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Automatic Image Registration Through
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Abstract—Automatic image registration (AIR) is still a present
challenge for the remote sensing community. Although a wide
variety of AIR methods have been proposed in the last few years,
there are several drawbacks which avoid their common use in
practice. The recently proposed scale invariant feature transform
(SIFT) approach has already revealed to be a powerful tool for
the obtention of tie points in general image processing tasks, but it
has a limited performance when directly applied to remote sensing
images. In this paper, a new AIR method is proposed, based on the
combination of image segmentation and SIFT, complemented by a
robust procedure of outlier removal. This combination allows for
an accurate obtention of tie points for a pair of remote sensing
images, being a powerful scheme for AIR. Both synthetic and real
data have been considered in this work for the evaluation of the
proposed methodology, comprising medium and high spatial res-
olution images, and single-band, multispectral, and hyperspectral
images. A set of measures which allow for an objective evaluation
of the geometric correction process quality has been used. The
proposed methodology allows for a fully automatic registration of
pairs of remote sensing images, leading to a subpixel accuracy for
the whole considered data set. Furthermore, it is able to account
for differences in spectral content, rotation, scale, translation,
different viewpoint, and change in illumination.

Index Terms—Automatic image registration (AIR), image seg-
mentation, optical images, scale invariant feature transform
(SIFT).

I. INTRODUCTION

IMAGE registration is still far from being a commonly
automatized process, in particular regarding remote sensing

applications. Although several methods have been proposed in
the last few years [2], [8], [9], [11], [31], [32], geometric cor-
rection of satellite images is, in practice, mostly a manual work.
The manual procedure is associated to inter- and intraoperator
subjectivities, beyond being a time-consuming task.

Geometric correction of satellite images may involve sev-
eral factors which should be considered (both radiometric and
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geometric transformations). Despite the fact that a local trans-
lation may be the main distortion for small segments of satellite
images, rotation and scale effects may also be present, as well as
distortions associated to the terrain relief and panoramic view.
Furthermore, significant differences on the spectral content
between the images to be registered also increase the difficulty
in automating the registration process.

The main concept regarding automatic registration of satel-
lite images is to obtain an accurate set of tie points and
then apply the transformation function which is most suitable
to the pair of images to be registered. A considerably large
number of approaches may be found in the literature regarding
the automatic obtention of tie points—being mainly area- or
feature-based methods—by means of the image intensity values
in their close neighborhoods, the feature spatial distribution, or
the feature symbolic description [32].

Image segmentation comprises a wide variety of methods
[3], [26], either for monochrome or color images (or to a
single or multiple bands of satellite images). Most image seg-
mentation methods can be classified according to their nature:
histogram thresholding, feature space clustering, region-based
approaches, edge detection approaches, fuzzy approaches, neu-
ral networks, physics-based approaches, and any combination
of these [3]. Any of these generally intends to transform any
image to a binary image: objects and background. The use of
image segmentation as a step in image registration had been
scarcely explored [5], [12], [17]. Therefore, further improve-
ments under the scope of methodologies for automatic image
registration (AIR) may be achieved, particularly combining
image segmentation with other methods.

Dare and Dowman [5] proposed an improved model for
automatic feature-based image registration, based on multiple
feature extraction and feature matching algorithms. With the
combination of extraction and matching algorithms, it was
possible to identify common features in multisensor situations,
from which tie points can be derived. The tie points were
initially obtained from matching the centroids, followed by the
matching of the pixels of the patch edges. This approach is
quite sensitive to differences on the patch delineation, which
may often occur when using images from different sensors or
even with temporal differences.

Local descriptor is a widely used technique in several image-
and video-based tasks [22]. One of the main advantages of
local descriptors is that they are distinctive, are robust to
occlusion, and do not require segmentation. The concept be-
hind it is to detect image regions covariant to a class of
transformations, which are then used as support regions to
compute invariant descriptors, i.e., the detectors provide the
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regions which are used to compute the descriptors [22]. A
comprehensive review on the comparison of affine region de-
tectors may be found in [21]. Mikolajczyk and Schmid [22]
compared the performance of descriptors computed for local
interest regions of gray-value images. There are three main
classes of descriptors: distribution-based descriptors, spatial-
frequency techniques, and differential descriptors. They com-
pared the descriptor performance for affine transformations,
scale changes, rotation, blur, jpeg compression, and illumina-
tion changes [22]. Mikolajczyk and Schmid have found, based
on their experiments, that the scale invariant feature transform
(SIFT) [19]—which is a distribution-based descriptor—was
among those which obtained the best results for most of the
tests, with lower performance for textured scenes or when edges
are not reliable.

The SIFT approach allows for the extraction of distinctive in-
variant features from images, which can be used to perform re-
liable matching between images presenting a substantial range
of affine distortion, change in 3-D viewpoint, addition of noise,
and change in illumination [19]. A SIFT descriptor is a 3-D
histogram of gradient location and orientation, where location
is quantized into a 4 × 4 location grid and the gradient angle
is quantized into eight orientations, resulting in a descriptor of
dimension 128 [22]. Despite the several advantages of using the
SIFT approach, it does not produce meaningful results when
directly applied to remote sensing images, as supported by the
recent approaches applying SIFT to remote sensing images [4],
[16], [20], [23], [28], [30].

