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Abstract—We present an algorithm for automatic image
orientation estimation using a Bayesian learning framework. We
demonstrate that a small codebook (the optimal size of codebook
is selected using a modified MDL criterion) extracted from a
learning vector quantizer (LVQ) can be used to estimate the
class-conditional densities of the observed features needed for the
Bayesian methodology. We further show how principal component
analysis (PCA) and linear discriminant analysis (LDA) can be
used as a feature extraction mechanism to remove redundancies
in the high-dimensional feature vectors used for classification. The
proposed method is compared with four different commonly used
classifiers, namely -nearest neighbor, support vector machine
(SVM), a mixture of Gaussians, and hierarchical discriminating
regression (HDR) tree. Experiments on a database of 16 344
images have shown that our proposed algorithm achieves an
accuracy of approximately 98% on the training set and over 97%
on an independent test set. A slight improvement in classification
accuracy is achieved by employing classifier combination tech-
niques.

Index Terms—Bayesian learning, classifier combination, expec-
tation maximization, feature extraction, hierarchical discriminant
regression, image database, image orientation, learning vector
quantization, support vector machine.

I. INTRODUCTION

CONTENT-BASED image organization and retrieval has
emerged as an important area in computer vision and mul-

timedia computing, due to the technological advances in dig-
ital imaging, storage, and networking. With the development of
digital photography as well as inexpensive scanners, it is pos-
sible for us to store vacation and family photographs on our per-
sonal computers. This has created a need for developing image
management systems that assist the user in storing, indexing,
browsing, and retrieving images from a database. All image
management systems require information about the true image
orientation. When a user scans a picture, she expects the re-
sulting image to be displayed in its correct orientation, regard-
less of the orientation in which the photograph was placed on
the scanner. Thus, an image management system is expected to
correctly orient the input images. Currently, this operation of
orientation detection is performed manually.
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Fig. 1. An image whose orientation was incorrectly estimated by our
algorithm.

Automatic image orientation detection is a very difficult
problem. Humans use object recognition and contextual
information to identify the correct orientation of an image.
Unfortunately, the state-of-the-art computer vision techniques
still cannot infer the high-level knowledge abstraction of the
objects in the real world [33]. The alternative method is to
exploit the low-level features (e.g., spatial color distributions,
texture, etc.) from the images for orientation detection [15].
Fig. 1 illustrates the difficulty in image orientation estimation,
where the true orientation cannot be detected unless you first
recognize the object present in the image. Close-up images,
low-contrast images, or images of uniform or homogeneous
texture (e.g., sunset/sunrise and indoor images) pose additional
problems for robust orientation estimation.

We assume that the input image is restricted to only four
possible rotations that are multiples of 90, i.e., the photograph
which is scanned can differ from its correct orientation by
0 (no rotation), 90, 180 , or 270 . This is reasonable since
photographs placed on a scanner are usually aligned with
horizontal or vertical boundaries of the scanner plate. The
orientation detection problem is then defined as the following
four-class classification problem: given an image (a scanned
photograph), determine its correct orientation from among the
four possible orientations of (0—no rotation, 90, 180 , and
270 ). Note that an image in an arbitrary orientation can easily
be rotated into one of the previous four orientations by aligning
the image boundaries horizontally and vertically. Fig. 2(a)
shows an image in four possible orientations and Fig. 2(b)
shows the true orientation detected by our algorithms for the
four images in Fig. 2(a).

The literature on image orientation detection is rather sparse.
Most of the literature has emphasized related topics such as page
orientation detection [4], [5], [23], [28], [43]. In this paper, we
present a Bayesian framework for image orientation detection.
We use spatial color moments as the features for classification.
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Fig. 2. Orientation detection: (a) four possible orientations of an image and
(b) correct orientations detected by our algorithm.

Each image is represented by a multidimensional feature vector
and the classification problem uses a Bayesian learning frame-
work. The class-conditional probability density functions of the
observed feature vector are estimated by the learning vector
quantization (LVQ) technique [36].

The paper is organized as follows. We present our Bayesian
learning framework with classification results in Section II.
Section III discusses methods for feature extraction and selec-
tion to improve the robustness of the classifier. We compare the
proposed Bayesian classifier with other classifiers commonly
reported in the literature in Section VI. Section V presents
results with classifier combination and we finally conclude in
Section VI.

