
s , x

(k+1)
s

]

is mapped onto the output interval
[

y(k), y(k+1)
]

according to

y(k) = yd + (yu − yd)

k−1
∑

i=1

αi, (20)

y(k+1) = y(k) + αk (yu − yd) .

The above mapping guarantees that the output dynamic range is covered by the mapping, i.e., [yd, yu] =
[

y(1) = yd, y
(2)
]

∪
[

y(2), y(3)
]

∪ · · · ∪
[

y(K−1), y(K) = yu

]

.

In the final mapping of pixel values from the input interval onto the output interval, the CDF of the distribution in the output

interval is preserved. Let Gaussian distribution wk′ with parameters µwk′ and σ2
wk′

represent the Gaussian component wk in

the range
[

y(k), y(k+1)
]

. The parameters µwk′ and σ2
wk′ are found by solving the following equations simultaneously

Fwk

(

x(k)
s

)

= Fwk′

(

y(k)
)

, (21)

Fwk

(

x(k+1)
s

)

= Fwk′

(

y(k+1)
)

, (22)

so that the area under the Gaussian distribution wk between
[

x
(k)
s , x

(k+1)
s

]

is equal to the area under the Gaussian distribution
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wk′ in the interval
[

y(k), y(k+1)
]

. Using Eq. (17) together with equations Eq. (21) and Eq. (22), one can write

β

(

x
(k)
s − µwk√

2σwk

)

= β

(

y(k) − µwk′√
2σwk′

)

(23)

β

(

x
(k+1)
s − µwk√

2σwk

)

= β

(

y(k+1) − µwk′√
2σwk′

)

, (24)

which is equivalent to

x
(k)
s − µwk√

2σwk

=
y(k) − µwk′√

2σwk′

(25)

x
(k+1)
s − µwk√

2σwk

=
y(k+1) − µwk′√

2σwk′

. (26)

Using equations Eq. (25) and Eq. (26), the parameters of Gaussian distribution wk′ are computed as follows:

µwk′ =

(

x(k)
s −µwk

x
(k+1)
s −µwk

y(k+1) − y(k)

)

(

x
(k)
s −µwk

x
(k+1)
s −µwk

− 1

) (27)

σwk′ =

(

y(k) − µwk′

)

(

x
(k)
s − µwk

)σwk
. (28)

The mapping of x to y, where x ∈
[

x
(k)
s , x

(k+1)
s

]

and y ∈
[

y(k), y(k+1)
]

, is achieved by keeping the CDFs of Gaussian

distribution wk and Gaussian distribution wk′ equal, i.e.,

β

(

x − µwk√
2σwk

)

− β

(

x
(k)
s − µwk√

2σwk

)

=

β

(

y − µwk′√
2σwk′

)

− β

(

y(k) − µwk′√
2σwk′

)

, (29)

where using the equality in Eq. (23),

β

(

x − µwk√
2σwk

)

= β

(

y − µwk′√
2σwk′

)

⇒ x − µwk√
2σwk

=
y − µwk′√

2σwk′

results in the following mapping of given x to the corresponding y according to the Gaussian distributions wk and wk′

y =

(

x − µwk

σwk

)

σwk′ + µwk′ . (30)

The final mapping from x to y is achieved by considering all Gaussian components in the GMM to retain the pixel distributions

in input and output intervals equal. Using the superposition of distributions together with Eq. (30) one can find

y =

N
∑

i=1

((

x − µwi

σwi

)

σwi′
+ µwi′

)

Pwi
. (31)

Fig. 2(a), (b) and (c) respectively show the input images, equalized images using the proposed algorithm where the dynamic

range of the output image is [yd, yu] = [0, 255], and the mappings between input image data points (x) and equalized output

image data points (y) are according to Eq. (31). Fig. 2(c) shows that a different mapping is applied to a different input grey-

level interval. Fig. 2(b) shows that the proposed algorithm increases the brightness of the input image while keeping the high

contrast between object boundaries. The input image in the second row of Fig. 2(a) has only fifteen different grey levels, thus

it is difficult to observe the image features. The proposed algorithm linearly transforms the grey levels as shown in Fig. 2(c)

so that the image features are easily discernable in Fig. 2(b).
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Fig. 2. (a) A grey-level input image X; (b) The equalized output image Y using the proposed algorithm; and (c) The data mapping between the input and

output images.

One approach to extend the grey-scale contrast enhancement to colour images is to apply the method to their luminance

component only and preserve the chrominance components. Another is to multiply the chrominance values with the ratio of

their input and output luminance values to preserve the hue. The former approach is employed in this paper where an input RGB

image is transformed to CIE L∗a∗b∗ colour space [1] and the luminance component L∗ is processed for contrast enhancement.