Li et al. [16] proposed an adaptation on the original method
proposed by Lowe [19], where the feature descriptor is refined
and the use of the Euclidean distance is replaced by a joint
distance. The method proposed by Li et al. assumes that often
remotely sensed images have no local distortions, and so,
geometric distortions can be modeled by “shape-preserving
mapping” model [32] (translation, rotation, and scaling only).
However, when an image with nadir looking is to be registered
with an image with a considerable viewing angle (such as most
of Satellite Pour l’Observation de la Terre (SPOT) images and
other higher spatial resolution satellite images), this assumption
fails. It is also not adequate for situations where the terrain relief
has significant variations across the considered scene.

Mukherjee et al. [23] proposed a method for detection of
multiscale interest points for later registration of hyperspectral
imagery. They proposed spectral descriptors for hyperspectral
interest points that characterize each interest point based on the
spectral information and its location and scale. Their method
mainly differs from the Lowe’s keypoint detection algorithm in
the sense that principal component analysis (PCA) is applied
to the hyperspectral imagery, and nonlinear function for com-
bining difference of Gaussian (DoG) responses along spectral
dimension is applied prior to local extrema detection [23].
They considered in their experiments four time-lapse images
acquired by the Hyperion sensor, retaining a subset of the
available spectral bands (such as uncalibrated or saturated data
channels) and using random regions with around 200 scan lines.
Nevertheless, this methodology is not appropriate for multi- or
single-band images, which is still presently the main imagery
source in remote sensing applications.

Sirmaçek and Ünsalan [28] have recently used SIFT key-
points and graph theory applied to IKONOS images, under
the scope of urban-area and building detection. They state
that the standard SIFT implementation is not sufficient for
urban-area and building detection from satellite images alone,
since the presence of many similar and nearby buildings in the
satellite images is a quite frequent problem [28]. Moreover,
as mentioned by the authors, their building-detection method
may not detect buildings if the contrast between their rooftop
and the background is low. Although the work by Sirmaçek
and Ünsalan is about urban-area and building detection, and
not AIR, this is another remote sensing application where the
simple application of SIFT to remote sensing images is not
sufficient.

Cheng et al. [4] presented a method of robust affine invariant
feature extraction for image matching called ED-MSER, which
combines MSER (maximally stable extremal region), SIFT, and
a filtering strategy. The core of the approach relies on a hier-
archical filtering strategy for affine invariant feature detection
based on entropy and spatial dispersion quality constraints.
It consists in evaluating the information entropy and spatial
dispersion quality of all features detected by MSER, removing
the features with low information entropy and bad distribution,
and just selecting the features with high information entropy
and good distribution. Finally, SIFT is used as ED-MSER
descriptor, as SIFT has been demonstrated to be superior to
others in resisting common image deformations [4]. Although
the presented experiments demonstrated that ED-MSER can get
much higher repeatability and matching score compared to the
standard MSER and other algorithms, its ability for multisensor
image registration tasks will be limited.

In this paper, a robust and efficient method for AIR is
proposed, which combines image segmentation and SIFT, com-
plemented by an outlier removal stage. The reference and
unregistered images may differ in translation, rotation, and
scale and may present distortions associated to the terrain relief
and significantly different spectral content. The methodology
is described in Section II, the results of its application to four
different pairs of images are illustrated in Section III, and the
discussion is presented in Section IV.

II. METHODOLOGY

Let us consider (XREF, YREF) as the coordinates of a point
from the reference image and (XNEW, YNEW) as (pixel, line)
of the corresponding point in the new image to be registered.
The relation between (XREF, YREF) and (XNEW, YNEW) may
be written as

{

XREF = f(XNEW, YNEW)
YREF = g(XNEW, YNEW)

(1)

where f and g are the functions which better describe the
relation between the coordinates of the two images. The type
of function may depend on several factors, such as the sen-
sor acquisition model and terrain distortion, among others.
In the presence of a set of N conjugate points, the previous
equations may be solved for the function coefficients, through
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Fig. 1. Main steps of the proposed methodology for AIR.

the most appropriate method in each case (usually the least
square method). The main difficulty relies on an automatic and
accurate identification of the N conjugate points, which is a
particular challenge in several remote sensing applications. The
main steps of the proposed methodology for AIR are shown
in Fig. 1 and include the following: conversion to single-band
image, image segmentation, SIFT descriptors, obtention of a
set of matching candidates, outlier removal, and final set of tie
points and corresponding geometric correction measures. These
steps will be separately described in the following.

A. Conversion to Single Band Through PCA

In the case that one or both images to be registered have
more than one spectral band, a data reduction method should be
individually applied to each image to facilitate the later segmen-
tation stage. This step should account for minimizing the loss of
important information for the later stages of the methodology,
which is a consequence of applying data reduction methods. It
should allow for considering one single band, which explains
the majority of the image variability. The method of PCA
was first derived and published by Hotelling [13]. Principal
components are still a basic tool for image description used in
numerous applications, allowing, in general, for the reduction
of the data dimension. Under the scope of image processing,
PCA allows for the reduction of the number of bands of an

image through a linear combination of them. Additionally, it
allows for considering one single band, which explains the
majority of the image variability.