II. PROPOSEDMETHOD

Bayesian methods have been successfully adopted in many
image analysis and computer vision problems. However, its use
in content-based retrieval from image databases is just being re-
alized [36], [41], [42]. The orientation detection problem formu-
lated above is addressed here using the Bayes decision theory.
Each image is represented by a feature vector extracted from the
image. The probabilistic models required for the Bayesian ap-
proach are estimated during a training phase; in particular, the
class-conditional probability density functions of the observed
feature vector are estimated under a vector quantization (VQ)
framework [14], [16], [17], [36]. Consider training samples
from a class . A vector quantizer is used to extract( )
codebook vectors, ( ), from the training samples.
A modified MDL principle, described in Section II-C, is used to
select the optimal codebook size,. The class-conditional den-
sity of a feature vector given class , i.e., is then
approximated by a mixture of Gaussians (with identity covari-
ance matrices), each centered at a codebook vector, resulting in

(1)

where is the proportion of training samples assigned to.
The Bayesian classifier is then defined using themaximum a
posteriori (MAP) criterion as follows:

(2)

where is the set of pattern classes and
represents thea priori class probability.

A number of VQ techniques have been developed and pro-
posed in the literature. These include entropy-constrained vector
quantization (ECVQ) [6], Bayes vector quantization [31], and
learning vector quantization (LVQ) [25], [26]. Since we have a
classification problem at hand, we concentrate only on super-
vised algorithms for VQ. Therefore, we did not consider ECVQ
for vector quantization. While Bayes VQ is a parametric vector
quantization technique (needing a measure of posteriori den-
sity), LVQ is a nonparametric vector quantization technique.
Therefore, it does not attempt to obtain the posteriori estimates
of the underlying probability density models that generate the
data. This is of high significance in most image classification
problems where the training data is limited and the dimension-
ality of the feature set is very high. Under these circumstances,
parametric approaches generally perform worse than nonpara-
metric techniques. We present experimental results comparing
LVQ-based classifier to a parametric approach, a mixture of
Gaussians using EM algorithm to estimate parameters of the
mixture (henceforth, this classifier will be referred to as a mix-
ture of Gaussian classifier) in Section II-B and Section IV, to
demonstrate our point. The mixture of Gaussian (using EM)
classifier tends to perform significantly worse under high-di-
mensional data, but its performance improves as the dimension-
ality of the data is reduced considerably, i.e., ratio of number
of training samples to feature dimensionality increases. Due to
this ability of nonparametric approaches to scale well to high-di-
mensional data, we have selected LVQ as the VQ algorithm in
our approach.

A. Implementation Issues

There are many potential features which can be used to
represent an image. Different features have different abilities
to detect the four possible orientations of the scanned image.
Since global image features are not invariant to image rotation,
we use local regional features for the classification [38]. An
image is represented in terms of blocks ( )
and the features are extracted from these local regions. A
number of features (e.g., color moments in the color
space [35]; color histograms in the color space [37];
edge direction histograms [37]; and MSAR texture features
[30]) were evaluated for their ability to discriminate between
the four possible orientations of an image. Feature saliency was
evaluated using a -nearest neighbor classifier. Preliminary
results showed that spatial color moment features (especially,
after normalization—see Section IV-E for results with-NN
classifier on normalized spatial color moment data) yielded a
much higher accuracy for the four-class classification problem
than the color histogram, edge direction histogram, and MSAR
features. Certain image classes such as outdoor images, tend
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to have uniformity in spatial color distributions (sky is on top
and typically blue in color; grass is typically green and toward
the bottom of an image, etc.) and direction of illumination (il-
lumination is usually from the top), while texture features have
much lower variations with changes in image orientation. We
therefore, trained our Bayesian classifier using 600 (100 blocks

3 mean and 3 variance values of, , and components)
spatial color moment features. The features were normalized to
the same scale as follows:

(3)

where represents theth feature component of a feature vector
, and represent the range of values for theth fea-

ture component over the training samples, andis the scaled
feature component.