The inverse transformation is then applied to obtain the contrast enhanced RGB image.

III. EXPERIMENTAL RESULTS

A dataset comprising standard test images from [21]–[24] is used to evaluate and compare the proposed algorithm with our

implementations of GHE [1], BPHEME [13], FHSABP [14], CEBGA [16] and the weighted histogram approximation of HMF

[15]. GHE, BPHEME, FHSABP and CEBGA are free of parameter selection but HMF requires parameter tuning which is

manually selected according the input test images. It is worth to note that for FHSABP method exact histogram specification

is used [14] to achieve high degree of brightness preservation between input and output images. The test images show wide

variations in terms of average image intensity and contrast. Thus they are suitable for measuring the strength of a contrast

enhancement algorithm under different circumstances.

An output image is considered to have been enhanced over the input image if it enables the image details to be better perceived.

An assessment of image enhancement is not an easy task as an improved perception is difficult to quantify. Nevertheless, in

practice it is desirable to have both quantitative and subjective assessments. It is therefore necessary to establish a basis which
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defines a good measure of enhancement. We use absolute mean brightness error (AMBE) [10], discrete entropy (DE) [25], and

edge based contrast measure (EBCM) [26] as quantitative measures. For colour images, the contrast enhancement is quantified

by computing these measures on their luminance channel L∗ only.

AMBE is the absolute difference between the mean values of an input image X and output image Y, i.e.,

AMBE (X,Y) = |MB (X) − MB (Y)| , (32)

where MB (X) and MB (Y) are the mean brightness values of X and Y, respectively. The lower the value of AMBE, the

better is the brightness preservation.

The discrete entropy DE of an image X measures its content, where a higher value indicates an image with richer details.

It is defined as

DE (X) = −
255
∑

i=0

p (xi) log (p (xi)) , (33)

where p (xi) is the probability of pixel intensity xi which is estimated from the normalized histogram.

The edge based contrast measure EBCM is based on the observation that the human perception mechanisms are very sensitive

to contours (or edges) [26]. The grey level corresponding to object frontiers is obtained by computing the average value of the

pixel grey levels weighted by their edge values. The contrast c (i, j) for a pixel of an image X located at (i, j) is thus defined

as

c (i, j) =
|x (i, j) − e (i, j)|
|x (i, j) + e (i, j)| ,

where the mean edge grey level is

e (i, j) =
∑

(k,l)∈N (i,j)

g (k, l)x (k, l)
/

∑

(k,l)∈N (i,j)

g (k, l),

N (i, j) is the set of all neighbouring pixels of pixel (i, j), and g (k, l) is the edge value at pixel (k, l). Without loss of

generality we employ 3 × 3 neighbourhood, and g (k, l) is computed using the magnitude of the gradient which is estimated

from horizontal and vertical Sobel operators [1]. EBCM for image X is thus computed as the average contrast value, i.e.,

EBCM (X) =

H
∑

i=1

W
∑

j=1

c (i, j)
/

H × W. (34)

It is expected that for an output image Y of an input image X, the contrast is improved when EBCM (Y) ≥ EBCM (X).

A. Qualitative Assessment

1) Grey-Scale Images: Some contrast enhancement results on grey-scale images are shown in Fig. 3, Fig. 4, Fig. 5 and

Fig. 6. The mapping functions used are shown in Fig. 7 (a)-(d), respectively.

The input image in Fig. 3 shows a firework display [21], and comprises very bright and dark objects. GHE has increased

the overall brightness of the image, but the increase in contrast is not significant and the washout effect is apparent. Both

the darker and brighter regions become even brighter. This is verified by the mapping function in Fig. 7(a) which maps input

grey-level 0 to output grey-level 105. BPHEME and FHSABP preserve the input image average brightness value of 18. This

results in the output image with very low brightness, and thus the contrast enhancement is not noticeable. The mapping function

verifies this observation where the low output brightness and non-linear mapping from input to output are apparent. It is also

clear from the mapping function that BPHEME performs almost one to one mapping when it is compared with the mapping

function of FHSABP. This is due to the fact that BPHEME is designed to achieve brightness preservation as well as maximum
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. Contrast enhancement results for image Fireworks: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. Contrast enhancement results for image Island: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.

entropy. Thus, the mapping function of BPHEME achieves almost one-to-one mapping between input and output to guarantee

the maximum entropy. The result of HMF is visually pleasing, providing high contrast as well as a high dynamic range.