Let I be an image of size m× n× k pixels, where k is the
number of spectral bands. This image stack I is rearranged as
a new image Ivector of size mn× k pixels, where each column
of Ivector corresponds to the stacked pixels of the corresponding
band of I .

Let us consider v = (v1, v2, . . . , vk)
T, which is a k-element

vector formed by the values of a particular pixel position across
the k spectral bands, i.e., each line of Ivector. Defining mv =
E{v} as the expected value of v and Cv = E{(v −mv)(v −
mv)

T} as the respective covariance matrix, let A be a matrix
whose rows are formed from the eigenvectors of Cv in such an
order that the first row of A is the eigenvector corresponding to
the largest eigenvalue and so on. The Hotelling transform

yv = A(v −mv) (2)

is what is also known as the principal component transform.
Through this transform, it is possible to concentrate on a single
band (the first principal component hereby assigned as J) most
of the variability explained by the original k bands. This is a
widely known method of data reduction, and further details can
be found in [6].

B. Image Segmentation

The segmentation of an image allows for its “simplification,”
since it significantly reduces the number of different pixel
values. Although it is also associated with a loss of information
on the image content, the decision of using an original or seg-
mented image will depend on the context of the AIR method.
Image segmentation is a process of partitioning an image into
nonintersecting regions such that each region is homogeneous
and the union of two adjacent regions is not homogeneous
[26]. Let P () be a homogeneity predicate defined on groups
of connected pixels and J the first principal component (of
size m× n pixels) of I , obtained as described in the previous
section. Segmentation is a partitioning of image J into a set of
l connected regions such that

l
⋃

i=1

Si = J with Si ∩ Sj = ⊘, i �= j (3)

and the uniformity predicate P (Si) = true for all regions Si

and P (Si ∪ Sj) = false when Si is adjacent to Sj .
A large number of segmentation methods can be found in

the literature, but there is no single method which can be
considered good for all images, nor are all methods equally
good for a particular type of image [26]. The existing image
segmentation methods include gray-level thresholding, iterative
pixel classification, surface-based segmentation, edge detec-
tion, and methods based on fuzzy set theory [26]. Thresholding-
based methods can be classified according to global or local
thresholding and also as either bilevel thresholding or mul-
tithresholding. For the aforementioned facts, we decided to
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consider the nonparametric and unsupervised Otsu’s threshold-
ing method [25].

The Otsu’s thresholding method may be recommended as the
simplest and standard method for automatic threshold selec-
tion, which can be applied to various practical problems [25].
Although the Otsu’s thresholding method is usually applied
to images with a bimodal histogram, it may also provide
a meaningful result for unimodal or multimodal histograms
where a precise delineation of the objects present on the scene
is not a requirement. Some examples are illustrated in [25],
where the histogram shape is nearly unimodal and a meaningful
segmentation is obtained. The key concept behind this method
is to obtain an optimal threshold that maximizes a function
of the threshold level. The optimal threshold is selected by a
discriminant criterion, in order to maximize the separability of
the resultant classes in gray levels. The procedure utilizes only
the zeroth- and the first-order cumulative moments of the gray-
level histogram. Further details may be found in [25].

According to this bilevel thresholding, the image J pixels
are assigned as 0 or 1. Then, the connected components in the
binary image are identified and assigned a number, and objects
with size less than 0.1% of the image size are removed in order
to reduce the computation effort, without compromising the
method performance. The labeled image with the small regions
removed is then stretched to a 16-b unsigned precision in order
to improve the detector obtention at the next step (SIFT).

C. SIFT

One of the most powerful approaches for the obtention of
local descriptors is the SIFT [19], [22]. The SIFT approach
transforms image data into scale-invariant coordinates relative
to local features and is based on four major stages: scale-
space extrema detection, keypoint localization, orientation as-
signment, and keypoint descriptor [19].

Let J(x, y) be an image and L(x, y, σ) the scale space of J ,
which is defined as

L(x, y, σ) = G(x, y, σ) ∗ J(x, y) (4)

where ∗ is the convolution operation in x and y and G(x, y, σ)
is a variable-scale Gaussian defined as

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

. (5)

The scale-space extrema detection begins with the detection of
local maxima and minima of D(x, y, σ), defined as the convo-
lution of a difference of Gaussian with the image J(x, y) [18]

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ J(x, y)

=L(x, y, kσ)− L(x, y, σ). (6)

The detection is performed by searching over all scales and
image locations in order to identify potential interest points that
are invariant to scale and orientation.

Once a set of keypoint candidates is obtained, the next step
is to accurately localize them. This is performed by rejecting
those keypoints, which have low contrast or are poorly localized

along an edge, by a detailed fit to the nearby data for location,
scale, and ratio of principal curvatures. Unstable extrema with
low contrast are detected by considering a threshold over the
extremum of the Taylor expansion (up to the quadratic terms)
of D(x, y, σ).