B. Selecting Classification Scheme

We are posed with a problem of estimating the underlying
posterior probability distribution given a high-dimensional fea-
ture vector (600 dimensions) and a relatively small number of
training samples. In order to simplify the problem, it is assumed
that the underlying class-conditional probability distribution
can be represented as a mixture of Gaussians and the Bayes
rule can be applied for classification. However, estimating the
parameters of the class-conditional probability distribution is
still a difficult problem. The expectation maximization (EM)
technique [8], [12] and vector quantization (VQ) are two
main techniques employed to model the data. While the EM
technique attempts to estimate the parameters of a mixture
of Gaussians, VQ attempts to quantize the data both for
compression and classification. Due to the high-dimensionality
of the feature vector, nonparametric techniques are expected to
outperform parametric techniques (nonparametric techniques
have a better scaling ability) for estimating the class-condi-
tional probability distribution (see Section II-D for an empirical
demonstration of this property). Kohonen’s LVQ [25], [26] is
an ideal choice for such a classifier, since it is both supervised
(using positive and negative examples for selecting the code-
book vectors) and nonparametric in nature. Therefore, we have
used LVQ for estimating codebook vectors and then fitting
Gaussian kernels over the codebook vectors for classification.
Ideally, the Gaussian kernels fitted over the codebook vectors
can be estimated using the EM algorithm. However, due to the
high-dimensionality of the feature vector and relatively small
number of training samples [20], we empirically estimate the
parameters of the Gaussian (in our case, the variance, since the
weight and mean of the Gaussian components are represented
by the (normalized) number of training samples closest to a
codebook vector, and the codebook vectors, respectively).

C. Selecting Optimal Codebook Size

A key issue in using vector quantization for density estima-
tion is the choice of the codebook size. It is clear that, given
a training set, the VQ-approximated likelihood (probability) of
the training set will monotonically increase as the dimension of
the codebook grows; in the limit, we would have a code vector
for each training sample, with the corresponding probability

equal to one. To address this issue, we adopt theminimum de-
scription length(MDL) principle to select the “optimal” code-
book size [32]. The MDL criterion states that the description
code-length to be minimized by the estimate must include not
only the data code-length but also the code-lengths of the pa-
rameters. The resulting criterion for the choice of(codebook
size) is then

(4)

where the first term represents the data code-length and the
second term represents the code-length of the parameters.

The first key observation behind MDL is that finding an ML
estimate is equivalent to finding the Shannon code for which
the observations have the shortest code-length [32]; this is so
because Shannon’s optimal code-length,1 for a set of observa-
tions, : , obeying a joint probability den-
sity function , is simply [7], [11]

(5)

Under the assumption of independent samples, (
), the joint likelihood in (5) can be written as

(6)

In our case, each of the marginals in the above likelihood is
given by (1) and contains the codebook vectors, :

, and the weights .
Concerning the parameter description length, , the

most commonly used choice is ,
where is the sample size and is the
number of real-valued parameters needed to specify ath-order
model and represents the dimensionality of the feature
space [32]. This is an asymptotically optimal choice, which is
only valid when all the parameters depend on all the data, which
is not applicable here. The weights are, in fact, estimated

from all the data; however, each is estimated from the
samples that fall in the associated cell. Accordingly, we obtain
the followingmodifiedMDL (MMDL) criterion

(7)

where the first term is the negative log-likelihood of the obser-
vations, the second one accounts for the weights, while the
third one corresponds to the codebook vectors themselves.

D. Experimental Results

We have tested our orientation detection system on a data-
base of 16 344 images, which consists of 7980 training samples
(1995 samples per class) and 8364 test samples (2091 samples
per class). The database consists of professional quality images
from Corel stock photo library. The LVQ package described in

1In bits ornats, if base-2 or natural logarithms are used, respectively [7].
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Fig. 3. Determining the optimal codebook size.

[27] was used to determine codebook vectors. The MMDL crite-
rion, described in Section II-C, was used to determine the code-
book size. Fig. 3 shows the plot of [criterion
in (4)] versus the codebook size,, for the spatial color moment
features for all the four classes. We found that (ten code-
book vectors per class) minimizes the criterion in (7) for all the
four classes. The classifier yielded an accuracy of 98.6% on the
training set and 96.8% on the independent test set.