However, there are two different spark clusters due to the fireworks and the smoke between sparks. HMF over enhances the

brighter pixels of the sparks and the surrounding smoke, so that the smoke pixels are also identified as spark pixels. This over

enhancement is represented as a sharp change in the mapping function. Furthermore, due to over enhancement of the brighter

pixels, the sparks due to the fireworks cannot be clearly differentiated. The over enhancement is due to forming a histogram

from pixels with significant grey-level differences with their neighbours. The smoke around the sparks has similar but lower

grey-level values. Thus, most of the smoke pixels cannot be differentiated from the spark pixels which results in mapping

them to the same output grey-levels as that of the spark pixels. Due to the not sharp image details caused by the smoke from

fireworks, CEBGA can only improve the overall brightness of the image. This is verified by the mapping function which
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 5. Contrast enhancement results for image City: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. Contrast enhancement results for image Girl: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.
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Fig. 7. Mapping functions of enhanced images: (a) Fig. 3; (b) Fig. 4; (c) Fig. 5; and (d) Fig. 6. Key: Green solid line - no-change mapping; black dash-dotted

line - GHE; red solid line - BPHEME; red dash-dotted line - FHSABP; blue solid line - HMF; blue dash-dotted line - CEBGA; and black solid line - proposed

algorithm.
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Fig. 8. Histograms of original and enhanced images shown Fig. 6: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g)

proposed.

is almost parallel to the no-change mapping. However, in the proposed algorithm, the dynamic range of the input image is

modelled with GMM, which makes it possible to model the intensity values of sparks and smoke differently. Input grey-level

values are assigned to output grey-level values according to their representative Gaussian components. The non-linear mapping

is designed to utilise the full dynamic range of the output image. Thus, the proposed algorithm improves the overall contrast

while preserving the details of the image.

The input image of an island in Fig. 4 [22] has average brightness value of 125. The results obtained by the different

algorithms are similar as verified by the similar mapping functions in Fig. 7(b). BPHEME and FHSABP behaves exactly the

same way as GHE when the average brightness value is 127.5 [13], [14]. Since the average brightness value of the input

image is very close to 127.5, BPHEME and FHSABP algorithms obtains the similar target histograms. The slight difference

of FHSABP from BPHEME is due to exact histogram specification used in FHSABP. The results of HMF and CEBGA are

also a match because both algorithms employ similar edge information. Where the sky and sea converge, GHE, BPHEME and

FHSABP provide a higher contrast than HMF and CEBGA. The proposed algorithm provides a contrast which is neither too

high nor too low.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 9. Contrast enhancement results for image Plane: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.

The input image in Fig. 5 shows an aerial view of a junction in a city [23] with an average brightness value of 181 which

is too high for recognizing the different objects. GHE increases the overall contrast of the image significantly, but the image

looks darker as is verified by its mapping function in Fig. 7(c). The contrast improvements obtained by using BPHEME,

FHSABP, HMF and CEBGA are very slight. HMF fails to provide an improvement due to weak edge information. The

proposed algorithm, on the other hand, does not darken the image and produces sufficient contrast for the different objects to

be recognized.

The image Girl shown in Fig. 6 consists of challenging conditions for an enhancement algorithm: very bright and dark

objects, and average brightness value of 139 as can be verified from the histogram of the Girl image shown in Fig. 8(a). The

histogram reveals that most of the grey levels of the input image are accumulated around grey level 144. Meanwhile, there

are uniform grey level distributions on the left and right sides of the sharp peak in the middle. Because average brightness

value of the input image is near to 127.5, GHE, BPHEME, and FHSABP performs very similar. This can be verified from

the visual results, mapping functions shown Fig. 7(d), and histograms demonstrated in Fig. 8(b)-(d). As can be seen from

the histograms, the output histograms fail to achieve smooth distribution between high and low values of grey levels. Thus,

the enhancement results of GHE, BPHEME, and FHSABP are visually unpleasing. Meanwhile, the output histogram of HMF

achieves smoother distribution in between low and high grey values, thus HMF achieves more natural looking output as shown

in Fig. 8(e) when it is compared with that of GHE, BPHEME, and FHSABP. CEBGA produces natural looking output image,

however the overall enhancement is not significant. As can be seen from mapping function and histogram in Fig. 7(d) and

Fig. 8(f), CEBGA produces minor alterations on the input image. The result of the proposed algorithm is shown Fig. 6(g). The

proposed algorithm preserves the overall distribution shape, meanwhile it achieves to redistribute the grey levels of the input

image within the dynamic range without destroying natural look of the enhanced image. Although it slightly darkens the hair

of woman, still the overall natural look is not destroyed while the perceived contrast is improved significantly.