The third stage of the SIFT approach is the orientation
assignment to each keypoint, based on local image gradient
directions. This allows for the representation of each keypoint
relative to this orientation, achieving invariance to image rota-
tion. It is performed through an orientation histogram formed
from the gradient orientations of sample points within a region
around the keypoint, having 36 bins covering the 360◦ range of
orientations. Each sample added to the histogram is weighted
by its gradient magnitude and by a Gaussian-weighted circular
window with a σ that is 1–5 times that of the scale of the
keypoint. Then, a thresholding-based procedure refined by a
parabola fitting is used to accurately determine the keypoint
orientation through the orientation histogram.

The last stage of the SIFT approach is the keypoint de-
scriptor. The previously described steps assigned the location,
scale, and orientation of each keypoint. The motivation for the
computation of a more complex descriptor is to obtain a highly
distinctive keypoint and invariant as possible to variations such
as change in illumination or 3-D viewpoint. Each resultant
SIFT descriptor is a 128-element feature vector, whose detailed
explanation can be found in [19].

D. Obtention of Matching Candidates

Under the scope of automatic registration of satellite images,
since several distortion effects may be present in an acquired
image (as already mentioned in the Introduction), it is desirable
to have a reference image with as little distortions as possible
(such as an orthoimage with no shadow effects and similar
spectral content). Having that in mind, the SIFT descriptors of
the reference image may be used as a reference database of
keypoints, used for matching the keypoints derived from the
image to be registered. In this paper, we have considered the
nearest neighbor approach for keypoint matching as proposed
in [19].

The nearest neighbor is defined as the keypoint with min-
imum Euclidean distance for the invariant descriptor vector.
An effective measure for a matching validation is the ratio
between the distance of the closest neighbor and the distance
to the second closest neighbor, hereafter assigned as dratio. An
efficient nearest neighbor indexing is performed through the
best-bin-first algorithm [1]. Although, in [19], a distance ratio
threshold of 0.8 was proposed, a sensitivity analysis of this
parameter to different satellite images has been performed in
this work.

E. Outlier Removal

Even after the identification of matching candidates after
removal of incorrect initial matches as described in the previous
section, remote sensing images still produce unreliable tie
points which lead to a further incorrect geometric correction.
Each SIFT keypoint specifies four parameters: 2-D location
(x and y), scale, and orientation (θ). The proposed refinement
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Fig. 2. Pseudocode of the outlier removal stage described in Section II-E.

of excluding unreliable tie points is an iterative procedure based
on the principle that the “correct set” of matching keypoints
corresponds to a denser region of the 2-D representation of
the horizontal (∆x) and vertical (∆y) distances between the
matching candidates. A pseudocode of the algorithm is shown
in Fig. 2. An example of a set of matching candidates is shown
in Fig. 3(a), corresponding to the segmentation of the images
shown in Fig. 4. Each iteration of the outlier removal procedure
consists in the analysis of the bivariate histogram associated to
the previously described scatter plot, retaining only those bins
with an absolute frequency greater than 10% of the maximum
absolute frequency. The number of bins is a sensitive point
and is selected according to the Sturges rule [29]. This rule
provides an objective indication of the number of bins as being
1 + 3.322 log10 N , where N is the number of observations. The
histogram in Fig. 3(b) corresponds to the bivariate histogram of
the data in Fig. 3(a). The procedure stops when the registration
accuracy measure RMSall (described in the next section) is
below one or the maximum number of iterations is achieved.
Based on our experiments, a maximum number of ten iterations
are sufficient for the procedure to converge to a subset of valid
matching keypoints. The brighter points in Fig. 3(a) correspond
to the points considered valid after the first iteration of outlier
removal.

F. Final Set of Tie Points and Geometric

Correction Measures

The final set of tie points is composed by the initial match-
ing candidates after the removal of the outliers detecting ac-
cording to the procedure described in the previous section.
The performance of the proposed methodology for AIR was
evaluated through measures recently proposed [10], which al-
low for an objective and automatic evaluation of the image
registration process quality, based on theoretical acceptance
levels. The description of these measures may be found in [10]
and include the following: Nred (number of redundant points),
RMSall (rmse considering all Control Points (CPs) together),
RMSLOO (rmse computation of the CP residuals, based on the
leave-one-out method), pquad (statistical evaluation of residual
distribution across the quadrants), BPP (1.0) (bad point pro-
portion with norm higher than 1.0), Skew (statistical evaluation
regarding the presence of a preference axis on the residual
scatter plot), Scat (statistical evaluation of the goodness of CP
distribution across the image), and φ (a weighted combination
of the seven previously referred measures). Both rms measures
are normalized to the pixel size.

Fig. 3. (a) Scatter plot of a set of horizontal (∆x) and vertical (∆y) distances
between the matching candidates obtained from segmentation of the pair of
images in Fig. 4 considering dratio = 0.8. (b) Bivariate histogram of the values
in (a) with 11 bins in each direction.