We compared the previous LVQ-based classifier to a mixture
of Gaussian classifier using the EM algorithm for parameter
estimation. We have employed the method described in [10],
wherein the number of mixture components is automatically es-
timated along with the mixture parameters by incorporating a
MDL technique within the EM steps. The EM method was em-
ployed in a supervised fashion, learning a mixture for each class
separately and then classifying based on the MAP classifier (a
diagonal covariance was assumed for the distribution). The mix-
ture of Gaussian method yielded a single Gaussian component
for each of the four classes. We feel this is mainly an artifact of
the high-dimensional nature of the feature set (600 dimensions)
and availability of a small number of training samples (1995
samples). The mixture of Gaussian classifier yielded an accu-
racy of 79.3% on the training data and 88.4% on the test data.
Section IV demonstrates how the performance of the mixture of
Gaussian classifier (using the EM approach) improves signifi-
cantly as the dimensionality of the feature set is reduced.

III. FEATURE EXTRACTION

The performance of a classifier trained on a finite number
of samples starts deteriorating after a point as more and more
features are added (curse of dimensionality[20]). A limited yet
salient feature set simplifies both the pattern representation and
the resulting classifiers that are built using the chosen represen-
tation. Consequently, the classifier will be faster and use less
memory, and be able to alleviate the curse of dimensionality.

To reduce the dimensionality of the feature vector, we utilized
the principal component analysis (PCA) and linear discriminant
analysis (LDA) [9], [22]. PCA, which is one of the most well-
known feature extractor, selects thelargest eigenvectors of
the covariance matrix of the-dimensional patterns as
the new features, . Whereas PCA is an unsupervised
linear feature extraction method, LDA [21] uses the category

information associated with each training pattern. Letdenote
the within-class scatter matrix, and the between-class scatter
matrix. The linear discriminant analysis finds a subspace, which
maximizes the value of . Given classes, LDA
extracts features. We applied both of the previous methods
to extract the features from the original 600-dimensional data.
We visualized the feature extraction results in two-dimensional
(2-D) and three-dimensional (3-D) projections of the original
data (Fig. 4). Using PCA, we were able to effectively reduce
the feature dimensionality from 600 to 100, while maintaining
greater than 95% of the variance of the original data

However, the resulting features did not help in improving the
classification accuracy. In fact, the performance of the classi-
fier trained on the reduced (100-dimensional) feature vector,
extracted using PCA, dropped significantly (as compared to the
classifier trained on the original 600-dimensional feature vector)
both on the training and the independent test data (see Fig. 6).
Since PCA is an unsupervised feature extraction method, the

uncorrelated features (extracted using PCA), which are used
to represent the original-dimensional patterns, are not neces-
sarily the best for pattern classification. The classifier trained
on features extracted using LDA yielded higher accuracies (see
Fig. 6). The Chernoff faces are also used to represent the mean
vectors (in the 3-D LDA space) of the four categories [Fig. 4(d)].
We can clearly see that the images belonging to the four different
orientations are well separated in a 3-D feature space obtained
using LDA.

Another method to define the features is to derive them au-
tomatically from the input image, using the HDR tree method
[19]. Instead of relying on a human expert to define the fea-
tures, this method automatically and implicitly derives the fea-
tures from training images, while building the classifier. How-
ever, due to the complexity of extracting features (both in terms
of time complexity and robustness of extracted features) auto-
matically from a small set of training images, we have employed
the HDR tree method to derive features from the original fea-
ture vectors (color moment features), rather than directly from
the image.

IV. CLASSIFIER COMPARISON

While there are a large number of classification schemes
reported in the literature, we compare the proposed LVQ-based
classifier with the following four well-known classifiers: the

-nearest neighbor rule (-NN), the support vector machine
(SVM), a mixture of Gaussians, and the hierarchical dis-
criminating regression (HDR) tree. The choice of these four
classifiers is based on the following observations:

1) -NN is a very well-known and one of the simplest (to
implement) nonparametric classification scheme;

2) SVMs are one of the most comprehensive nonparametric
classification scheme, attempting to apply both feature