2) Colour Images: In Fig. 9, the over enhancement provided by GHE, BPHEME and FHSABP whitens some areas of the

concrete ground. HMF and CEBGA provide similar results where the slight contrast enhancement with respect to the input

image is apparent, whereas the proposed algorithm enhances the contrast and the average brightness to improve the overall

image quality. In Fig. 10, GHE, BPHEME, FHSABP and HMF cause part of the sky to be too bright. CEBGA and the
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 10. Contrast enhancement results for image Ruins: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 11. Contrast enhancement results for image Hats: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.

proposed algorithm improve the overall contrast considerably and maintain high visual quality. In Fig. 11, GHE, BPHEME and

FHSABP result in loss of details in the clouds and on the top of the yellow hat, whereas HMF and CEBGA retain the details

while increasing the contrast. However, the contrast between the right side of the wall and the sky is not sufficiently high. The

proposed algorithm keeps the details while improving the overall contrast. Finally, in Fig. 12, GHE makes the stones around the

window and the pink flower very bright; hence, the enhanced image has an unnatural look. Although BPHEME and FHSABP

performs better than GHE, it still does not remove this effect completely. This effect is reduced by HMF, CEBGA and the

proposed algorithm. Also, the colours of window and wall are better differentiated in the result of the proposed algorithm.

Turgay: Please skip this paragraph as it needs new evaluation scores. In order to assign a visual assessment score to each

algorithm for each enhanced image, subjective perceived quality tests are performed by a group of ten subjects on the results

of the five algorithms for the eight test images. For each test on a test image, a subject is shown two images: the test image

and the image processed by one of the five algorithms. The subject is then asked to score the quality of the processed image
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 12. Contrast enhancement results for image Window: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) proposed.

TABLE II

AVERAGE OF SUBJECTIVE QUALITY TEST SCORES.

Image GHE FHSABP HMF CEBGA Prop.

Fireworks “Bad” “Bad” “Good” “Good” “Good”

Island “Bad” “Bad” “Good” “Good” “Good”

City “Good” “Bad” “Bad” “Bad” “Good”

Wolf “Bad” “Bad” “Bad” “Good” “Good”

Plane “Bad” “Bad” “Good” “Good” “Good”

Ruins “Bad” “Bad” “Bad” “Good” “Good”

Hats “Good” “Good” “Bad” “Good” “Good”

Window “Good” “Good” “Bad” “Bad” “Good”

by assigning a fuzzy score of “Bad” for weak enhancement, and “Good” for visually pleasing enhancement. The test on the

same input image is repeated for the processed images generated by the other four algorithms. For each processed image of

an algorithm, we average the scores from the ten subjects. In the averaging operation, when the number of “Good” scores are

higher than “Bad” scores, then the processed image is deemed as “Good”, and vice versa. The visual assessment scores as

shown in Table II validate our subjective evaluations that the proposed algorithm provides good visual quality enhancement.

B. Quantitative Assessment

The quantitative measures AMBE, DE, and EBCM may fail to provide enhancement measures which are parallel with

perceived image quality. For instance for Girl image, GHE, BPHEME, FHSABP, HMF, CEBGA, and proposed method produces

AMBE values of 5.60, 5.50, 5.50, 10.30, 1.60, and 12.90, respectively. CEBGA achieves the best in terms of brightness

preservation where the proposed method performs the worst. The Girl image has DE value of 3.87, meanwhile GHE, BPHEME,

FHSABP, HMF, CEBGA, and proposed method produces DE values of 3.65, 3.65, 3.65, 3.70, 3.45, and 3.81, respectively.

The proposed method achieves the best DE value. The Girl image has very low contrast measure EBCM value of 0.08. GHE,

BPHEME, FHSABP, HMF, CEBGA, and proposed method results in EBCM values of 0.23, 0.22, 0.22, 0.17, 0.11, and 0.12. All

methods achieve to produce higher values of EBCM with respect to the EBCM value of original Girl image. GHE, BPHEME,

and FHSABP produces the highest values of EBCM, however perceived visual quality is not natural. Although there is a
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Fig. 13. Quantitative performance results on 300 images from Berkeley dataset [24]: (a) results for MB; (b) results for DE; and (c) results for EBCM. The

reference measurements from the original image is shown in red colour, meanwhile the measurements from the processed images resulted from different

algorithms are shown in black colour.

correlation between between EBCM and perceived contrast enhancement, it does not always mean that the higher value of

EBCM means better perceived contrast enhancement.