III. RESULTS

The methodology previously described in Section II for AIR
was applied to four different pairs of remote sensing images.
For each pair, the most proper transformation function was
applied according to the involved distortion. The performance
of the method was evaluated through measures recently pro-
posed in the literature [10], as also described in Section II.
The Landsat and Hyperion images are courtesy of the U.S.
Geological Survey. The images were processed on a computer
with an Intel Core 2 6400 2.13-GHz processor and 2.0 GB of
physical memory, using MATLAB Release 2009 b.

A. Landsat/Landsat: Simulated Distortion

This pair of images was obtained from a Landsat scene
acquired on 2009-10-15 by Landsat 5, corresponding to the
northwest part of the Iberian Peninsula, with a sun azimuth
and elevation angles at the time of acquisition of 157◦ and 37◦,
respectively. A segment of 512 × 512 pixels from band 5 was
selected as the reference image. A segment of similar size was
selected from band 7 after a simulated rotation of 30◦ and a
simulated scale factor of 0.7, with this being the image to be
registered onto the reference image. Both images are shown in
Fig. 4. The simulated distortion can be corrected through a first-
order polynomial.

The obtained measures as a function of dratio are shown
in Fig. 5, and the final set of keypoints (location, scale, and
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Fig. 4. (a) Reference image extracted from band 5 of a Landsat 5 scene
(512 × 512 pixels). (b) Image extracted from band 7 of a Landsat 5 scene
rotated by 30◦ and with a scale factor of 0.7 (512 × 512 pixels). The final set of
keypoints (location, scale, and orientation representation) used for registration
is superimposed on both images for dratio = 0.7.

orientation representation) for dratio = 0.7 (the value which
led to the lowest value of φ) superimposed on both images
(as white arrows) is shown in Fig. 4. The low rms values,
which are achieved even for low values of dratio, are noticeable.
In particular, for dratio = 0.4, 124 tie points have been ob-
tained, associated to an RMSall = 0.54 (and an RMSLOO =
0.55) and φ = 0.438 (below the acceptance level of 0.605).
For dratio = 0.3, although a lower number of 21 tie points
have been obtained, a subpixel accuracy (RMSall = 0.70 and
RMSLOO = 0.77) has also been achieved. These results are
not so far from those obtained with dratio = 0.7 (RMSall =
0.36, RMSLOO = 0.37, and φ = 0.313), which led to the
obtention of 527 tie points. Therefore, the small number of tie
points obtained with dratio = 0.3 is quite accurate and sufficient
to perform an accurate registration of this pair of images at the
subpixel level, with different spectral content and a significant
affine (rotation, scale, and translation) distortion. The registra-
tion accuracy for dratio = 0.7 can be visually assessed through
Fig. 6.

Fig. 5. Measures (a) RMSall, (b) RMSLOO, and (c) φ as a function
of dratio regarding the registration of the pair of images described in
Section III-A.

B. Hyperion/Hyperion

This second pair of images was obtained from two
EO1/Hyperion scenes covering the Chesapeake Bay acquired
at different times: 2002-09-06 and 2004-10-06. From the 242
available spectral bands, 26 saturated bands and 44 uncalibrated
bands were excluded from further processing. Hyperion scenes
are, in general, quite narrow, which led to the only available
segment of size 256 × 256 pixels common to both scenes
with a significant land content. The segment from the 2002
scene was considered as the reference image. As described
in Section II, PCA was applied to each 256 × 256 segment
containing the remaining 172 spectral bands. The proportions
of variance explained by the first principal component were
90.2% and 89.8% for the 2002 and 2004 segments, respectively.
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Fig. 6. Image in Fig. 4(a) superimposed on image in Fig. 4(b) after contrast
stretched to allow for a better visualization of the registration accuracy, with
respect to dratio = 0.7.

The first principal component from both segments is shown
in Fig. 7. The distortion present in this pair of images can be
corrected through a first-order polynomial.

The results obtained for this pair of images are shown in
Fig. 8, and the final set of keypoints (location, scale, and
orientation representation) for dratio = 0.8 (the value which led
to the lowest value of φ) superimposed on both images is shown
in Fig. 7. A subpixel accuracy regarding both RMSall and
RMSLOO and an overall validation of the registration accuracy
have been achieved for values of dratio ranging from 0.2 to
1.0 (only the range 0.1–1.0 was considered). This reinforces
the robustness of the proposed methodology for AIR, since,
ranging from merely 5 tie points (dratio = 0.2) to 50 tie points
(dratio = 1.0), a subpixel accuracy has been achieved. Further-
more, for dratio = 0.8 (associated to the lowest value of φ), the
28 obtained tie points were associated to an RMSall = 0.35,
RMSLOO = 0.41, and φ = 0.302. This is another example
where not only it was possible to obtain a robust set of tie points
for low values of dratio but also a quite accurate registration was
achieved.