750 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 7, JULY 2002

Fig. 4. Two-dimensional representation of the data using (a) PCA and (b) LDA. The original feature space is projected into 2-D space, along the largesttwo
eigenvectors, and the first two discriminant variables, respectively. (c) Three-dimensional representation of the LDA space. (d) Chernoff faces corresponding to
the mean vectors of the four categories in the 3-D LDA space.

normalization and Occam’s Razor principle in classifier
design;

3) HDR tree is a powerful technique devised for high-dimen-
sional data, which also applies implicit feature extraction
during classifier design;

4) both SVM and HDR tree have been shown to specifically
work for high-dimensional feature space and hence, our
choice to compare classification performance with these
techniques;

5) mixture of Gaussian classifier is suitable in situations
where the class-conditional densities are not unimodal
(especially true for high-dimensional feature vectors).

A. -Nearest Neighbor Rule

The -NN rule [9] assigns a test pattern to the majority
class among its nearest neighbors using a performance op-
timized value for . There is no separate training procedure
for -NN rule. It is a robust classifier, which gives a good
classification accuracy in practice. The asymptotic error rate
of -NN rule is bounded by twice the Bayes error rate. The
drawback of -NN rule is its large computational require-
ment. Also, when the data are not properly scaled, the-NN
rule employing the Euclidean distance does not perform well.
So, data normalization is inevitable in most cases.

B. Support Vector Machine

Support vector machine [3], which was introduced by Vapnik
[39], [40], utilizes the structural risk minimization principle.
It is primarily a dichotomy classifier. The optimization crite-
rion is the width of the margin between the classes, i.e., the
empty area around the decision boundary defined by the dis-
tance to the nearest training samples. These patterns, called the
support vectors, finally define the classification function. The
SVMs use optimization methods to maximize the gap between
the classes. An SVM with a large margin separating two classes
has a small VC dimension, which yields a good generalization
performance. The computational complexity of the training pro-
cedure (a quadratic minimization problem) is one of the draw-
backs of SVM. A number of classifiers were trained using dif-
ferent kernels (linear, polynomial, radial basis function, and sig-
moid) for SVM. The best classification accuracy was achieved
when a polynomial kernel function of degree 3 was used. There-
fore, we report results for this SVM classifier only.

C. Hierarchical Discriminating Regression Tree

The HDR algorithm [19] casts classification and regression
problems into a unified regression framework. This unified
view enables classification problems to use numeric infor-
mation in the output space–distance metric among clustered
class labels for coarse and fine classifications. Clustering is
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performed in both output space and input space at each internal
node of the regression tree. Clustering in the output space
provides virtual labels for computing clusters in the input
space. Features in the input space are automatically derived
from the clusters in the output space. These discriminating
features span the subspace at each internal node of the tree.
A hierarchical probability distribution model is applied to the
resulting discriminating subspace at each internal node. To
relax the per-class training sample requirement of traditional
discriminant analysis techniques, a sample-size dependent
negative-log-likelihood (NLL) is employed.

D. Mixture of Gaussian

A mixture of Gaussians can be used to model a data set
comprising of several distinct populations. A Gaussian mixture
model, , with components can be written as

(8)

where s are the mixing probabilities andis the set of param-
eters (the mean and the covariance matrix) defining theth com-
ponent of the Gaussian mixture. The expectation maximization
(EM) algorithm [8], [12] is a commonly employed parametric
technique for estimating parameters of a mixture of Gaussians,
here and . We have employed the method described in
[10], wherein the number of mixture components is automati-
cally estimated along with the mixture parameters by incorpo-
rating a MDL technique within the EM steps. Although the EM
method is unsupervised, we employed it in a supervised fashion,
learning a mixture for each class separately. The final classi-
fier is designed using the estimated mixture parameters and then
classifying based on the MAP classifier. The main limitations of
this approach are that it doesn’t scale well to large dimensional
feature vectors and does not use the complete training data (each
class is separately treated independent of the others) while esti-
mating the mixture parameters.

E. Experimental Results

We implemented the-NN algorithm in the following four
ways: voting, distance weighted [1], voting with normalized
data and distance weighted with normalized data. Hold out
method was used to compute the classification accuracy with
1995 samples per class as the training set and 2091 samples
per class as the test set. We notice that the data normalization
improves the classification performance. We also studied the
performance of -NN after feature extracting using PCA and
LDA. These classification results are plotted in Fig. 5, which
shows that -NN with LDA has the best performance.