In order to test algorithms’ performance quantitatively in terms of brightness and entropy preservation as well as contrast

improvement, they are applied on 300 test images of Berkeley image dataset [24]. MB, DE, and EBCM values are computed

from original and processed images. In reported results, the measurement values from the original images are sorted in ascending

order and the images are indexed accordingly. The quantitative results for MB, DE, and EBCM are shown in Fig. 13(a), (b),

and (c), respectively.

The MB values in Fig. 13(a) show that except GHE all algorithms follow general trend in the mean brightness value,

i.e.when the mean brightness value of the original image is low so do the output image, and vice versa. GHE consistently

maps the mean brightness value of the output image very close to 127.5 which is the mid value of the 8-bit grey-level dynamic

range. The average of AMBE resulted from GHE over dataset is 21.09. Meanwhile, BPHEME and FHSABP achieves the best

brightness preservation as can be seen from the plots. Both algorithms produces very similar results for the whole dataset. This

is mainly due to the target histograms of BPHEME and FHSABP are similar to each other. The averages of AMBE resulted

from BPHEME and FHSABP over dataset are 1.30 and 1.28, respectively. On the average, the proposed method performs

better than HMF and HMF performs better than CEBGA in terms of brightness preservation. The averages of AMBE resulted

from HMF, CEBGA, and the proposed method are 10.07, 12.23, and 8.80, respectively.

GHE, BPHEME, and FHSABP performs very similar results in terms of DE on Berkeley dataset as shown Fig. 13(b). The

average absolute discrete entropy difference between the input and out images over dataset for GHE, BPHEME, and FHSABP

are 0.12, 0.12, and 0.11, respectively. Fig. 13(b) also shows that CEBGA performs the worst with the average absolute discrete

entropy difference of 0.38. Meanwhile, HMF and the proposed method achieves good performance in terms of entropy. The

average absolute discrete entropy difference between the input and out images over dataset for HMF and the proposed method

are 0.05, and 0.04, respectively. Since the entropy is related with the overall image content, one can say that for Berkeley

dataset the proposed method can preserve the overall content of the image while improving its contrast.

The EBCM measures are shown in Fig. 13(c). Although high EBCM does not always mean a good and natural image

enhancement, however it is, at least, expected that the output image’s EBCM value is higher than that of the input image. Out

of 300 images in the dataset, GHE, BPHEME, FHSABP, HMF, CEBGA, and proposed method produces 294, 300, 296, 293,
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(a) (b) (c)

Fig. 14. High dynamic range compression results. (a) Original image. Processed image obtained using: (b) [27]; and (c) proposed algorithm.

286, and 300 output images, respectively, which have higher than or equal to EBCM values with that of the input images.

Meanwhile, the average absolute EBCM difference between the input and out images over dataset for GHE, BPHEME, FHSABP,

HMF, CEBGA, and proposed method are 0.0652, 0.0603, 0.0573, 0.0361, 0.0278, and 0.0366, respectively. As expected, GHE

provides the highest contrast improvement in terms of EBCM. Meanwhile, BPHEME and FHSABP performs very similar and

slightly worse than GHE. BPHEME performs better than FHSABP, because of lowpass filtering employed in exact histogram

specification used in FHSABP. Meanwhile, the proposed method and HMF performs similar and CEBGA provides the worst

performance. It is worth to note that only two algorithms, BPHEME and the proposed method, achieves to make EBCM

improvement with respect to the input image.

C. Application to High Dynamic Range Compression

The proposed algorithm can be applied for rendering high dynamic range (HDR) images on conventional displays. Thus,

we compare some of our results with those of the state-of-the-art method proposed by Fattal et al. [27]. In the Fattal et al.

method, the gradient field of the luminance image is manipulated by attenuating the magnitudes of large gradients. A low

dynamic range image is then obtained by solving a Poisson equation on the modified gradient field. The results in [27], a few

of which are in Fig. 14, show that the method is capable of drastic dynamic range compression, while preserving fine details

and avoiding common artefacts such as halos, gradient reversals, or loss of local contrast. Fig. 14 also shows that the proposed

algorithm produces comparable results. It is worth noting that our results are obtained without any parameter tuning.

IV. CONCLUSIONS

In this paper, we proposed an automatic image enhancement algorithm which employs Gaussian mixture modelling of an

input image to perform non-linear data mapping for generating visually pleasing enhancement on different types of images.

Performance comparisons with state-of-the-art techniques show that the proposed algorithm can achieve good enough image

equalization even under diverse illumination conditions. The proposed algorithm can be applied to both grey-level and colour



20

images without any parameter tuning. It can also be used to render high dynamic range images. It does not distract the overall

content of an input image with high enough contrast. It further improves the colour content, brightness and contrast of an

image automatically.
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