C. Hyperion/Landsat

The third considered pair of images is composed by the
Hyperion scene from 2002 described in Section III-B and by
the bands 1–5 and 7 from a Landsat 5 scene also covering
the Chesapeake Bay acquired on 2009-06-29. As already men-
tioned in Section III-B, EO1/Hyperion scenes are quite narrow,
and so, a segment of 256 × 256 pixels was the maximum region
of intersection between these two images. The proportion of
variance explained by the first principal component of the
Landsat scene was 88.6%. The first principal component from
both segments is shown in Fig. 9. The distortion present in
this pair of images can also be corrected through a first-order
polynomial.

Fig. 7. (a) Segment (reference) with 256 × 256 pixels from the first principal
component of the Hyperion scene from 2002 covering the Chesapeake Bay.
(b) Segment with 256 × 256 pixels from the first principal component of
the Hyperion scene from 2004 covering the Chesapeake Bay. The final set of
keypoints (location, scale, and orientation representation) used for registration
is superimposed on both images for dratio = 0.8. Further details are given in
Section III-B.

For this multisensor registration example, it was still possible
to achieve a registration accuracy at the subpixel level for a
wide range of dratio values (Fig. 10). The final set of keypoints
(location, scale, and orientation representation) for dratio = 0.7
(the value which led to the lowest value of φ) superimposed on
both images is shown in Fig. 9. Regarding RMSLOO—which
is a more fair evaluation of the rms error—it was also possible
to achieve a subpixel accuracy for most of the considered dratio
values. Furthermore, since BPP (1.0) was around 0.2 for most
values of dratio, excluding only those detected bad points would
drastically reduce the obtained rms-based measures, which
would be possible since a sufficient number of tie points were
obtained. The high values obtained for Scat (most near one)
are justified by the large part of sea, where it is not possible
to identify any matching keypoint. An overall validation of the
registration accuracy has been achieved for most of the values
of dratio, despite the fact that this pair of images is a multisensor
example. The number of obtained tie points was between 9 for
dratio = 0.3 and 33 for dratio = 1.0.
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Fig. 8. Measures (a) RMSall, (b) RMSLOO, and (c) φ as a function
of dratio regarding the registration of the pair of images described in
Section III-B.

D. Orthophoto/ALOS

The last considered pair of images was a high spatial
resolution data set, composed by the red, green, blue, and
near-infrared bands of an orthophotograph and by an ALOS-
PRISM scene, covering a region from the North of Portugal.
A segment of 512 × 512 from these scenes was selected.
The points with minimum and maximum height across the
considered region are 45 and 69 m, respectively, obtained from
the Shuttle Radar Topography Mission DEM [7]. Therefore, a
first-order polynomial is sufficient to accurately register this
pair of images. The proportion of variance explained by the
first principal component of the ALOS segment was 88.6%.
The first principal component from the orthophoto and the
ALOS segment are shown in Fig. 11. This is an example where

Fig. 9. (a) Segment (reference) with 256 × 256 pixels from the first principal
component of the Hyperion scene from 2002 covering the Chesapeake Bay.
(b) Segment with 256 × 256 pixels from the first principal component of the
Landsat 5 scene from 2009 covering the Chesapeake Bay. The final set of
keypoints (location, scale, and orientation representation) used for registration
is superimposed on both images for dratio = 0.7. Further details are given in
Section III-C.

the histogram shapes of both images are quite similar to a
unimodal distribution. Nevertheless, considering dratio as 0.9,
it was possible to obtain a subpixel accuracy (RMSall = 0.54
and RMSLOO = 0.66) and an overall measure quite below the
acceptance level (φ = 0.373) with 22 tie points.

E. Comparison With Other AIR Methods

The proposed methodology for AIR was compared with three
methods for the four previously described pairs of images. The
first was based on the correlation coefficient (CC) [2], [15],
[32], where each image was divided into tiles of size 128 ×
128 pixels allowing for the obtention of a set of tie points
based on the center of the tile and the identified peak of the
similarity surface. The similarity measure mutual information
(MI) was similarly considered as the second method of compar-
ison, whereas SIFT was the third considered method [19]. The
obtained results are presented in Table I. It is worth to mention
that, for the three methods used for comparison, they were



GONÇALVES et al.: AUTOMATIC IMAGE REGISTRATION THROUGH IMAGE SEGMENTATION AND SIFT 2597

Fig. 10. Measures (a) RMSall, (b) RMSLOO, and (c) φ as a func-
tion of dratio regarding the registration of the pair of images described in
Section III-C.

applied to the first principal component of the images whenever
applicable, which is a part of the proposed methodology.