The LVQ-based classifier was applied to the original nor-
malized features, features extracted with PCA, and features ex-
tracted with LDA. The accuracies, as a function of the codebook
size for features extracted using PCA and LDA, are shown in
Fig. 6. LVQ with LDA achieves much better performance in
these experiments. The MMDL principle extracted a total of
ten codebook vectors for the four-class problem for the LVQ
with LDA classifier. Due to space constraints, we do not show
the graph of the MMDL criterion versus codebook size in this

Fig. 5. Error rates ofk-NN classifier w.r.t.k; scheme for classification
are represented as follows: voting (�), distance weighted (+), voting with
normalized data (x), and distance weighted with normalized data(:); results
are shown before feature extraction (solid lines), feature extraction using PCA
(dotted lines), and feature extraction using LDA (dashed lines).

Fig. 6. Accuracy of LVQ-based classifier on features extracted using PCA and
LDA.

case. While the classification accuracy seems to be maximized
for 100 codebook vectors (although, only insignificantly), the
MMDL criterion (a function of accuracy and code length) is
minimized for ten codebook vectors. In order to maintain a con-
sistent approach, we still use a diagonal covariance for each
Gaussian kernel placed on a codebook vector. However, this as-
sumption is not necessary, In fact, EM algorithm can be applied
to estimate the parameters of the Gaussian kernel representing
each codebook vector (from the training samples falling under
this codebook vector). We remove this assumption (and use a
full covariance matrix) when we employ the EM algorithm with
LDA-derived features.

We also applied SVM, HDR tree, and a mixture of Gaussian
(assumed a diagonal covariance matrix for each component)
methods to the original training data. The classification accu-
racy of SVM on the training set is 100% and on the test set is
94.95%. At the same time, HDR tree obtained 100% accuracy
on the training data set, and 93.8% on the test data set. Both
these methods do implicit data normalization. The mixture of
Gaussian classifier yielded much lower results with accuracy of
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TABLE I
PERFORMANCECOMPARISON OFFIVE CLASSIFIERS

79.3% on the training data and 88.4% on the test data. We also
applied SVM and mixture of Gaussian classifiers to the reduced
feature space generated by LDA. In the reduced feature space,
the mixture component entries can be assumed to have a full co-
variance matrix. Feature extraction not only leads to a speed up
in classification, but also improves the classification accuracy.
The accuracy of the mixture of Gaussian classifier improved to
97.7% on the training set and 97.3% on the test set. Table I shows
the performance comparison of the five classifiers on a SUN Ul-
traSparc 10 machine with 256 MB RAM. We would like to em-
phasize that the performance of all the five classifiers is impres-
sive. The best results (in terms of accuracy and speed) were ob-
tained by the LVQ-based classifier and the mixture of Gaussian
classifier using LDA for feature extraction. Coincidently, both
the LVQ-based and mixture of Gaussian classifiers estimated
the same number of components (ten codebook vectors in total).
The use of a full covariance matrix in the mixture of Gaussian
classifier increases its computation time during classification.
Note that while the LVQ-based classifier maintains good accu-
racy at higher dimensionality, the mixture of Gaussian classifier
does not scale appropriately. We feel this is mostly due to the
lack of sufficient number of training samples in the higher di-
mension, affecting the parameter estimation provided by the EM
algorithm. However, a major limitation of both the LVQ-based
and mixture of Gaussian classifiers is that they do not attempt
any feature selection or normalization during classifier design.
The onus is left on the human designer to come up with a “good”
set of features. SVM and HDR tree attempt feature normaliza-
tion and extraction during classifier design.

We next present detailed results of the LVQ-based classifier
using LDA for feature extraction. Fig. 7 shows a subset of the
images whose orientations were correctly detected. We found
the classifier performance to be near perfect for long-distance
outdoor images and images with sky present in them. The clas-
sifier performance drops on difficult images, such as images
with uniform texture and background, close-up images, sym-
metric images, and images of low contrast. Fig. 8 shows a subset
of the misclassified images. Since the classifier performance is
near perfect for outdoor images and tends to decrease for im-
ages with a constant background or symmetric images, it seems

Fig. 7. Subset of images in the database whose orientations were correctly
detected. (a) Input images and (b) detected orientations.

that the classifier bases classification on gradation of illumina-
tion present in an input image.
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Fig. 8. Subset of images in the database that were misclassified. (a) Input
images, (b) detected orientations, and (c) true orientations.