Although SIFT has achieved results comparable to our
proposed method for Section III-A using dratio = 0.4, it
would lead to RMSall = 34.000, RMSLOO = 34.193, and
φ = 8.994 with dratio = 0.8 (as proposed in [19]), which are
clearly unacceptable results. Therefore, the use of the method
as proposed in [19] may become quite risky, since a wrong
choice of the dratio parameter may lead to dangerous results.
On the contrary, the worst results obtained by our proposed
methodology were RMSall = 0.697, RMSLOO = 0.770, and
φ = 0.504 for dratio = 0.3. One of the main reasons behind this
may be related to our “outlier removal” stage, which robustly
eliminates those erroneous tie points. For the remaining pairs

Fig. 11. (a) Segment (reference) with 512 × 512 pixels from the first principal
component of the orthophotograph. (b) Segment with 512 × 512 pixels
from an ALOS-PRISM scene. The final set of keypoints (location, scale, and
orientation representation) used for registration is superimposed on both images
for dratio = 0.9. Further details are given in Section III-D.

of images, our method clearly outperformed SIFT, in particular
for the medium spatial resolution pairs in Sections III-B and C.
This may reveal a limitation of SIFT when dealing with medium
spatial resolution images, since that for the high spatial resolu-
tion pair in Section III-D, SIFT led to better results, although
worst than those obtained with our methodology. With the
exception of the pair in Section III-C—where our proposed
method clearly outperformed CC, MI, and SIFT—with the
proposed methodology, it is possible to obtain more and ac-
curate tie points than using merely SIFT. The advantage of
using the proposed methodology against CC and MI is quite
obvious, despite the fact that, with CC, it was possible to
achieve comparable results for the image pair in Section III-D.

Regarding computational efficiency, the results of the pro-
posed methodology presented in Table I were associated to
processing times of 98, 28, 22, and 101 s, for the image pairs
in Sections III-A–D, respectively. Although these are quite
acceptable processing times, comparable to those obtained
with the other three methods, there is still room for further
improvements, since the implemented MATLAB code is not yet
optimized in terms of computational efficiency.
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TABLE I
MEASURES Nred, RMSall, RMSLOO, pquad, BPP (1.0), Skew , Scat, AND φ, REGARDING THE COMPARISON OF THE GEOMETRIC CORRECTION

(OF THE PAIRS OF IMAGES IN SECTIONS III-A–D) PERFORMED BY THE PROPOSED METHOD, WITH CC [2], [15], [32], MI [2], [15], [32], AND

SIFT [19], USING A FIRST-ORDER POLYNOMIAL. ABBREVIATIONS ARE EXPLAINED IN THE TEXT (SECTION II-F). a THE METHOD

WAS NOT ABLE TO REGISTER THIS PAIR OF IMAGES. b INADEQUATE NUMBER OF POINTS TO COMPUTE pquad [10]

F. Applicability of a Different Segmentation Method

Under the scope of an AIR methodology, it is strictly nec-
essary that all stages are automatic, which includes the “image
segmentation” phase. However, fully automatic image segmen-
tation is still a present subject of research, in particular for
natural (including remote sensing) images [24]. Nevertheless,
in order to provide some sensitivity analysis of the proposed
AIR methodology on the segmentation method, the k-means
clustering technique was also considered as an alternative to the
Otsu’s thresholding method [6]. Despite the fact that it involves
some parameters, the set of parameters “number of clusters,”
“type of distance,” and “number of replicates” was equally
defined for all the pairs of images as “2,” “squared euclidean,”
and “4,” respectively.

A similar performance with the k-means clustering technique
for the four pairs of images was found. Regarding the data
sets in Sections III-A–D, the values obtained for φ were 0.303,
0.347, 0.420, and 0.279, respectively. In the same order, these
values were obtained with the values of dratio equal to 0.8,
0.3, 1.0, and 0.8, for which RMSLOO values of 0.384, 0.183,
0.750, and 0.720 were obtained, respectively. These prelimi-
nary results indicate that the application of different segmen-
tation methods than Otsu’s thresholding may become a valid
alternative.

IV. DISCUSSION

Although several methods have been proposed in the re-
cent years [2], [8], [11], [31], [32], geometric correction of
satellite images is, in practice, mostly a manual work. In this
paper, a fully automatic algorithm for image registration has

been proposed, which comprises PCA, image segmentation,
SIFT, and a robust outlier removal procedure. Although this
methodology was presented as an image-to-image registration,
it can be used to match a new image to an available data set
of vectorial information stored in a geographical information
system, by converting the vectorial information to a raster
format.

The application of PCA allowed for a proper reduction of
each image dimension (for multi- or hyperspectral images),
since the first principal component explained in all situations
more than 88% of the total variance, without compromising
the registration accuracy. The use of the remaining principal
components does not provide meaningful information for later
segmentation and may therefore be discarded in the later stages
of the proposed methodology. Based on our experiments, only
the second principal component provides some useful infor-
mation, still leading to worst results than the first principal
component.

Other methods of data reduction could have been used for
this purpose, such as independent component analysis or the
projection pursuit, among the linear projections, or other non-
linear projection methods such as the curvilinear component
analysis [14]. However, PCA is still the mostly used method for
reducing the number of spectral bands and has provided good
results under the scope of the proposed methodology. Although
testing other data reduction methods was not under the scope of
this work, this is an aspect which will certainly deserve further
research in the future.

One of the major strengths of the proposed methodology is
the fact that it does not require an accurate segmentation of
the objects present on a scene. In several situations, due to
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differences in the sensor characteristics, in the spectral content
or even (temporal) changes in the terrain, the objects may
significantly differ from one image to the other, leading to a
difficult accurate registration with the traditional segmentation-
based AIR methods [5].

With respect to the image segmentation stage, since the
object function σ2

B(k), or equivalently, the criterion measure
η(k), both described in [25], is always smooth and unimodal,
it can be used as a method of evaluating the goodness of
the segmentation result in further research. Moreover, a
different segmentation approach was also tested according to
a unimodal —for which specific segmentation methods exist
[27]—or bimodal shape of the histogram. However, there was
no significant improvement on the obtained results with this
increasing of the method complexity, as the Otsu’s thresholding
method led to a sufficient segmentation for later processing.
Nevertheless, the complexity of the proposed algorithm may
be increased in the future, by considering more segmentation
methods which may be found to be more adequate to
certain types of applications. Although semiautomatic image
segmentation methods are available in the literature [24],
the segmentation stage has to be fully automatic. A more
complex algorithm may require an intelligent system, capable
of automatically deciding which method (or combination of
methods) should be used for each case, such as decision trees
among other possible alternatives [6].

The obtained results for the four pairs of images indicate
that a wide range of geometric distortions can be corrected
with the proposed methodology, namely, when registering large
scenes with significant geometric distortions such as the terrain
elevation, with particular importance for some products such as
level 1A SPOT scenes.

For the second and third pairs of images (Hyperion/Hyperion
and Hyperion/Landsat, multitemporal and multisensor cases),
the proposed methodology clearly outperformed SIFT. The
reason behind it may be the fact that SIFT is not adequate
for remote sensing images—in particular for multitemporal
and multisensor medium spatial resolution images—due to
the difference of intensity mapping between the images [16].
The proposed stage of image segmentation is responsible in
some way for overcoming this problem. For these two pairs of
images, the proposed methodology also outperformed CC- and
MI-based methods.

The low contrast between building rooftop and background
is a frequent concern [28], as well as closely spaced buildings,
which leads to undesired segmentation results. This is an in-
herent difficulty when dealing with single-band (panchromatic)
images. Moreover, robust automatic extraction of objects from
high spatial resolution images is still a present challenge [28].
Nevertheless, even using the Otsu segmentation method, it
was possible to achieve an accurate registration with the pair
orthophoto/ALOS.

For most of the considered situations, extremely high values
of measure Scat have been obtained, particularly for those with
strong rotation and scale effects. The reason behind this is that
there is a considerable part of one image which is not covered
by the other, and therefore, it will not be possible to identify any
tie point on those areas. This comment also applies to regions

without any distinctive objects such as sea, or even parts of one
image with no data (DN = 0).

The outlier removal stage is crucial to obtain an accurate
registration. If it was omitted, then the criterion of bad point
detection included in BPP (r) would not be able to detect er-
roneous matching candidates, since all tie points would be used
to estimate an inadequate set of the transformation function
parameters and therefore would wrongly model the geometric
distortion. At the outlier removal stage, an alternative of using
the scale and orientation keypoint parameters instead of the 2-D
location has been tested. However, there was no improvement
on the obtained results using this approach instead of the
analysis of the horizontal and vertical tie point displacements.

To our knowledge, a sensitivity analysis on the dratio param-
eter has been performed in this work for the first time, regarding
SIFT-based image registration methods. It allowed for a gain of
sensitivity of its use with respect to different types of satellite
images, as well as showing some misregistration results when
using an inadequate value for parameter dratio. The proposed
methodology for AIR revealed to be robust to a variation of
this parameter, not providing any registration when the choice
for the parameter is not adequate. This is a highly desirable
characteristic when dealing with AIR methods.

An important aspect of the SIFT approach is that it generates
large numbers of features that densely cover the image over
the full range of scales and locations. For instance, a typical
image of size 500 × 500 pixels will give rise to about 2000
stable features, depending on both image content and choices
for various parameters [19]. Therefore, in particular cases of
registering large scenes, the proposed methodology should be
applied to individual tiles of the image, combining the set of
final tie points for the large scene registration. Furthermore,
for more complex distortions, including significant variations
of the terrain height across the scene, an iterative application of
the methodology (excluding the PCA stage) may be required to
account for more pronounced geometric distortions.

In the future, it is expected to explore whether joining the
combination of the matching candidates and outlier removal
stages on an iterative basis may lead to an even more accurate
registration, taking into account the most proper transforma-
tion function for each situation (also considering the sensor
orbit model). It is justified by the fact that, after excluding
those matching candidates considered outliers, recomputing the
transformation function parameters may lead to an improve-
ment of the obtained results. This may become a complex
task when dealing with more complex transformation func-
tions and therefore deserves a deep further research on this
topic.

A fully AIR method has been proposed, which combines
PCA, image segmentation, SIFT, and a robust outlier removal
procedure. The combination of these techniques provides a
robust and accurate scheme for AIR. It allows for the regis-
tration of a pair of images with different pixel size, translation,
and rotation effects, and to some extent with different spectral
content, able to lead to a subpixel accuracy. Furthermore, it has
shown robustness against an automatic choice of the involved
parameters, which is a highly desirable characteristic of this
class of methods.
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