V. CLASSIFIER COMBINATION

A large number of experimental studies have shown that
classifier combination can exploit the discrimination ability of
individual feature sets and classifiers [22], [24]. Bagging [2],
[34] and boosting [13], [18] are two commonly used methods
of combining classifiers based on statistical re-sampling tech-
niques. Bagging uses bootstrap techniques (randomly draw
patterns with replacement from the original training data of
size ) to generate a number of “new” training sets. Different
classifiers are then designed using these training sets. The final
classification is based on the combined output (linear combi-
nation) of the various classifiers. Boosting is another statistical
re-sampling technique where individual classifiers are trained
hierarchically to learn more subtle regions of a classification
problem. Each classifier in the hierarchy is trained on a training
set that overemphasizes (assigns more weights to) the patterns
that were misclassified in the earlier stages.

A number of studies [2], [13], [18], [29], [34] have shown that
bagging and boosting can improve the classification accuracy
of “weak” classifiers (classifiers with near chance accuracies).
However, if the classifier performance is good, bagging and
boosting do not guarantee any improvement (the bagged or
boosted classifier may actually perform worse than the original
classifier). Specifically, Mao [29] showed that boosting can in
fact reduce the classification accuracy for robust and efficient
classifiers under a reject option. Mao argued that for robust
classifiers, the misclassifications are mostly due to the lack

TABLE II
PERFORMANCE OFBAGGING

of sufficient discrimination ability of the underlying features
used for classification. Under these circumstances, boosting
does not improve classification accuracies and using additional
features with higher discrimination ability for these misclassi-
fied patterns is a more practical approach. Since our individual
classifier performances are very good, we present results of
combining classifiers using the bagging ensemble only. For
bagging, we first used each of the bootstrapped data sets, which
were created by randomly drawing 798 samples (10% of the
training set) with replacement from the original training set, to
train the component classifiers. The final decision/classification
was made on the output of each component classifier by voting.
Table II shows the classification accuracy using bagging. As
expected (since our individual classifier performances are very
good), bagging only slightly improves classifier performance.
We also combined the four classifiers (-NN, LVQ-based,
HDR, and SVM) together. The final decision was again based
on the voting of the output of the four classifiers. The classifi-
cation accuracy using the combined classifiers on the training
dataset was 99.4%, and the accuracy on the test dataset was
97.3%. This result is only a slight improvement in the overall
classification accuracy over individual classifiers.

VI. CONCLUSIONS

Automatic image orientation detection is an important
problem, which is extremely difficult in practice, since no con-
textual information is available. Using a LVQ-based classifier,
we have presented anovelsolution to the previous problem. The
proposed approach gives high classification accuracy (97.4%)
and is extremely fast (40 images/ms given the features have
been extracted). We have shown that PCA and LDA can be
applied to extract a relatively small number of features from the
high-dimensional data. While PCA reduces feature dimension-
ality, its unsupervised nature does not improve classification
accuracy, and can actually lower classifier performance. How-
ever, the LDA technique greatly reduced the dimensionality of
the data (from 600 to three) while maintaining excellent classi-
fication accuracy. We have compared our proposed LVQ-based
classifier to four commonly used classifiers, namely, HDR
tree, SVM, mixture of Gaussians (parameters estimated using
EM), and -NN classifier. Only SVM classifier achieved
accuracies comparable to the LVQ-based classifier. A mixture
of Gaussian classifier also achieved excellent performance on
features extracted using LDA. However, its performance does
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not scale to a high-dimensional feature vector. A limitation of
the LVQ-based classifier is that it does not perform any implicit
feature selection or normalization during classifier design
and the onus is placed on the designer. On the other hand,
both SVM- and the HDR tree-based classifiers have a built-in
feature extraction and normalization. Finally, we utilized the
classifier combination techniques to improve the accuracy and
robustness of the classifiers.
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